
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 20 – 25

20
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Variability in Behavior of Application Service Workload in a Utility Cloud

Monika Sainger

Research Scholar (CSE)

Mewar University, Rajasthan

Dr. K. P. Yadav

Supervisor

IIMT, Greater Noida

Dr. H. S. Sharma

Supervisor

Mewar University, Rajasthan

Abstract— Using the elasticity feature of a utility cloud, users can acquire and release resources as required and pay for what they use.

Applications with time-varying workloads can request for variable resources over time that makes cloud a convenient option for such

applications. The elasticity in current IaaS cloud provides mainly two options to the users: horizontal and vertical scaling. In both ways of

scaling the basic resource allocation unit is fixed-sized VM, it forces the cloud users to characterize their workload based on VM size, which

might lead to under-utilization or over-allocation of resources. This turns out to be an inefficient model for both cloud users and providers. In

this paper we discuss and calculate the variability in different kinds of application service workload. We also discuss different dynamic

provisioning approaches proposed by researchers. We conclude with a brief introduction to the issues or limitations in existing solutions and our

approach to resolve them in a way that is suitable and economic for both cloud user and provider.

Keywords-Elasticity, variability, application service workload, dynamic provisioning.

__*****___

I. INTRODUCTION

 In a cloud computing environment, elasticity refers to

the user’s ability to acquire and relinquish resources on-

demand. Here, applications with time-varying workloads can

request for variable resources over time that makes cloud a

convenient option for such applications. In the traditional

computing model, users would own and maintain resources

which can meet the demand of peak workload. Rest of the

times, resources would be under-utilized. Elasticity in clouds

is the feature that makes users enable to not to own the

resources for peak workload, rather request for more resources

when demand increases and release resources when not

required. The ability to pay for use of cloud resources

eliminates the up-front commitment for resources by cloud

users [1].

I I . ELASTICITY DEFINED

Elasticity, being one of the central characteristics of cloud

computing, is still used by different researchers and cloud

providers to mean i n different ways. Open Data Center

Alliance (ODCA) defines elasticity [2] as ―the

configurability and expandability of the solution.

Centrally, it is the ability to scale up and scale down

capacity based on subscriber workload‖.
Herbst et. al [3] have discussed the following definition:

―Elasticity is the degree to which a system is able to adapt to
workload changes by provisioning and de-provisioning
resources in an autonomic manner, such that at each point in
time the available resources match the current demand as
closely as possible.‖ They define elasticity metric in two cases:
elasticity while scaling up the resources on increasing workload
and, elasticity while scaling down the resources on decreasing
demand. They measure elasticity by the delay in acquiring
resources and the amount of under-provisioned resources when
the demand increases. When demand decreases, elasticity is
measured by delay in releasing resources and amount of over-
provisioned resources. In paper [4], elasticity is calculated by
finding dynamic time warping (DTW) [5] distance between

the demand (required resources) and supply (allocated
resources).

In a report, Kuperberg et. al [6] have identified several
characteristics of elasticity such as effect of reconfiguration
which is nothing but the amount of resources added/re- moved
with respect to change in workload, how frequent are
reconfiguration points, re- action time by the system to adapt
to the changed resource configuration. A Quality of Elasticity
(QoE) metric based on a weighted sum of several factors has
been proposed by Mika et. al [7]. He considered the factors
like price-performance ratio which quantifies the performance
received for a certain expenditure related to scaling out the
deployment infrastructure, infrastructure pricing by cloud
provider, billing granularity, VM provisioning speed etc.

All of the research above mainly emphasize on how the

system reacts to the changes in workload. However, when
measuring elasticity, an important consideration must be to
choose the workloads which exhibit significant variability
because otherwise the measurement can be misleading. Hence,
in this paper, the notion of capturing variability in workload is
discussed first which is then connected with the elasticity of the
system.

III. VARIABILITY IN APPLICATION SERVICE BEHAVIOR

(WORKLOAD)

We introduce in this paper, variability, a term to

characterize workloads that exhibit significant change in

their resource demand that is variable with time. We

can m e a s u r e w o r k l o a d s by several metrics

depending on the kind of workloads. For CPU intensive

workloads, number of tasks/jobs per unit time can be

used as an indicator of workload. For I/O intensive jobs,

number of requests per unit time reaching the server can

be an indicative workload. In this paper, mainly I/O

workloads are considered for case study and workload

metric used is request rate. Further, variability of

workload can be defined using several characteristics of

workload. Here, a gradient based approach is used to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 20 – 25

21
IJRITCC | June 2017, Available @ http://www.ijritcc.org

A
c
tu

a
l

W
o

rk
lo

a

d

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8
 1 . 0

1 . 2

A
c
tu

a
l

W
o

rk
lo

a

d

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

G
ra

d
ie

n
t

o
f

w
o

rk
lo

a
d

− 1 . 0

− 0 . 5

0 . 0

0 . 5

1 . 0

G
ra

d
ie

n
t

o
f

w
o

rk
lo

a
d

− 1 . 0

− 0 . 5

0 . 0

0 . 5

1 . 0

measure variability. In this approach, an approximate

gradient (since the workload is discrete) is calculated at

each point of the workload. We can calculate

a pproximate gradient as follows:

∆(W (t)) ≈W(t) –W(t-1) = W (t) − W (t − 1) (1)
 (t) − (t − 1)

Where W (t − 1) and W(t) denotes the workload at time t −
1 and t respectively, and ∆(W (t)) denotes the approximate
gradient or the change in workload at time t. It is positive
when the workload increases and negative when it decreases.
When the workload is constant, the gradient is zero at that point
as gradient denotes the rate of change of workload. However, if
there is a slight change in workload, gradient at those points
would be approximately close to zero. Hence, to check
whether the approximate gradient is close to zero or not, a
threshold is used and the absolute value of gradient |∆(W (t))| is
compared against the threshold. This threshold is set on
the workload so that it captures if there is a big divergence
between the workload in the previous cycle and next cycle.
Variability is calculated as a percentage of points where the
approximate gradient is greater than the threshold over all
the points. Mathematically, if T denotes the threshold, then
variability can be defined using a step function s() which
maps the positive arguments to 1 and negative arguments to 0.
If the absolute gradient is greater than threshold, then the
difference (|∆(W (t))| − T) would be positive. Hence, taking
the summation of step function of this difference expression at
each point would count all of the points where the workload is
variable. Using this, the variability can be:

 n

Variability = t=1 s (|∆(W (t))| −T) x 100 (2)

 n

where, n is the length of the workload, T denotes the
threshold, |∆(W(t))| denotes the absolute value of approximate
gradient, and step function s() is defined as follows:

 s(t-a) = 1 for t ≥ a
 0 otherwise

We have demonstrated different kind of workloads to evaluate
the variability fig(1): i) A square shaped wave of a two-level
step workload, ii) a periodic workload with sine wave shape,
iii) web server workload we used in our work, iv) random
noise. Their respective approximate gradients are calculated
and shown in fig (2). The variability calculated as a percentage
for all of the workloads is 7.94%, 82.84%, 60.25% and 86.61%
respectively with a threshold of 0.04 (almost zero).

 0 50 100 150 200
 0 50 100 150 200

Time (in hours) Time (in hours)

Fig 1.Different workloads to evaluate variability metric

It shows that the noise is highly variable, as expected.
Square wave shaped workload is the least variable since the
most of the time it remains constant. Sine wave shaped
workload is variable 80% of the total time except for the
topmost and bottommost points where it is remains almost
constant. Web server workload is less variable than perfect sine
shaped workload, but it still has significant variability.
However, the mere fact that variability metric for square wave
shaped workload is low does not imply that it does not require
elastic resource allocation. Rather the fact is that it needs
elastic resource allocation at a larger scheduling window rather
than at every scheduling cycle like in case of Sine wave shaped
workload. Here, variability attempts to identify those
workloads which need short-term dynamic resource allocation
decisions, or which need frequent scheduling of change
resource allocation.

As shown in fig. (2), the workload is actually continuous
and it has been converted into discrete form by averaging it
out over a time period. This time period plays an important
role in the correctness of finding variability. It is important
that this time period should be small enough to capture the
variations of the workload. If this time period is too large, there
is a possibility of missing out the important variations in the
workload. Intuitively, if the variability does not change on
decreasing the time period further, then that time period
can be selected to represent workload. Further, considering
workloads which have considerable variability is important
when measuring and defining elasticity of a system. Hence
this metric is used in defining elasticity of the system in the
next subsection.

 0 50 100 150 200
 0 50 100 150 200

 Time (in hours) Time (in hours)

Fig. 2. Gradient of Workloads

Generally there are two classes of definitions of elasticity; one
is based on system factors such as time to allocate resources
once the resources are requested, reaction time of the system
after the resources have been allocated, how often the
configuration of the system can change and unit of resource

Almost Static Workload

 Perfectly Elastic (periodic)

Web server Workload

RANDOM NOISE

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 20 – 25

22
IJRITCC | June 2017, Available @ http://www.ijritcc.org

W
or

klo
ad

 (i
n R

eq
ue

sts
/ho

ur
)

50
00

00

 1
00

00
00

 1

50
00

00

allocation (VM size) etc., another class is based on closeness of
requirement and supply of resources which actually
encompasses all factors described above. This is because all of
the factors like delay in allocation of resources, scheduling
points etc. finally cause a mismatch in demand and supply
curve, leading to over-allocation or under-allocation. In our
work we refer to the second class of definition of elasticity. In
[8] [9], elasticity is defined as follows:

Considering the workload is significantly variable, elasticity
of a resource allocation system S is defined by the closeness of
resource requirement RR (t) and the allocated resources RS (t)
with respect to change in workload W (t).

Here, resource requirement is used to denote the amount of
resources which are sufficient enough such that performance of
application does not go down (service level agreement
violations do not occur) and at the same time, they are not over-
provisioned. The point worth noticing is that the resource
requirement depends on the service level agreement (SLA).
For example, if the SLA mentions that the average response
time of the re- quests for an application hosted on cloud to be
less than 100 ms, the resource requirement could be higher than
the SLA which mentions the average response time limit of 200
ms. The another term used in this definition apart from the
previous definitions is that the workload is considered to be
significantly variable, which means that the variability of
the application workload being considered for measuring
elasticity of the system should be greater than a threshold.

Further, the closeness of resource requirement and

provisioning can be measured by number of metrics.
Intuitively, for a significantly variable application workload, if
the resource allocation matches exactly with the resource
requirement, then the system is perfectly elastic. One resource
allocation system S1 is more elastic than the other S2 if S1
allocates resources more closer to requirement. Fox example,
if S1 takes lesser time to allocate resources than S2 after the
requirement is known, then S1 is more elastic as the allocation
and requirement would be closer for S1. Similarly, if S1
predicts the resource requirement more accurately than S2, then
again S1 would be more elastic.

IV Elasticity in current IaaS cloud systems

Generally, in current IaaS cloud systems, the resource

allocation unit is a fixed-size virtual machine (VM). Hence,
from Infrastructure-as-a-Service point of view, elasticity means
to acquire and relinquish VMs dynamically based on
requirement. Usually, IaaS cloud providers provision a fixed
set of VMs with different configurations. For example,
Amazon provides few standard instance types (VMs) [10] like
small, medium, large, extra large instance with increasing
resource configuration. Apart from the standard instances, it
also provides resource-specific instances like High- Memory,
High-CPU, High-I/O instances. To scale the resources, users
can use the scaling strategies mentioned below.

Horizontal Scaling: It is a scaling method in which
resource scaling is achieved by adding (or removing) more
number of VMs to support the changing demand of application.
For the horizontal scaling to be a feasible option, the user
application must be designed in a way such that it can be
distributed onto multiple machines i.e. a multitier application.
Also, one component can itself be built to distribute among

different VMs and then using a load balancer to distribute the
workload among the VMs. Fig. 3shows the how horizontal
scaling takes place in IaaS. Here, VM1, VM2 and VM3 run the
same component of the application and a load balancer
distributes the load among these VMs. For horizontal scaling,
another VM can be added and the load balancer redistributes
the load among all of the VMs. The main advantage of
horizontal scaling is that powerful servers are not needed to
support the increased workload of applications; rather
commodity servers can be used to do the same in a distributed
fashion.

 Single Application

Component

 Physical Host1 Physical Host2 Physical Host3

Fig.3 Horizontal scaling in IaaS

Vertical Scaling: It is a scaling method in which the change in
workload is handled by migrating the application to a different
VM (might be on a different physical host). Fig. 4shows how
the vertical scaling can be achieved in Amazon EC2 IaaS
Cloud by migrating the application among small, medium and
large instance VMs. Although migration is a costly operation
and incurs some penalty in terms of availability and
performance during migration, but for applications which
can’t scale horizontally, resource scaling is achieved by
migration only.

 Migration migration

 Small instance

 Medium instance Large instance

Fig. 4 Vertical Scaling in Amazon EC2 Iaas Cloud

Workload corresponding to allocated resources
Actual workload

 1 2 3 4 5 6 7 8 9 10
Time (in Days)

Fig. 5 Typical workload characteristics of web application

 Phys

ical

Host

2

1EC2

COMPUTE

UNIT

1.7 GB RAM

160 GB Storage

2EC2

COMPUTE

UNIT

3.75 GB RAM

410 GB Storage

3 EC2

COMPUTE UNIT

7.5 GB RAM

850 GB Storage

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 20 – 25

23
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Fig. 5 shows the actual workload of a web server hosted
in our institute. In the figure the x-axis represents time in
days and the y-axis indicates the web server workload,
measured as the number of HTTP requests per hour, received
by the server. High number of requests is received by the
server during the day as compared to night times. Using the
existing resource provisioning model, for this workload, a user
would demand two types of VMs as represented by the peak
and trough of the workload corresponding to allocated
resources curve, for the vertical scaling. In case of horizontal
scaling, the peak might represent workload corresponding to
two VMs and trough might correspond to workload for one
VM. From the Figure, it is visible that for supporting an
average request rate of about 200 requests/hour, one might
allocate a server of capacity 500 requests/hour so as to handle
the maximum load. This obviously, leads to idle resources
most of the time. Hence this mode of allocation is coarse-
grained because it does not change in accordance to the
variations observed in the workload. Further, calculations
show that the effective utilization of resources as per this
allocation is just 45.5307% (assuming linear relationship
between workload and resources), which is the ratio of area
under curve of the actual workload to the workload
corresponding to allocated resources. In such cases, cloud
users end up paying more than what they actually use. Existing
provisioning models are not very efficient for the cloud
providers too. Although, there are idle resources available, the
provider can not release them for better usage. In summary,
static allocation of VMs in the current IaaS systems leads to the
following problems:

 Users are forced to characterize their resources on coarse-
grained level because of static VM sizes leading to under-
utilized resources or under-performing applications.

 Cloud users pay even for the idle resources.

 Idle resources cannot be further allotted by the cloud
providers.

So, variable resource requirement by variable workload

cannot be met by static allocation. Hence, a more flexible and
dynamic resource allocation mechanism is required that would
help to achieve fine-grained resource allocation close to
requirement. Various researchers have proposed dynamic
provisioning proposals which change the allocation based on a
trigger decision.

V Dynamic Provisioning Techniques

In this section, we discuss various proposals by

researchers related to dynamic provisioning techniques.
There are two broad categories in which these techniques can
be classified. First category includes the techniques where
provisioning decisions are taken based on the immediate state
of the system. Second category includes the techniques where
provisioning is done based on a forecast using previous
resource usage history, resource usage trend, load stability etc.

A. Reflexive Scheduler based techniques

 The term Reactive scheduler means the scheduler that

takes provisioning decisions based on the immediate state of

the system. One of the practically used such frameworks is

Auto Scaling [11] which is a service provided by Amazon

where users can declare various rules based on which the

scaling of the resources is done automatically on behalf of the

user in Amazon EC2 cloud. It can scale the resources

periodically by the specified schedule by the user (for

example, everyday at 12:00:00). It can also scale the resources

dynamically by specified conditions from the user (like change

in system load). The conditions can be specified by the user

based on the values of some metrics (which can measure

system load, for example). Amazon provides some inbuilt

metrics or users can define their own metrics, which are

measured by a monitoring engine, called Amazon

CloudWatch. CloudWatch can be configured to generate

alarms based on the conditions specified by the user, which in

turn, can trigger the scaling activities.
Figure 6 demonstrates how Amazon Auto Scaling works

and its integration within the system [12]. Consider the AWS
user as a SaaS Provider, which hosts its web application onto
the Figure 2.9: Limitations in dynamic provisioning techniques
based on immediate state
EC2 cloud. AWS user sets up the Launch Configuration to

launch new instances, CloudWatch metrics to monitor,

policies to trigger CloudWatch Alarm, and scaling policies

based on the CloudWatch Alarm. Typically, an AWS user

would configure scale-in and scale-out policies for the

increasing and decreasing system load. For example, alarms

can be configured that trigger auto scaling policies to launch

 SaaS Users

 AWS User

 (SaaS Provider)

Auto Scaling Interfaces

 Launch Scaling
 Configuration Scaling Policies
 Activities

 Message

 EC2 EC2 EC2
 Instance Instance Instance
 CloudWatch
 Application Matrices
 CloudWatch
 Alarm

Fig 6: Auto Scaling Feature in Amazon EC2

additional EC2 instances when network traffic, VM’s load, or
other measurable statistic, gets too high, say 90% usage.
Depending on the application requirements, the scaling policies
can use both horizontal and vertical scaling. This shows a close
feedback based loop, which takes scaling actions based on
monitoring feedback. Hence, using Auto Scaling feature, users
can use elasticity automatically. However, the CloudWatch
measures the VM’s load and take decisions based on that. But
in certain case, VM’s usage might not be too high but the
server can still be saturated because of virtualization overhead.
CloudWatch and other such commercially available monitoring
engines have this limitation that they cannot measure
virtualization overhead.

B. Forecasting based techniques

The a b o v e limitations can be overcome using

forecasting based techniques that derive meaningful

prediction based on the history of resource usage,

workload, etc.. In [14], Bobroff et al. have introduced

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 20 – 25

24
IJRITCC | June 2017, Available @ http://www.ijritcc.org

dynamic server migration and consolidation algorithm.

They stated that variability in the workload accrue the

benefits of dynamic placement of VMs in terms of

reduced resource allocation, shown by an analytical

formula that they have derived. The forecasting algorithm

that they use first removes periodic components in the

resource usage (that they represented in form of time series),

then it represents the residuals by Auto-regressive process.

Their results show the reduction in number of physical

machines as compared to static allocation. Their paper also

discusses the problem in virtualized domain but the

approach can be directly applied to cloud systems.

Gong et al. in [15] have proposed PRESS (PRedictive

Elastic ReSource Scaling) scheme for cloud systems. For

workloads with repeating patterns, PRESS derives a

signature for the pattern of historic resource usage and uses

that signature in its prediction. To calculate the period of

repeating pattern, they calculate the Fast Fourier Transform

(FFT) and find out the most dominating frequency out of it.

For workloads without repeating patterns, PRESS uses

discrete-time Markov chain with a finite number of states for

short-term prediction.

Lim et al. in [17] have applied a control theory based

approach where in they build an elasticity controller,

which dynamically adjusts the number of virtual server

instances in cloud and rebalances the load among servers.

A control policy based on a performance metric provides the

feedback to the controller to take appropriate actions.

Gemma Reig and Jordi Guitart in [18] propose a Prediction

System that combines statistical and Machine Learning

techniques. For immediate prediction of resources (CPU

demand in their case), they use basic statistical techniques

like Local Linear Regression, Moving Average, Last value

prediction. Machine learning based techniques have been

applied for the long term prediction of resources for

capacity planning.

VI Conclusion

In the previous research works it has been shown that
reactive scheduler based technique of provisioning always lags
the demand in time as can be seen by their results in Fig. 7
(from [13]). Here, dotted lines denote the number of VMs
provisioned in the current state, and dark line shows the
workload in terms of number of jobs. When it is identified that
provisioned resources are not consistent with the required ones,
more VMs are provisioned. Due to this lagging effect, the
newly added VMs take some time to boot up, get configured
and handle the increased workload. This causes SLA
violations for some amount of time, whenever there is an
increase in demand.

The research works using forecasting based technique for
prediction focus mainly on building elastic systems aiming for
the accurate prediction while keeping SLA violations
minimum. Though PRESS [15] does a padding of 5-10% in
the actual prediction to avoid SLA violations, but they did not
give basis for this number. Further, they have used a constant
percentage, whereas the padding is workload dependent. Then,
CloudScale [16] applies different techniques to find the
appropriate amount of padding, but the formulation of proper
SLA penalties in terms of performance metrics is missing.

Also, most of the elastic IaaS approaches deal with VM
CPU dynamic provisioning using history of VM usage only.
However, VM usage is not the true indicator of the workload of
customer. Instead, for example in case of I/O workloads,
request rate could be a true indicator of the workload. And, if
the allowable response time limits are allowed to be changed,
then the resources required to sustain the same workload
(such that SLA violations do not occur) could be different.
Hence, working with resource usage for the application can
potentially lead to wrong interpretations.

Form the above discussion we can say that for variable

workloads, significant reduction in the resource allocation can
be achieved using dynamic allocation of resources along with
almost negligible SLA violations. For that we need to have an
elastic framework that enables fine grained resource allocation
by dynamically adjusting the size of VM as provided by a
forecasting module. Forecasting module forecasts the user
workload, which is then translated into resource
requirements based on a cost model. The basic intuition of this
cost model is to reduce the resource cost of the user by
enabling resource allocation closer to what is actually used,
without compromising on the application performance.

References
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, and M. Zaharia, ―A view of cloud computing,‖

Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672.

[2] ―Open data center alliance: Compute

infrastructure as a service rev, 1.0,‖ 2012. [Online].

Available:

http://www.opendatacenteralliance.org/docs/ ODCA

Compute IaaS MasterUM v1.0 Nov2012.pdf.

Fig. 7 limitations in dynamic provisioning techniques based on immediate state.

http://www.ijritcc.org/
http://doi.acm.org/10.1145/1721654.1721672
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 20 – 25

25
IJRITCC | June 2017, Available @ http://www.ijritcc.org

[3] R. R. Nikolas Roman Herbst, Samuel Kounev, ―Elasticity

in cloud computing: What it is, and what it is not,‖ in

ICAC 2013, To be published, 2013.

[4] N. R. Herbst, ―Quantifying the Impact of Configuration

Space for Elasticity Bench- marking,‖ Study Thesis,

Faculty of Computer Science, Karlsruhe Institute of Tech-

nology (KIT), Germany, 2011.

[5] E. Keogh, ―Exact indexing of dynamic time

warping,‖ in Proceedings of the 28th international

conference on Very Large Data Bases, ser. VLDB

’02. VLDB Endowment, 2002, pp. 406–417.

[Online]. Available:

http://dl.acm.org/citation.cfm?id=1287369.1287405 5

[6] J. v. K. Michael Kuperberg, Nikolas Herbst and R.

Reussner, ―Defining and Quantifying Elasticity of

Resources in Cloud Computing and Scalable Platforms,‖

Informatics Innovation Center, Karlsruhe Institute of

Technology, Karlsruhe, Germany, Tech. Rep., 2011.

[Online]. Available: http://digbib.ubka.uni-karlsruhe.

de/volltexte/1000023476 6

[7] M. Majakorpi, ―Theory and practice of rapid elasticity in

cloud applications,‖ Study Thesis, Department of Computer

Science, UNIVERSITY OF HELSINKI, Swedish, 2013. 7.

[8] J. Weinman, ―Time is Money: The Value of On-

Demand,‖ Jan. 2011. [Online]. Available:

www.joeweinman.com/Resources/Joe Weinman Time Is

Money.pdf

[9] S. Islam, K. Lee, A. Fekete, and A. Liu, ―How a consumer

can measure elasticity for cloud platforms,‖ in Proceedings

of the 3rd ACM/SPEC International Conference on

Performance Engineering, ser. ICPE ’12. New York, NY,

USA: ACM, 2012, pp. 85–96. [Online]. Available:

http://doi.acm.org/10.1145/2188286.2188301 .

[10] ―Amazon EC2 Instance Types,‖ 2013. [Online].

Available: http://aws.amazon. com/ec2/instance-types/ .

[11] ―Amazon Auto Scaling,‖ 2013. [Online]. Available:

http://aws.amazon.com/autoscaling.

[12] ―Amazon Auto Scaling Developer Guide.‖ [Online].

Available: http://docs.aws.

amazon.com/AutoScaling/latest/DeveloperGuide/Welcome.h

%tml

[13] M. Murphy, B. Kagey, M. Fenn, and S. Goasguen, ―Dynamic

provisioning of virtual organization clusters,‖ in Cluster

Computing and the Grid, 2009. CCGRID ’09. 9th

IEEE/ACM International Symposium on, 2009, pp. 364–371.

[14] N. Bobroff, A. Kochut, and K. Beaty, ―Dynamic placement

of virtual machines for managing sla violations,‖ in

Integrated Network Management, 2007. IM ’07. 10th

IFIP/IEEE International Symposium on, 21 2007-yearly 25

2007, pp. 119 –128.

[15] Z. Gong, X. Gu, and J. Wilkes, ―Press: Predictive elastic

resource scaling for cloud systems,‖ in Network and Service

Management (CNSM), 2010 International Con- ference on,

oct. 2010, pp. 9 –16.

[16] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, ―Cloudscale:

elastic resource scaling for multi-tenant cloud systems,‖ in

Proceedings of the 2nd ACM Symposium on Cloud

Computing, ser. SOCC ’11. New York, NY, USA: ACM,

2011, pp. 5:1–5:14. [Online]. Available:

http://doi.acm.org/10.1145/2038916.2038921.

[17] H. C. Lim, S. Babu, and J. S. Chase, ―Automated control

for elastic storage,‖ in Proceedings of the 7th international

conference on Autonomic computing, ser. ICAC ’10. New

York, NY, USA: ACM, 2010, pp. 1–10. [Online]. Available:

http://doi.acm.org/10.1145/1809049.1809051.

[18] G. Reig and J. Guitart, ―On the anticipation of resource

demands to fulfill the qos of saas web applications,‖ in Grid

Computing (GRID), 2012 ACM/IEEE 13th International

Conference on, sept. 2012, pp. 147 –154.

http://www.ijritcc.org/
http://dl.acm.org/citation.cfm?id=1287369.1287405
http://dl.acm.org/citation.cfm?id=1287369.1287405
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
http://www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf
http://www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf
http://doi.acm.org/10.1145/2188286.2188301
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://doi.acm.org/10.1145/2038916.2038921
http://doi.acm.org/10.1145/1809049.1809051

