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Abstract— Using the elasticity feature of a utility cloud, users can acquire and release resources as required and pay for what they use. 

Applications with time-varying workloads can request for variable resources over time that makes cloud a convenient option for such 

applications. The elasticity in current IaaS cloud provides mainly two options to the users: horizontal and vertical scaling. In both ways of 

scaling the basic resource allocation unit is fixed-sized VM, it forces the cloud users to characterize their workload based on VM size, which 

might lead to under-utilization or over-allocation of resources.  This turns out to be an inefficient model for both cloud users and providers. In 

this paper we discuss and calculate the variability in different kinds of application service workload. We also discuss different dynamic 

provisioning approaches proposed by researchers. We conclude with a brief introduction to the issues or limitations in existing solutions and our 

approach to resolve them in a way that is suitable   and economic for both cloud user and provider. 
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I.  INTRODUCTION  

 In a cloud computing environment, elasticity refers to 

the user’s ability to acquire and relinquish resources on-

demand. Here, applications with time-varying workloads can 

request for variable resources over time that makes cloud a 

convenient option for such applications.    In the  traditional  

computing model,  users  would own and maintain resources 

which can  meet  the  demand  of peak  workload.   Rest of the 

times, resources would be under-utilized.   Elasticity in clouds 

is the feature that makes users enable to not to own the 

resources for peak workload, rather request for more resources 

when demand increases and release resources when not 

required.  The ability to pay for use of cloud resources 

eliminates the up-front commitment for resources by cloud 

users [1].  

I I .  ELASTICITY DEFINED 

Elasticity, being one of the central characteristics of cloud 

computing, is still used by different researchers and cloud 

providers to mean i n  different ways.  Open Data Center 

Alliance (ODCA) defines elasticity [2] as ―the 

configurability and expandability of the solution.  

Centrally, it is the ability to scale up and scale down 

capacity based on subscriber workload‖. 
Herbst et.  al [3] have discussed the following definition:  

―Elasticity is the degree to which a system is able to adapt to 
workload changes by provisioning and de-provisioning 
resources in an autonomic manner, such that  at each point in 
time the available resources match  the  current demand  as 
closely as possible.‖  They define elasticity metric in two cases: 
elasticity while scaling up the resources on increasing workload 
and, elasticity while scaling down the resources on decreasing 
demand.  They measure elasticity by the delay in acquiring 
resources and the amount of under-provisioned resources when 
the demand increases.  When demand decreases, elasticity is 
measured by delay in releasing resources and amount of over-
provisioned  resources.  In paper [4], elasticity  is calculated by 
finding dynamic  time  warping  (DTW)  [5] distance  between  

the  demand  (required resources) and supply (allocated  
resources). 

In a report, Kuperberg et.  al [6] have identified  several 
characteristics of elasticity such as effect of reconfiguration  
which is nothing  but  the amount of resources added/re- moved 
with respect  to change in workload,  how frequent are 
reconfiguration  points,  re- action  time by the  system to adapt  
to the  changed  resource configuration. A Quality of Elasticity 
(QoE) metric based on a weighted sum of several factors has 
been proposed by Mika et.   al [7]. He considered the factors 
like price-performance ratio which quantifies the performance 
received for a certain expenditure related to scaling out the 
deployment infrastructure, infrastructure pricing by cloud 
provider, billing granularity, VM provisioning speed etc. 

 
All of the research above mainly emphasize on how the 

system reacts to the changes in workload.   However, when 
measuring elasticity, an important consideration must be to 
choose the workloads which exhibit significant variability 
because otherwise the measurement can be misleading.  Hence, 
in this paper, the notion of capturing variability in workload is 
discussed first which is then connected with the elasticity of the 
system. 

III. VARIABILITY IN APPLICATION SERVICE BEHAVIOR 

(WORKLOAD) 

We  introduce in this paper, variability,  a term  to 

characterize  workloads that  exhibit significant  change in 

their  resource demand  that  is variable  with time.  We 

can m e a s u r e  w o r k l o a d s  by several metrics 

depending on the kind of workloads.  For CPU intensive 

workloads, number of tasks/jobs per unit time can be 

used as an indicator of workload.  For I/O intensive jobs, 

number of requests per unit time reaching the server can 

be an indicative workload.  In this paper, mainly I/O 

workloads are considered for case study and workload 

metric used is request rate.  Further, variability of 

workload can be defined using several characteristics of 

workload.   Here, a gradient based approach is used to 
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measure variability.   In this approach, an approximate 

gradient (since the workload is discrete) is calculated at 

each point of the workload.  We can calculate 

a pproximate gradient as follows: 

 
 
∆(W (t)) ≈W(t) –W(t-1)    = W (t) − W (t − 1)                           (1)  
        (t) − (t − 1) 
 
 

Where  W (t − 1) and  W(t) denotes  the  workload at  time  t − 
1 and  t respectively,  and ∆(W (t)) denotes  the  approximate  
gradient  or the  change  in workload  at  time  t.  It is positive 
when the workload increases and negative when it decreases.  
When the workload is constant, the gradient is zero at that point 
as gradient denotes the rate of change of workload. However, if 
there is a slight change in workload, gradient at those points 
would be approximately close to zero.  Hence, to check 
whether the approximate gradient is close to zero or not, a 
threshold is used and the absolute value of gradient |∆(W (t))| is 
compared  against  the  threshold.    This  threshold  is set  on 
the  workload  so that   it captures  if there  is a  big divergence  
between  the  workload  in  the  previous  cycle and next  cycle.   
Variability  is calculated  as a percentage  of points  where the  
approximate gradient  is greater  than  the  threshold  over all 
the points.   Mathematically, if T  denotes the threshold,  then  
variability  can be defined using a step function  s( )  which 
maps the positive arguments  to 1 and negative arguments  to 0. 
If the absolute gradient is greater than threshold, then the 
difference (|∆(W (t))| − T ) would be positive.  Hence, taking 
the summation of step function of this difference expression at 
each point would count all of the points where the workload is 
variable.  Using this, the variability can be: 

            n 

Variability = t=1  s (|∆(W (t))| −T )     x 100        (2) 

                                              n 

 
where, n is the  length  of the  workload,  T denotes  the 
threshold,  |∆(W(t))| denotes  the absolute value of approximate  
gradient,  and step function s() is defined as follows: 
 

 
  s(t-a) =        1 for t ≥ a                                
        0  otherwise         
 
 

We have demonstrated different kind of workloads to evaluate 
the variability fig(1):  i) A square shaped wave of a two-level  
step  workload, ii) a periodic workload with sine wave shape, 
iii) web server workload we used in our work, iv) random  
noise. Their respective approximate gradients are calculated 
and shown in fig (2). The variability calculated as a percentage 
for all of the workloads is 7.94%, 82.84%, 60.25% and 86.61% 
respectively with a threshold of 0.04 (almost zero).  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  0            50            100             150             200 
                  0           50         100         150           200 

Time (in hours)           Time (in hours)  
 

Fig 1.Different workloads to evaluate variability metric 
 

It shows that the noise is highly variable, as expected.  
Square  wave shaped  workload is the  least  variable  since the  
most  of the  time  it  remains  constant.  Sine wave shaped 
workload is variable 80% of the total time except for the 
topmost and bottommost points where it is remains almost 
constant. Web server workload is less variable than perfect sine 
shaped workload, but it still has significant variability.  
However, the mere fact that variability metric for square wave 
shaped workload is low does not imply that it does not require 
elastic resource allocation.  Rather the fact is that it needs 
elastic resource allocation at a larger scheduling window rather 
than at every scheduling cycle like in case of Sine wave shaped 
workload.  Here, variability attempts to identify those 
workloads which need short-term dynamic resource allocation 
decisions, or which need frequent scheduling of change 
resource allocation. 

As shown in fig. (2), the  workload  is actually  continuous  
and  it  has  been converted  into  discrete  form by averaging  it  
out  over a time  period.   This time  period plays  an  important 
role in the  correctness  of finding variability. It is important 
that this time period should be small enough to capture the 
variations of the workload. If this time period is too large, there 
is a possibility of missing out the important variations in the 
workload.  Intuitively, if the variability  does not change on 
decreasing the  time  period  further,  then  that  time  period  
can  be selected to  represent workload. Further, considering  
workloads  which  have  considerable  variability  is important 
when measuring  and  defining elasticity  of a  system.    Hence 
this metric is used in defining elasticity of the system in the 
next subsection. 
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Fig. 2. Gradient of Workloads 

 
Generally there are two classes of definitions of elasticity; one  
is based on system factors such as time to allocate resources 
once the resources are requested, reaction time of the system 
after the resources have been allocated, how often the 
configuration of the system can change and unit of resource 

Almost Static Workload 

 Perfectly Elastic (periodic) 

Web server Workload 

RANDOM NOISE 
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allocation (VM size) etc., another class is based on closeness of 
requirement and supply of resources which actually 
encompasses all factors described above. This is because all of 
the factors like delay in allocation of resources, scheduling 
points etc.  finally cause a mismatch in demand and supply 
curve, leading to over-allocation or under-allocation. In our 
work we refer to the second class of definition of elasticity. In 
[8] [9], elasticity is defined as follows:  

Considering the workload is significantly variable, elasticity 
of a resource allocation system S is defined by the closeness of 
resource requirement RR (t) and the allocated resources RS (t) 
with respect to change in workload W (t). 
 

Here, resource requirement is used to denote the amount of 
resources which are sufficient enough such that performance of 
application does not go down (service level agreement 
violations do not occur) and at the same time, they are not over-
provisioned. The point worth noticing is that the resource 
requirement depends on the service level agreement (SLA).  
For example,  if the  SLA mentions  that  the  average response 
time of the  re- quests for an application  hosted on cloud to be 
less than 100 ms, the resource requirement could be higher than  
the SLA which mentions the average response time limit of 200 
ms. The another term used in this definition apart  from the 
previous definitions is that   the  workload  is considered  to  be  
significantly  variable,  which  means  that   the variability  of 
the application workload being considered for measuring 
elasticity of the system should be greater  than  a threshold.  

 
Further, the closeness of resource requirement and 

provisioning can be measured by number of metrics.  
Intuitively, for a significantly variable application workload, if 
the resource allocation matches exactly with the resource 
requirement, then the system is perfectly elastic.  One resource 
allocation system S1 is more elastic than the other S2 if S1 
allocates resources more closer to requirement.  Fox example, 
if S1 takes lesser time to allocate resources than S2 after the 
requirement is known, then S1 is more elastic as the allocation 
and requirement would be closer for S1. Similarly, if S1 
predicts the resource requirement more accurately than S2, then 
again S1 would be more elastic. 

 
IV Elasticity in  current IaaS cloud systems 

 
Generally, in current IaaS cloud systems, the resource 

allocation unit is a fixed-size virtual machine (VM). Hence, 
from Infrastructure-as-a-Service point of view, elasticity means 
to acquire and relinquish VMs dynamically based on 
requirement.   Usually,  IaaS  cloud providers  provision a fixed 
set  of VMs with different configurations.  For example, 
Amazon provides few standard instance types (VMs) [10] like 
small, medium, large, extra large instance with increasing 
resource configuration. Apart from the standard instances, it 
also provides resource-specific instances like High- Memory, 
High-CPU, High-I/O instances.  To scale the resources, users 
can use the scaling strategies mentioned below. 
 

Horizontal Scaling: It is a scaling method in which 
resource scaling is achieved by adding (or removing) more 
number of VMs to support the changing demand of application.   
For the horizontal scaling to be a feasible option, the user 
application must be designed in a way such that it can be 
distributed onto multiple machines i.e. a multitier application.  
Also, one component can itself be built to distribute among 

different VMs and then using a load balancer to distribute the 
workload among the VMs. Fig. 3shows the how horizontal 
scaling takes place in IaaS. Here, VM1, VM2 and VM3 run the 
same component of the application and a load balancer 
distributes the load among these VMs. For horizontal scaling, 
another VM can be added and the load balancer redistributes 
the load among all of the VMs. The main advantage   of 
horizontal scaling is that powerful servers are not needed to 
support the increased workload of applications; rather 
commodity servers can be used to do the same in a distributed 
fashion.  

              

 Single Application 

Component 
 

 

 
 

               Physical  Host1 Physical Host2 Physical Host3 

 
Fig.3 Horizontal scaling in IaaS 

Vertical Scaling: It is a scaling method in which the change in 
workload is handled by migrating the application to a different 
VM (might be on a different physical host).  Fig. 4shows how 
the vertical scaling can be achieved in Amazon EC2 IaaS 
Cloud by migrating the application among small, medium and 
large instance VMs. Although migration is a costly operation  
and incurs some penalty  in terms of availability  and 
performance during migration,  but  for applications  which 
can’t scale horizontally,  resource scaling is achieved by 
migration  only. 
 
 
 
 
     
                              Migration                                                     migration 
 

 
        Small instance 
 
      Medium instance              Large instance 
 

Fig. 4 Vertical Scaling in Amazon EC2 Iaas Cloud 
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Fig. 5  Typical workload characteristics of web application 
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Fig. 5 shows the  actual  workload  of a  web server  hosted  
in our  institute.   In the figure the  x-axis  represents  time  in 
days  and  the  y-axis indicates  the  web server  workload, 
measured as the number  of HTTP  requests  per hour, received 
by the server.  High number of requests is received by the 
server during the day as compared to night times.  Using the 
existing resource provisioning model, for this workload, a user 
would demand two types of VMs as represented by the peak 
and trough of the workload corresponding to allocated 
resources curve, for the vertical scaling. In case of horizontal 
scaling, the peak might represent workload corresponding to 
two VMs and trough might correspond to workload for one 
VM. From  the  Figure,  it  is visible that  for supporting  an 
average  request  rate of about  200 requests/hour, one might  
allocate  a server of capacity  500 requests/hour so as to handle  
the  maximum  load.  This obviously, leads to idle resources 
most of the time.    Hence this  mode  of allocation  is coarse-
grained  because  it  does not  change  in accordance  to the  
variations  observed in the  workload.  Further, calculations 
show that the effective utilization of resources as per this 
allocation is just 45.5307% (assuming linear relationship  
between workload and resources),  which is the ratio  of area 
under  curve of the actual  workload to the workload 
corresponding  to allocated resources.  In such cases, cloud 
users end up paying more than what they actually use. Existing 
provisioning models are not very efficient for the cloud 
providers too.   Although, there are idle resources available, the 
provider can not release them for better usage.  In summary, 
static allocation of VMs in the current IaaS systems leads to the 
following problems: 

 

 Users are forced to characterize their resources on coarse-
grained level because of static VM sizes leading to under-
utilized resources or under-performing applications. 

 Cloud users pay even for the idle resources. 

 Idle resources cannot be further allotted by the cloud 
providers. 

 
So, variable resource requirement by variable workload 

cannot be met by static allocation. Hence, a more flexible and 
dynamic resource allocation mechanism is required that would 
help to achieve fine-grained resource allocation close to 
requirement. Various researchers have proposed dynamic 
provisioning proposals which change the allocation  based on a 
trigger decision.   

 
V   Dynamic Provisioning Techniques 

 
In  this  section,  we discuss various  proposals  by  

researchers  related  to  dynamic  provisioning  techniques.  
There are two broad categories in which these techniques can 
be classified.  First category includes the techniques where 
provisioning decisions are taken based on the immediate state 
of the system. Second category includes the techniques where 
provisioning is done based on a forecast using previous 
resource usage history, resource usage trend, load stability etc. 

A. Reflexive Scheduler based techniques 

       The term Reactive scheduler means the scheduler that 

takes provisioning decisions based on the immediate state of 

the system.  One of the practically  used such  frameworks is 

Auto  Scaling  [11] which is a service provided by Amazon 

where users can declare  various  rules based  on which the 

scaling of the resources is done automatically on behalf of the 

user in Amazon EC2 cloud.  It can scale the resources 

periodically by the specified schedule by the user (for 

example, everyday at 12:00:00). It can also scale the resources 

dynamically by specified conditions from the user (like change 

in system load).   The  conditions  can be specified by the  user 

based  on the  values  of some metrics  (which  can measure  

system  load,  for example).  Amazon provides some inbuilt 

metrics or users can define their own metrics, which are 

measured by a monitoring engine, called Amazon 

CloudWatch.  CloudWatch can be configured to generate 

alarms based on the conditions specified by the user, which in 

turn, can trigger the scaling activities. 
Figure 6 demonstrates how Amazon Auto Scaling works 

and its integration within the system [12]. Consider the AWS 
user as a SaaS Provider, which hosts its web application  onto 
the Figure 2.9: Limitations  in dynamic provisioning techniques  
based on immediate  state 
EC2 cloud.  AWS user sets up the Launch  Configuration  to 

launch  new instances,  CloudWatch metrics  to monitor,  

policies to trigger  CloudWatch Alarm,  and scaling policies 

based  on the  CloudWatch Alarm.   Typically, an AWS user 

would configure scale-in and scale-out policies for the 

increasing and decreasing system load.  For example, alarms 

can be configured that trigger auto scaling policies to launch  
 

                             SaaS Users                          
    
     AWS User  

     (SaaS Provider) 

 
Auto Scaling Interfaces     

    
   Launch                Scaling 
   Configuration        Scaling                  Policies 
                                                                                             Activities 
                
       
                                                                           Message 
 
       EC2                      EC2                     EC2 
    Instance           Instance               Instance 
                                                                                                 CloudWatch                                           
                     Application                                                             Matrices 
                                                                                                                     CloudWatch  
                                                                                                                                 Alarm                
 
 
 

Fig 6: Auto Scaling Feature  in Amazon EC2 
 

additional EC2 instances  when network  traffic, VM’s load, or 
other  measurable  statistic, gets too high,  say 90% usage. 
Depending on the application requirements, the scaling policies 
can use both horizontal and vertical scaling. This shows a close 
feedback based loop, which takes scaling actions based on 
monitoring feedback.  Hence, using Auto Scaling feature, users 
can use elasticity automatically.  However, the CloudWatch 
measures the VM’s load and take decisions based on that.   But 
in certain case, VM’s usage might not be too high but the 
server can still be saturated because of virtualization overhead. 
CloudWatch and other such commercially available monitoring 
engines have this limitation that they cannot measure 
virtualization overhead. 

 

 

B. Forecasting based techniques 

The a b o v e  limitations can be overcome using 

forecasting based techniques that derive meaningful 

prediction based on the history of resource usage, 

workload, etc.. In [14], Bobroff et al.   have introduced  
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dynamic  server  migration  and  consolidation algorithm.   

They stated that variability in the workload accrue the 

benefits of dynamic placement of VMs in terms of 

reduced resource allocation, shown by an analytical 

formula that they have derived.  The forecasting algorithm 

that they use first removes periodic components in the 

resource usage (that they represented in form of time series), 

then it represents the residuals by Auto-regressive process.  

Their results show the reduction in number of physical 

machines as compared to static allocation.  Their paper also 

discusses the problem in virtualized domain but the 

approach can be directly applied to cloud systems.  

Gong  et  al.  in   [15] have  proposed  PRESS  (PRedictive   

Elastic  ReSource  Scaling) scheme for cloud systems.  For  

workloads  with  repeating  patterns, PRESS  derives  a 

signature   for the  pattern of historic resource usage and uses 

that  signature in its prediction.  To calculate the period of 

repeating pattern, they calculate the Fast Fourier Transform 

(FFT) and find out the most dominating frequency out of it. 

For workloads without repeating patterns, PRESS uses 

discrete-time Markov chain with a finite number of states for 

short-term prediction.   

Lim et al. in [17] have applied a control  theory  based 

approach  where in they build  an  elasticity  controller,  

which  dynamically  adjusts  the  number  of virtual  server 

instances  in cloud and  rebalances  the  load among servers.  

A control policy based on a performance metric provides the 

feedback to the controller to take appropriate actions. 

Gemma  Reig and  Jordi  Guitart in [18] propose a Prediction  

System  that  combines statistical and Machine Learning 

techniques.  For immediate prediction of resources (CPU 

demand in their case), they use basic statistical techniques 

like Local Linear Regression, Moving Average, Last value 

prediction. Machine  learning  based  techniques  have  been 

applied  for the  long term  prediction  of resources for 

capacity  planning.     
 

VI  Conclusion 
 

In the previous research works it has been shown that 
reactive scheduler based technique of provisioning always lags 
the demand in time as can be seen by their results in Fig. 7 
(from [13]). Here, dotted lines denote the number of VMs 
provisioned in the current state, and dark line shows the 
workload in terms of number of jobs.  When it is identified that 
provisioned resources are not consistent with the required ones, 
more VMs are provisioned.   Due to this lagging effect, the 
newly added VMs take some time to boot up, get configured 
and handle the increased workload.  This causes SLA 
violations for some amount of time, whenever there is an 
increase in demand.  

 
 

 
 
 
 
 
 
The research works using forecasting based technique for 
prediction focus mainly on building elastic systems aiming for 
the accurate prediction while keeping SLA violations 
minimum.  Though PRESS [15] does a padding of 5-10% in 
the actual prediction to avoid SLA violations, but they did not 
give basis for this number.  Further, they have used a constant 
percentage, whereas the padding is workload dependent.  Then, 
CloudScale [16] applies different techniques to find the 
appropriate amount of padding, but the formulation of proper 
SLA penalties in terms of performance metrics is missing.   

Also, most of the elastic IaaS approaches deal with VM 
CPU dynamic provisioning using history of VM usage only. 
However, VM usage is not the true indicator of the workload of 
customer.  Instead, for example in case of I/O workloads, 
request rate could be a true indicator of the workload.   And,  if 
the  allowable response time  limits are allowed to be changed,  
then  the  resources required  to sustain  the  same workload 
(such that  SLA violations do not occur) could be different.  
Hence, working with resource usage for the application can 
potentially lead to wrong interpretations. 

 
Form the above discussion we can say that for variable 

workloads, significant reduction in the resource allocation can 
be achieved using dynamic allocation of resources along with 
almost negligible SLA violations. For that we need to have an 
elastic framework that enables fine grained resource allocation 
by dynamically adjusting the size of VM as provided by a 
forecasting module. Forecasting module forecasts the user 
workload, which is then translated into resource 
requirements based on a cost model. The basic intuition of this 
cost model is to reduce the resource cost of the user by 
enabling resource allocation closer to what is actually used, 
without compromising on the application performance.    
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