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Abstract:- This paper provides an overview of the formulation, analysis and implementation of Spline collocation method for the 

numerical solution of partial differential equation with two space variable which is of parabolic type. The method includes the 

solution of non-linear equation which can be expressed as in matrix form. The use of spline collocation methods in the solution of 

initial-boundary value problems for parabolic-type system id described, with emphasis on alternating direction implicit methods. 

Problem of vertical groundwater recharge solve by spline collocation method. Finally, recent applications of spline collocation 

method are outlined. 
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1. Introduction: 

Non-Linear parabolic partial differential equation solve by spline collocation method while numerical solution obtained. 

Therefore, two common questions are encountered, first is about its acceptance whether it is sufficiently close to true solution or 

not. If one has an analytic solution then this can be answered very clearly but in either case it is not so easy. One has to be careful 

while concluding that a particular numerical solution is acceptable when an analytic solution is not available. Normally a method 

is selected which does not produce an excessive errors. 

2. Spline collocation method: 

For solving linear and nonlinear differential equation with the help of the numerical methods required much computational work 

and time. Brickley [1968] suggested the method of spline function containing truncated power polynomials to solve a linear 

boundary value problem. Ahlberg et al [1967] used cardinal splines for solving differential equations. Doctor et al [1983, 1984] 

have shown that the method of spline collocation is quite useful for the solution of physical phenomena which give rise to linear 

parabolic one dimensional partial differential equation. The method demonstrates the use of spline function. Spline functions are 

piecewise polynomial and their successive derivatives are continuous. They were used for data interpolation initially. In 1967, 

Blue [1969] suggested the use of spline function for the solution of B.V.P. 

y′′ = f(x, y, y′) 

With boundary conditions 

𝐺1 Y 0 , Y′ 0   

G2 [ Y 1 , Y′ 1 ] 

The following recurrence relations were used. 

S′′  xi−1   + 4 S′′  xi + s′′  xi+1 = 6/h2(f(xi−1) − 2f(xi ) + f(xi+1) )------------- (I) 

3. Non-Linear Parabolic Partial Differential Equation: 

Consider a nonlinear parabolic partial differential equation 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 6                                                  387 – 391 

_______________________________________________________________________________________________ 

388 
IJRITCC | June 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

∂u

∂t
+ Au 

∂u

∂x
=  

∂2u

∂x2……….. (1) 

Where A is constant. 

Subject to certain initial and boundary conditions. 

Initial condition: u (u, 0) =f(x) 

Boundary condition: u (0, t) = u (a,t) = 0 

4. Spline formula to solve nonlinear parabolic partial differential equation: 

Divide the region [0, a] into say N- subintervals of equal length. Denote the points of subdivisions by x0, x1, x2 ,........ , xn. Let uij 

denote the value of u at i
th

 mesh point at time j∆t. We approximate the function u at time j∆t by cubic spline s(x). Discretizing the 

left side of equation (1) by forward and central difference formula and replace right side by the second derivative s
ꞌꞌ
(xi)at j

th
 level 

like explicit scheme in finite difference, we get, 

ui ,j+1−u i ,j

∆t
+ Aui,j

ui+1,j−ui−1,j

2∆x
=  si,j

"  ---------- (2) 

Where 𝑠𝑖 ,𝑗
" denotes s

ꞌꞌ
 (xi) at j

th
 level 

Now with the help of equation (2) and spline recurrence relation (I) we get, 

ui+1,j+1 + 4ui,j+1 + ui−1,j+1 = ui+1,j(1 + 6r) + ui,j(4 − 12r) + ui−1,j(1 + 6r) −  
AB

2
 {ui+1,j ui+2,j − ui,j + 4ui,j ui+1,j −

ui−1,j+ui−1,j(ui,j−ui−2,j)} ----------- (3) 

Where r = k/h
2
& B = k/h 

The above set of simultaneous equation gives a square matrix. The equation (3) known as cubic spline explicit formula to solve 

equation (1). 

Implicit method finite difference replacement of equation (1) is  

ui ,j+1−u i ,j

∆t
+ Aui,j

ui+1,j−ui−1,j

2∆x
=

1

2
(si,j

" +  si,j+1
" )--------------- (4) 

Where 𝑠𝑖 ,𝑗
"  and 𝑠𝑖 ,𝑗+1

"  denotes the second order derivatives of s(x) at x = xi at the time interval j & j+1 respectively. Using equation 

(4) and spline recurrence relation (I) we get, 

ui+1,j+1(6r − 2) + ui,j+1(−12r − 8) + ui−1,j+1(6r − 2)

= AB ui+1,j ui+2,j − ui,j + 4ui,j ui+1,j − ui−1,j + ui−1,j ui,j − ui−2,j  − {ui+1,j(6r + 2) + ui,j(8 − 12r)

+ ui−1,j(6r + 2)} 

------------ (5) 

Above equation (5) is known as cubic spline implicit formula to solve equation (1). Now 𝑢0,,𝑗+1 and 𝑢𝑛 ,𝑗+1 are known due to the 

prescribed boundary conditions. The set of simultaneous equations obtained in explicit as well as implicit scheme contains (n-1) 

unknowns. These (n-1) equations in (n-1) unknowns can be solved by any standard method. 

Once the value of u are known at (j+1)
 th

 level, we can proceed to compute next level j+2 by repeating the same process. Each set 

of equations give tri-diagonal matrix. It can be solved by any standard method. Thus, the method can proceed by steps. 

The convergence and stability of these methods totally depend upon value of r. Convergence and stability along with small values 

of r is more accurate. Values much larger than unity are not recommended. These two methods will be discussed later on by 

taking its actual approximation to a problem. 

5. Problem of Vertical Groundwater Recharge: 

The problem of flow of water through partially saturated porous media has been discussed by Klute [1952] and Verma [1969]. We 

have obtained a numerical solution of the problem by using spline collocation technique. In the investigated mathematical model 
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we consider that the ground water recharge takes place over the large basin of such geological location that the sides are limited 

by rigid boundaries and the bottom by a thick layer of water table. In this case the flow may be assumed vertically downwards 

through unsaturated porous media. Here the average diffusivity coefficient of the whole range of moisture content is regarded as 

constant and the permeability of the moisture content is assumed to have a parabolic distribution. The theoretical formulation of 

the problem yields a non-linear partial differential equation for the moisture content. 

6. Formulation of the problem: 

The equation of continuity for an unsaturated medium is given by  

∂

∂t
 ρs, θ =  −∇M;  

The boundary value problem is  

𝜕𝜃

𝜕𝑇
=  

𝜕2𝜃

𝜕ξ2 −  𝛽0𝜃 
𝜕𝜃

𝜕ξ
 ; θ  ξ , 0  = 0 ;  

𝜕𝜃

𝜕ξ
  1,𝑇 =  0 ------------------- (6) 

Where 𝜌𝑠 the bulk density of the medium is, 𝜃 is its moisture content on a dry weight basis, M is the mass flux of moisture, ξ is 

penetration depth (dimensionless) ,T is the time and 𝛽0 is the flow parameter. 

7. Explicit Spline method to solve the problem: 

From equation (3) explicit spline formula is  

θi+1,j+1 + 4θi,j+1 + θi−1,j+1 = θi+1,j(1 + 6r) + θi,j(4 − 12r) + θi−1,j(1 + 6r) −  
AB

2
 {θi+1,j θi+2,j − θi,j + 4θi,j θi+1,j −

θi−1,j+θi−1,j(θi,j−θi−2,j)} ------- (7) 

Where r = k / h
2
& B = k/h  

Taking A = 1, r = 1/6, h =1 / 4, kΔt = 1/96 & j = 0, i = 1,2,3,4 

 We get set of equations which can be solved by any well-known method. The solutions 𝜃 can be obtained for different values of j 

= 0, 1, 2, 3… i = 1,2,3,4 

The results are presented in the table (I) and are plotted in figure (I) 

Table I 

Numerical Results for Vertical Ground Water Recharge 

Spline solutions by explicit method 

θ → 

ξ t = 1/96 t = 7/96 t = 8/96 t = 9/96 t = 10/96 t = 11/96 

0.0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

0.25 0.0406 0.0622 0.0642 0.0653 0.0669 0.0678 

0.50 0.0133 0.0337 0.0352 0.0379 0.0393 0.0415 

0.75 0.0055 0.0161 0.0190 0.0201 0.0227 0.0241 

1.00 0.0137 0.0121 0.0126 0.0152 0.0163 0.0188 
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Figure I 

Behavior of Moisture Content 

 

8. Implicit Spline method to solve the problem: 

From equation (5) implicit spline formula is  

θi+1,j+1(6r − 2) + θi,j+1(−12r − 8) + θi−1,j+1(6r − 2)

= AB θi+1,j θi+2,j − θi,j + 4θi,j θi+1,j − θi−1,j + θi−1,j θi,j − θi−2,j  − {θi+1,j(6r + 2) + θi,j(8 − 12r)

+ θi−1,j(6r + 2)} 

---------------- (8) 

Where r = k/h
2
& B = k/h  

Taking A = 1, r = 1/6, h =1 / 4, kΔt = 1/96 & j = 0, i = 1,2,3,4 

We get set of equations which can be solved by any well-known method. The solutions θ can be obtained for different values of j 

= 0, 1, 2, 3…, i = 1,2,3,4 

The results are presented in the table (II) and are plotted in figure (II)  

Table II 

Numerical Results for Vertical Ground Water Recharge 

Spline solutions by implicit method 

θ → 

ξ t = 1/96 t = 7/96 t = 8/96 t = 9/96 t = 10/96 t = 11/96 

0.0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

0.25 0.0289 0.0694 0.0726 0.0753 0.0777 0.0798 

0.50 0.0083 0.0376 0.0419 0.0459 0.0497 0.0532 

0.75 0.0102 0.0179 0.0208 0.0239 0.0272 0.0306 

1.00 0.0100 0.0120 0.0139 0.0162 0.0188 0.0217 
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Figure (II) 

Behaviour of Moisture Content 

(Spline implicit solutions) 

9. Conclusion: 

We can conclude that from the graph the curves indicate the behavior of moisture content corresponding to different values, from 

the figure it can be observed that moisture content θ decreases considerably throughout the region as ξ increase but time t 

increases moisture content throughout region as well as at the layer increases. 
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