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Abstract— In this paper, a nonlinear mathematical model on plant soil interactions is proposed and analyzed. We consider the variables  namely, 

density of the plant species, nutrient concentration in the soil and in the plant for metabolic activity. We consider that the growth rate of the plant 

species is dependent on the density of the nutrient concentration in the plant. The relationship between the concentration and the rate of uptake is  

often described quantitatively by Michaelis–Menten kinetics. We discretize the model by applying Backward Euler method and analyse the 

stability of the model both locally and globally. We  analyse the nutrient concentration in Tomato plant and provide numerical simulations for 

the dynamical behaviour of plant soil interactions for each nutrient. The  numerical simulations are provided using MATLAB. 
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I.  INTRODUCTION  

Plants grow in the thin upper layer of the Earth's crust known 

as soil. Plants need water, carbon dioxide and a range of trace 

minerals known as 'nutrients' to grow. They obtain these 

nutrients, and most of their water, from the soil. Soil is formed 

over very long times from igneous or sedimentary rock, 

volcanic ash, sand or peat. It is a highly complex and 

heterogeneous system with many different components that 

provide plants with water and nutrients. Nutrients exist in the 

soil in gaseous, liquid, and solid forms.  

 Plant nutrients in soil come originally from the parent 

material from which the soil was formed. In addition to water, 

plants require thirteen essential mineral nutrients to complete 

their full lifecycle.  Essential mineral nutrients can be 

divided into macro-nutrients and micro-nutrients depending on 

the amount required by plants. The macro-nutrients are: 

nitrogen, potassium, sulphur, phosphorus, magnesium and 

calcium, and micro-nutrients are: iron, zinc, manganese, 

copper, molybdenum, boron, and chlorine[1].  

Modelling Plant Uptake of dissolved soil constituents is 

essential to predicting plant growth under nutrient limitation. 

Solute uptake by plants can also be important in explaining 

changes in the chemistry of soil. Under natural conditions 

most nutrients are recycled from plant to soil to plant. Loss of 

nutrient from soil  by leaching by  rainwater depend on how 

strongly the nutrient is bound to the soil constituents. 

 Nutrients are typically distributed heterogeneously 

throughout the soil and plants are adept at assessing and 

responding to this nutrient heterogeneity. Generally, plants 

respond to nutrient-rich patches by preferentially proliferating 

roots into those patches. Absorption of elemental nutrients by 

plants and ingestion of food by animals are two crucial 

processes in the understanding of ecosystem functioning. 

Nutrient uptake of plants from  soil is the result of  interactions 

between  plant and soil. The rate of uptake of a nutrient 

depends on  the concentration of this nutrient in soil solution at 

the root surface. The relation between the concentration and 

the rate of uptake can often be described quantitatively by 

Michaelis–Menten kinetics as has been published by Epstein 

and Nielsen[2]. Solute uptake is assumed to be independent of 

water uptake; only active uptake is considered.  

 In the broader ecological literature on foraging and 

forager functional responses, Holling’s disc equation (Holling 

1959) provides one commonly used framework for modelling 

resource capture. In the plant literature on nutrient uptake 

kinetics, the Michaelis–Menten equation (Michaelis and 

Menten 1913) provides the framework for modelling nutrient 

capture. The resource harvest rate (units of resource uptake per 

time per gram of root) is given by     

1

abN

ahN
 

Where b  is the biomass of the roots possessed by the plant , 

N  is the available nutrient concentration in the environment 

(units of resources per unit volume of soil), the encounter rate 

between a unit of root and a nutrient molecule is given by a  

and the cost in time associated with handling a given amount 

of nutrient molecules is given by h [4]. 

       

II. THE MATHEMATICAL MODEL 

The Mathematical  model of  Plant soil interaction is given 

below 
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where  
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P - Density of plant species.  

N - Concentration of the nutrient in soil.    

M - Concentration of the nutrient in plant species that is 

used for metabolic activities.    

r - Intrinsic growth rate  of  the plant species.  

0r - Growth rate of plant species  due to the metabolism of 

the nutrients.    

Q - Rate at which a nutrient is applied to the soil.    

 - Leaching rate of a  nutrient from  the soil. 

 - The nutrient harvest rate by the plant species. 

K - Carrying Capacity of the Plant species. 

By applying Michaelis–Menten equation for  the nutrient 

harvest rate by the plant species we obtain the following 

system of equations 
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0

(1 )

1

1
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dt K

dN abN
Q N PN

dt ahN
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                            (2)                              

By applying Backward Euler Method, we obtain the following 

system of difference equations 
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            (3)  

III. EQUILIBRIUM POINTS 

We list the possible equilibrium points of the model (3):                                     

i. 
1 ( ,0, )E P M - Nutrient Free Equilibrium 

Where   

0

1
P

r
  , 

 
0 12

0

1
( ( 1) )M Kr r r r

Kr
    =0 and 1 1r r  .                                                                                                    

ii. 
2 ( , ,0)E P N     

Where 1( )K r r
P

r


  and 1r r  

N  is  the positive root of the characteristic equation 

2 1( )
( ) 0

abK r r
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r
 
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iii. 
* * *

3 ( , , )E P N M  

Where  * * *, ,P N M  satisfy 

*
* * * *
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The jacobian matrix of  the system  (3)  is given by

1 0 0

2

2

2

02

2
1 ( ) 0

(2 )
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    (4) 

 

IV. STABILITY ANALYSIS OF THE MODEL 

Theorem 1: 

The fixed point 
1 ( ,0, )E P M   is  non-hyperbolic. 

Proof: 

Consider the jacobian matrix of  the system (3) with respect to 

the fixed point 1E .   

              
1 0

1

0

2
1 ( ) 0

0 1 0

0 0 1

rP
r r r P
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J

r



 
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 
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                        (5)                                                        

The eigen values of the above matrix is given by 
1

0

r

Kr
  , 

2 1    and 
3 1  . Therefore the fixed point 1E  is non-

hyperbolic. 
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Theorem 2: 

The fixed point 
2 ( , ,0)E P N     is  stable if   

                               
1

2
1
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                               (6)                                                   
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                  (7)                                                             

and 
1 2 4 1 2 3 1 2 3 4( ) (1 (1 )) 1             , 

otherwise unstable. 

Proof: 

Consider the jacobian matrix of  the system (3) with respect to 

the fixed point 2E .  
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 (8)                                                 

The characteristic equation of the above matrix is given by, 

3 2

1 2 3( ) 0                                        (9)                                                         

Where 

1 1 2 3

2 1 2 3 1 2

3 1 2 3 4

( )

( )

  

   

  

   

   

  

                                                   (10)                                                 

 

1 1

2 2

3 0

0
4

2
1 ( )

(2 )
(1 )

(1 )

(1 )

(1 )

(1 )

rP
r r

K

abNP ahN

ahN

r P

r abNP

ahN



 






   


  



 

 
  

 



  





 



                                       (11)                                                   

 

It follows from the well-known Jury conditions that the 

modulus of all the roots of the above characteristic equation is 

less than 1 if and only if the conditions (1) 0, ( 1) 0     

and 
2det 1J   hold[3]. 
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Assume the conditions (6) and (7).  From (12) we can see that 

(1) 0  . 
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1 2 3 41      

Using the  conditions, (6)  and (7) , we can say that the fixed 

point 2E  is stable if 
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The fixed point 
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and 
1 2 4 1 2 3 1 2 3 4( ) (1 (1 )) 1                , 

otherwise unstable. 

 

Proof: 

Consider the jacobian matrix of  the system (3) with respect to 

the fixed point 3E .   
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The characteristic equation of the above matrix is given by, 
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It follows from the well-known Jury conditions that the 

modulus of all the roots of the above characteristic equation is 

less than 1 if and only if the conditions (1) 0, ( 1) 0     

and 
3 1DetJ   hold[3].  
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Assume the conditions (16) and (17). We can see that 
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0* 2

(2 )
(1 )

(1 )

P ahN
r P

ahN

 
 

 

                  

                                                                                              (23) 

4 1 2 1 2 3 1 2 3( ( 1)( 1))                                  (24)                                                                        

We can see that 
3 1DetJ   implies 

* * * *
* *

1 0 0* 2

* *

0

*

2 (2 )
1 ( ) 1 (1 )

(1 )

(1 )
1

(1 )

rP abN P ahN
r r r M r P

K ahN

r abN P

ahN





    
         

    

 
   

 

 

                                                                                             (25)                                                                           

1 2 3 41       

Using the conditions, (16) and (17) , we can say that the fixed 

point 3E  is stable if 

4 1 2 1 2 3 1 2 3 4( ( 1)( 1)) 1                                                                                       

                                                                                             (26) 

 

V. GLOBAL STABILITY 

 
We define the Lyapunov function, 

 

*

* * *
( ) t t tP M N

U t g g g
P M N

     
       

     

                                (27)   

                                                                  

Where ( ) 1 ( )g x x In x    is defined for  0x  . We consider 

the Lyapunov function  *( )U t  to prove the global asymptotic 

stability of  the equilibrium * * *

3 ( , , )E P N M .   

* * *

*

, ,
( ) lim ( )

P P N N M M
U t U t

  
                                             (28)                                                  

We have * *( 1) ( ) 0U t U t    with the equality  iff 

* * *

1 1 1, ,t t tP P N N M M     . 

 

Theorem 4: 

For system of equations (3), the equilibrium * * *

3 ( , , )E P N M

is globally asymptotically stable. 

Proof: 

For the equilibrium * * *

3 ( , , )E P N M  

        
* * * *

1 2 3( ) ( ) ( ) ( )U t U t U t U t  
                                                          

                                                                                            (29)
 

Where  * * *

1 2 3* * *
( ) , ( ) , ( )t t tP N M

U t g U t g U t g
P N M

     
       

     

 

We have,                                                                                                        
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                (32) 

Substituting  (30), (31), (32) in (29), we get 
* *( 1) ( ) 0U t U t   , for all 0t  . We see that *( ) 0U t   is a 

monotone decreasing function. Therefore, 
* *( 1) ( ) 0U t U t   . Then * *lim ( 1) ( ) 0

t
U t U t


   , which 

implies that * * *

1 1 1lim ,lim ,limt t t
t t t

P P N N M M  
  

   . 

Therefore * * *

3 ( , , )E P N M is globally asymptotically stable. 

 

VI. MINERAL NUTRIENT IN TOMATO PLANTS 

The tomato is the edible, red fruit of Solanum lycopersicum, 

commonly known as a tomato plant, which belongs to the 

nightshade family, Solanaceae. The species originated in 

Central and South America. The Nahuatl (Aztec language) 

word tomatl gave rise to the Spanish word "tomate", from 

which the English word tomato originates.  Tomato requires at 

least twelve nutrients, also called ―essential elements‖, for 

normal growth and reproduction. These are nitrogen(N), 

phosphorus (P), potassium (K), calcium (Ca), 

magnesium(Mg), sulfur (S), boron (B), iron (Fe), manganese 

(Mn), copper(Cu), zinc (Zn), and molybdenum (Mo). 

We now list the five major nutrients, their availability in the 

soil and their utilisation by the plant: 

 

Figure 1.  Plant Soil interactions of Magnesium nutrient in Tomato Plant 

 

Figure 2.  Plant Soil interactions of Nitrogen nutrient in Tomato Plant 

 

 
Figure 3.  Plant Soil interactions of Phosphorus nutrient in Tomato Plant 
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Figure 4.  Plant Soil interactions of Calcium nutrient in Tomato Plant 

 

Figure 5.  Plant Soil interactions of Potassium nutrient in Tomato Plant 

VII. DISCUSSION 

From these numerical simulations we can see that, the 

metabolic activity of  the plant decreases as the nutrient 

concentration in the soil decreases. And once the nutrient 

concentration in the soil decreases the growth of the plant is 

constant. Here we can see that there is a high metabolic rate 

for the nutrients Magnesium and Calcium. And there is low 

metabolic rate for Potassium, Phosphorus and Nitrogen. Hence 

we see that there must be an increase in the Potassium, 

Phosphorus and Nitrogen content in the soil through fertilizers. 

Higher the metabolic rate, higher the growth rate of plants 

which leads to higher productivity.  

Here we can see that for the nutrients Nitrogen and Potassium 

the growth of the plant is high even though the metabolic rate 

of the plant for these nutrients is low. Therefore, we can see 

that Nitrogen and Potassium are essential for the growth of the  

tomato plant. 

 

VIII. CONCLUSION 

In this paper, we have constructed a discrete time model on 

plant soil interactions. We list the possible equilibrium points 

of the model and analyze both the local and global stability 

conditions of the model. We analyze the nutrient concentration 

of  a tomato plant in both the soil and the plant that is used for 

the metabolic activity  using  MATLAB. We provide the 

results for five major nutrients that are essential for the growth 

of a tomato plant. From the results, we can see that the growth 

rate of the plant depends on the nutrient concentration in the 

plant and in the soil. 
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TABLE I.  LIST OF THE FIVE MAJOR NUTRIENTS OF THE TOMATO PLANT 

Nutrition 

Rate of usage by 

plants(%) 

0r  

Nutrient 

content applied 

to the soil(gm 

per kg) 

Q 

Resource harvest 

rate(Michealis 

Menten equation) 

Initial 

concentration of 

nutrient in the 

soil - 0N  (ppm) 

Initial 

concentration of 

nutrient used by 

the plant - 0M  

(gm per kg) 

 

Source 

Nitrogen(N) 1.79 0.05 0.1 80 30 [11,12,13] 

Phosphorus(P) 0.37 0.006 0.4 8 4 [11,12,13] 

Potassium(K) 2.67 0.6 0.1 100 60 [11,12,13] 

Calcium(Ca) 0.84 0.1 0.4 100 12.5 [11,12,13] 

Magnesium(Mg) 0.23 0.34 0.4 60 5 [11,12,13] 
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