
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1137
IJRITCC | May 2017, Available @ http://www.ijritcc.org

High Performance Fault-Tolerant Hadoop Distributed File System

Yelakala Pragna

Department of Computer Networks and Information Security,

MVGR College of Engineering, Vizianagaram, Andhra Pradesh

pragnabujji555@gmail.com

Abstract – The Hadoop Distributed File System (HDFS) is designed to store very large data sets reliably, and to stream those data sets at high

bandwidth to user applications. Huge amounts of data generated from many sources daily. Maintenance of such data is a challenging task. One

proposing solution is to use Hadoop. The solution provided by Google, “Doug Cutting” and his team developed an Open Source Project called

Hadoop. Hadoop is a framework written in Java for running applications on large clusters of commodity hardware. The Hadoop Distributed File

System (HDFS) is designed to be scalable, fault-tolerant, distributed storage system. Hadoop‟s HDFS is a highly fault-tolerant distributed file

system and, like Hadoop in general, designed to be deployed on low-cost hardware. The HDFS stores filesystem Metadata and application data

separately. HDFS stores Metadata on separate dedicated server called NameNode and application data stored on separate servers called

DataNodes. The file system data is accessed via HDFS clients, which first contact the NameNode data location and then transfer data to (write)

or from (read) the specified DataNodes. Download file request chooses only one of the servers to download. Other replicated servers are not

used. As the file size increases the download time increases. In this paper we work on three policies for selection of blocks. Those are first,

random and loadbased. By observing the results the speed of download time for file is „first‟ runs slower than „random‟ and „random‟ runs

slower than „loadbased‟.

Keywords— Hadoop, HDFS, NameNode, DataNode, Fault Tolerant, Distributed System.

__*****___

I. INTRODUCTION

The Hadoop Distributed File System (HDFS) is based on the

Google File System (GFS) and provides a distributed file

system that is designed to run on commodity hardware. It

has many similarities with existing distributed file systems.

However, the differences from other distributed file systems

are significant. It is highly fault-tolerant and is designed to

be deployed on low-cost hardware. It provides high

throughput access to application data and is suitable for

applications having large datasets.

Hadoop Distributed File System (HDFS) is a highly

scalable, reliable and manageable file system. It supports

parallel reading and processing of the data. It also supports

read, rename and append operations. It doesn‟t support

random write operations. HDFS is fault tolerant and is

redundantly stored by multiple replicas of data kept in the

system. It tolerates disk and node failures because of the

built in redundancy. The cluster manages addition and

removal of nodes automatically without requiring any

operational intervention.

II. RELATED WORK

Today Technology is rapidly changes and it is common that

every one depends upon the new technologies and uses the

server for storing and managing the database. Over the

network there are too large set of database and now a day it

is challengeable for manage those database. In the age of

Big-Data, Hadoop has evolved for handling those dataset.

Hadoop is an open source project based on distributed

computing having HDFS file system (Hadoop Distributed

File System). Hadoop have many advantages that make

them highly useful it has fault-tolerance capability and it can

be deployed on low cost machines. Hadoop is useful for

high volume of data set and it also provides the high speed

access to the data set.

The Hadoop framework is used to process the Bigdata

applications. It joins multiple datasets together. There are

different step in the modelling of the Hadoop framework.

First is the storing of the contents into the HDFS. After the

contents are stored, we can process the data using the

Mapreduce concept. HDFS splits the contents into different

chunks and save in different DataNodes of the hadoop

cluster.

HDFS gives the programmer unlimited storage and is the

only reason behind turning to Hadoop. But when it comes to

storing lot of small files there is a big problem. HDFS is

capable of handling large files which are GB or TB in size.

Hadoop works better with a small number of large files and

not with large number of small files. Large number of small

files takes up lots of memory on the Namenode. Each small

file generates a map task and hence there are too many such

map tasks with insufficient input. Storing and transforming

small size file in HDFS creates an overhead to map reduce

program which greatly affects the performance of

Namenode.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1138
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Bigdata problems are handled effectively, using the

concepts of hadoop. Hadoop is open source software

developed by the Apache. It acts as cross platform operating

system. Hadoop contains the distributed file system in order

to handle the large range of data. Hadoop has many features,

like reliability, data locality, cost effectiveness and efficient

computation etc.

The term „Big Data‟ describes innovative techniques and

technologies to capture, store, distribute, manage and

analyze petabyte- or larger-sized datasets with high-velocity

and different structures. Big data can be structured,

unstructured or semi-structured, resulting in incapability of

conventional data management methods. Data is generated

from various different sources and can arrive in the system

at various rates. In order to process these large amounts of

data in an inexpensive and efficient way, parallelism is used.

Big Data is a data whose scale, diversity, and complexity

require new architecture, techniques, algorithms, and

analytics to manage it and extract value and hidden

knowledge from it. Hadoop is the core platform for

structuring Big Data, and solves the problem of making it

useful for analytics purposes. Hadoop is an open source

software project that enables the distributed processing of

large data sets across clusters of commodity servers. It is

designed to scale up from a single server to thousands of

machines, with a very high degree of fault tolerance.

Big Data Technology helps to store, manage and process

high volume and variety of data in cost & time effective

manner. It analyzes data in its native form, which could be

unstructured, structured or streaming. It captures data from

live events in real time. It has a very well defined and strong

system failure mechanism which provides high-availability.

It handles system uptime and downtime. Using commodity

hardware for data storage and analysis. Maintain multiple

copies of the same data across clusters. It stores data in

blocks in different machines and then merges them on

demand.

Big Data is frequently generated and a large volume of data

is updated around the clock across the globe by the users.

Handling large volume of data in a real time environment is

a challenging task. Distributed File System is one of the

strategies to handle large volume of data in the real time.

Distributed file system is a collection of independent

computers that appear to the users of the system as a single

coherent system. In Distributed file system common files

can be shared between the nodes, the drawbacks are

scalability, replication, availability and very expensive to

buy a hardware server. To overcome this issue Hadoop

Distributed File System came into existence. Hadoop

distributed file system to run on cluster of commodity

hardware like personal computer and laptop. HDFS provides

the scalable, fault-tolerance, cost-efficient storage for

Bigdata.

HDFS is an excellent choice for supporting big data

analysis. The service includes “NameNode” and multiple

“DataNodes” running on a commodity hardware cluster.

It provides the highest levels of performance, when the

whole cluster is in the alike physical rack in the data centre.

In Hadoop cluster, data is distributed over the machines of

the cluster when it is loaded. The NameNode act as Master,

stores Metadata information about actual data location of

each block, file names and file properties. The DataNode act

as Slave, stores actual data block information. In HDFS files

are broken into blocks. The blocks are stored as files on the

DataNodes. In HDFS cluster there is a node called

NameNode that manages the file system namespace.

III. ARCHITECTURE

The Hadoop Distributed File System (HDFS) is based on the

Google File System (GFS) and provides a distributed file

system that is designed to run on commodity hardware. It

has many similarities with existing distributed file systems.

However, the differences from other distributed file systems

are significant. It is highly fault-tolerant and is designed to

be deployed on low-cost hardware. It provides high

throughput access to application data and is suitable for

applications having large datasets.

HDFS has a Master and Slaves architecture in which the

master is called the NameNode and slaves are

called DataNodes. An HDFS cluster consists of a single

NameNode that manages the file system namespace (or

Metadata) and controls access to the files by the client

applications and multiple DataNodes (in hundreds or

thousands) where each DataNode manages file storage and

storage device attached to it.

Figure.1 Architecture of HDFS

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1139
IJRITCC | May 2017, Available @ http://www.ijritcc.org

While storing a file, HDFS internally splits it into one or

more blocks. These blocks are stored in a set of slaves,

called DataNodes; to ensure that parallel writes or reads can

be done even on a single file. Multiple copies of each block

are stored per replication factor for making the platform

fault- tolerant.

Figure.2 How a client reads and writes to and from HDFS

Reading files in Hadoop Distributed File System, the HDFS

Client consults NameNode for Metadata about file system.

NameNode response for Metadata about file system.

NameNode will return the addresses of all DataNodes. By

using read() method HDFS Client connect to the DataNodes

identifying a list of DataNodes where a block is hosted and

selecting DataNode. Actual data transfer directly from

HDFS Client to DataNodes based on Metadata received

from DataNode.

NameNode:

NameNode (NN) act as Master, it stores Metadata

information about actual data location of each data block,

file name and file properties. The NameNode is also

responsible for managing file system namespace operations,

including opening, closing, and renaming files and

directories. The NameNode records any changes to the file

system namespace or its properties. The NameNode

contains information related to the replication factor of a

file, along with the map of the blocks of each individual file

to DataNodes where those blocks exist.

HDFS works by dividing large files into smaller pieces

called blocks. The blocks are stored in the DataNodes. It is

the responsibility of the NameNode to know what blocks on

which DataNodes make up a complete file. The NameNode

managing all access to the files, including reads, writes,

create, deletes, and replication of data blocks on the

DataNodes. System namespace is the complete collection of

all the files in the cluster. NameNode will control this

namespace. NameNode and the strong relationship between

DataNodes and they operate in a loosely coupled mode. In a

typical configuration, you find one NameNode and possibly

one or more DataNodes running on one or more physical

servers in the rack. The NameNode is smarter than any

DataNode. NameNode is so critical for correct operation of

the cluster; it can and should be replicated to guard against a

single point failure. HDFS break files into a related

collection of little blocks. These blocks are distributed

among the DataNodes in the HDFS cluster and are managed

by the NameNode. NameNode uses a rack ID to keep track

of the DataNodes in the cluster.

DataNode:

DataNode (DN) act as Slave, stores actual data block

information. DataNodes are responsible for serving read and

write requests from the HDFS clients and perform

operations such as block creation, deletion, and replication

when the NameNode request them to do so. Store and

retrieve blocks when they are told to by the client

applications or by the NameNode), and they report back to

the NameNode periodically with lists of blocks that they are

managing, to keep the NameNode up to date on the current

status.

A client application consults the NameNode to get Metadata

information about the file system. It directly connects to

Datanodes directly so that they can transfer data back and

forth between the client and the Datanodes. The client

communicates with the NameNode to get only Metadata; the

actual data transfer happens between the client and the

Datanodes. The NameNode is not involved in the actual data

transfer.

Secondary NameNode:

Secondary NameNode keeps update Metadata information

and periodically compare with main NameNode

information.

HDFS client:

A user application can use the HDFS client to access the file

system. HDFS can manage read, write, copy and delete

operations.

IV. HDFS FAULT-TOLERANT

Fault tolerance in HDFS refers to the working strength of a

system in unfavourable conditions and how that system can

handle such situation. HDFS is highly fault tolerant. It

handles faults by the process of replica creation. The replica

of user‟s data is created on different machines in the HDFS

cluster. So whenever if any machine in the cluster goes

down, then data can be accessed from other machine in

which same copy of data was created. HDFS also maintains

the replication factor by creating replica of data on other

available machines in the cluster if suddenly one machine

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1140
IJRITCC | May 2017, Available @ http://www.ijritcc.org

fails. Recovery & Fault tolerance handles the following

cases:

 When update on one of the DataNodes fails

 Recovery of a DataNode identifying invalid block

versions

 When one DataNode is taken out, to maintain the fault-

level the blocks must be copied to new DataNodes

How this feature will be achieved?

HDFS achieves fault tolerance mechanism by replication

process. In HDFS whenever a file is stored by the user, then

firstly that file is divided into blocks and then these blocks

of data are distributed across different machines present in

HDFS cluster. After this, replica of each block is created on

other machines present in the cluster. By default HDFS

creates 3 copies of a file on other machines present in the

cluster when replication fails in 2. So due some reason if

any machine on the HDFS goes down or fails, then also user

can easily access that data from other machines in the

cluster in which replica of file is present. Hence HDFS

provides faster file read and write mechanism, due to its

unique feature of distributed storage.

Example:

Suppose a user‟s present in a file named „f‟. This data FILE

is divided in into blocks say B1, B2, B3 and send to Master.

Now master sends these blocks to the slaves say S1, S2, and

S3. Now slaves creates replica of these blocks to the other

slaves present in the cluster say S4, S5 and S6. Hence

multiple copies of blocks are created on slaves. Say S1

contains B1 and B2, S2 contains B2 and B3, S3 contains B3

and B1, S4 contains B2 and B3, S5 contains B3 and B1, S6

contains B1 and B2. Now if due to some reasons slave S4

crashed. Then data present in S4 was B2 and B3 become

unavailable. But we don‟t have to worry because we can get

the blocks B2 and B3 from other slave S2. Hence in

unfavourable conditions also our data doesn‟t get lost.

Hence HDFS is highly fault tolerant.

V. REPLICATION FACTOR

The replication Factor (n) is a property that can be set in the

HDFS configuration file that will allow you to adjust the

global replication factor for the entire cluster. For each

block stored in HDFS, there will be “n-1” duplicated blocks

distributed across the cluster. For example, if the replication

factor was set to 3 there would be one original block and

two replicas.

Record that each file is broken into multiple data blocks.

Now you can explore how these data blocks get stored. By

default, each block of a file is stored three times on three

different DataNodes: The replication factor configuration

property has a default value of 3 but it can be changed.

When a file is created, an application can specify the

number of replicas of each block of the file that HDFS must

maintain. Multiple copies or replicas of each block make it

fault tolerant: If one copy is not accessible or gets corrupted,

the data can be read from the other copy. The number of

copies of each block is called the replication factor for a file,

and it applies to all blocks of a file. An application or job

can also specify the number of replicas of a file that HDFS

should maintain. The number of copies or replicas of each

block of a file is called the replication factor of that file.

The NameNode has the responsibility of ensuring that the

number of copies or replicas of each block is maintained

according to the applicable replication factor for each file. If

necessary, it instructs the appropriate DataNodes to maintain

the defined replication factor for each block of a file. Each

DataNode in the cluster periodically sends a heartbeat signal

and a block-report to the NameNode. When the NameNode

receives the heartbeat signal, it implies that the DataNode is

active and functioning properly. A block-report from a

DataNode contains a list of all blocks on that specific

DataNode.

Example:

The above table consists of replicated servers and fault-

tolerance level. Use block size as complete file size, with

fault-tolerance level 2 (the complete file replicated at 3

servers). If one of the servers is fails there is no loss of data

because the same copy is replicated to other servers also.

For example, you need to change the replication factor

configuration to 1 if you have a single-node cluster. You can

even set the replication factor to 2, which requires double

the storage space but ensures availability in case a DataNode

fails. You can change the replication factor to 4 or higher,

which will eventually improve the performance of the read

operation at the cost of a more expensive write operation,

and with more storage space requirement to store additional

copies.

VI. READ OPERATIONS IN HDFS

While reading files in HDFS, the NameNode acts as a

Server and the DataNode acts as Clients. Server can read a

file in three ways/modes:

 First

 Random

 Loadbased

Case 1: First one in the list is selected as the DataNode that

provides the block. The other servers are underutilized, this

becomes 'passive replication' (primary-backup) model. Only

the first DataNode in the list is consulted to download the

file.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1141
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Figure.3 Using policy as ‘first’

As you can see in Figure, the HDFS Client uses the policy

as „first‟. The Rack1 contains the DataNode1 and

DataNode2. In that the HDFS Client selects the first

DataNode in the list. The DataNode1 doesn‟t contain all the

blocks and at that time the HDFS Client misses the required

blocks.

Case 2: Random (better than case 1 as the requests will be

distributed). The DataNode is randomly selected from the

list of DataNodes that lost the block.

Figure.4 Using policy as ‘random’

As you can see in Figure, the HDFS Client uses the policy

„random‟. „random‟ is better than „first‟ policy. The figure

contains Rack1 and Rack2. The Rack1 contains DataNode1

and DataNode2. The Rack2 contains DataNode3 and

DataNode4. The HDFS Client randomly selects the blocks

in the DataNodes. Observe thatthe dead DataNode4

contained blocks B and C, so NameNode instructs other

DataNodes, in the cluster that contain blocks B and C, to

replicate it in such a manner that it is load-balanced and the

replication factor is maintained for that specific block. The

name node then updates its file system namespace with the

latest information regarding blocks and where they exist

now. Though the DataNode4 failed yet the HDFS Client

doesn‟t lose any blocks because the same blocks available in

other DataNodes.

Case 3: Based on the estimated server load (current queue +

response time observed in earlier requests). The „loadbased‟

is the better than first two cases. The download time for file

is faster than both „first‟ and „random‟.

Whereas “first” runs slower than “random” and “random”

runs slower than “loadbased”.

The blocks are accessed in two ways:

 OnDemand

 Look a block ahead

OnDemand means access which ever block you want.

Whereas Look a block ahead means the process is being

done in one block at the same time second block is also

retrieved.

HDFS works best with small number of very large files for

storing large data sets that the applications need. While

storing files, HDFS internally splits a file content into one or

more data blocks. These data blocks are stored on a set of

slaves called DataNodes, to ensure a parallel data read or

write.

Figure.5 File split process when reading to HDFS

All blocks of a file are of the same size except the last block,

which can be either of the same size or smaller. HDFS

stores each file as a sequence of blocks, with each block

stored as a separate file in the local file system.

VII. EVALUATION AND RESULTS

Hadoop Distributed File System (HDFS) was designed to

hold and manage large amounts of data; therefore typical

HDFS block sizes significantly larger than the block sizes

you would see for a traditional file system (for example, the

size of the file is 104,857,600 bytes and the size of the block

is 5120000 bytes). The block size setting is used by HDFS

to divide files into blocks and then distribute those blocks

across the cluster. For example, if a cluster is using a block

size of 105MB, and a 100MB text file was put in to HDFS,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1142
IJRITCC | May 2017, Available @ http://www.ijritcc.org

HDFS would split the file into twenty blocks and distribute

the chunks to the DataNodes in the cluster.

Reading files in HDFS, the DataNodes ping the IP address

of the NameNode. Based on the size of the block used the

NameNode is chopping the blocks in DataNodes. All

DataNodes have the same copy of blocks. If any DataNode

fails there is no loss of data; whereas the copy of a block is

available in other DataNodes. For that reason the HDFS is

fault-tolerant.

Figure.6 Cluster topology for experiment

Reading files in HDFS, the client create “dfs” folder in

DataNode. In that, again create the DataNodeMetadata and

NameNodeMetadata folders. The DataNodeMetadata again

create the DataNode1 on 192.168.5.78, like the DataNode2

on 192.168.5.38, DataNode3 on 192.168.5.39 and

DataNode4 on 192.168.5.40 in another command prompt

and pass localhost port number at run time. Reading files in

HDFS, the cluster topology shows the following table.

Start the rmiregistry

Start the NameNode on localhost like

start java commands.StartNameNode localhost

On 192.168.5.78

start java commands.StartDataNode DataNode1 localhost

On 192.168.5.38

start java commands.StartDataNode DataNode2

192.168.5.78

On 192.168.5.39

start java commands.StartDataNode DataNode3

192.168.5.78

On 192.168.5.40

start java commands.StartDataNode DataNode4

192.168.5.78

RESULTS:

Steps to run this RMI application:

Save the entire java file into a directory and name it as

“dfs”.

start rmiregistry

Figure7: Start rmiregistry

start java commands.StartNameNode localhost

Figure8: Start NameNode

start java commands.StartDataNode DataNode1

localhost

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1143
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Figure9: Start DataNode1

Like DataNode1 on 192.168.5.78, start the DataNode2 on

192.168.5.38, DataNode3 on 192.168.5.39 and DataNode4

on 192.168.5.40 in another command prompt and pass

localhost port number at run time.

The block size setting is used by HDFS to divide files into

blocks and then distribute those blocks across the cluster.

For example, if a cluster is using a file size of 100MB, and a

block size of 5 MB text file was put in to HDFS, HDFS

would split the file based on the file size and block size. By

using the following information it divides into twenty blocks

and distributes the chunks to the DataNodes in the cluster

like this way.

Figure10: Installing four DataNodes in HDFS

While reading a files in HDFS, the clientcreates a local file

and DFS File. To upload a file to DFS a DataNode is created

and registered with the rmiregistry. It can Access the

NameNode and register with the NameNode to indicate it is

available and returns the number of bytes read.

Using the selection policy as 'first', 'random' and 'loadbased'

perform 20, 25, 30, 35, 40, 45 and 50 downloads

concurrently. The number of concurrent downloads

initiated: 20, 25, 30, 35, 40, 45, and 50. Policies

experimented to select the server: first, random and

loadbased. Select the first, random and loadbased server

during the block retrieval for 20 concurrent requests. In the

same way select the server during the block retrieval for 25,

30, 35, 40, 45 and 50 concurrent requests. Use block size as

complete file size, with fault-tolerance level 2 (the complete

file replicated at 3 servers). Create DFS File and set block

size as 1K, 2K, 5K, 10K, 25K, 50K, 100K and the

following. Set block size as 1K in constants file to test the

download time for 1K block size. In the same way test the

download time for 2K, 5K, 10K, 25K, 50K and 100K. The

below tables contains the values of average requests

execution time for first, random and loadbased.

Load entries from DataNode Metadata location to files on

system. Save entries from files on system to DataNode

Metadata location. Find size of the file. Use block size to

find how many blocks needed. Use DataNodes in the

DataNode map. Copy each block to the number of

DataNodes (based on fault level). Block number starts from

0 to blockCt-1. In DataNodeMetadata the blocks are

chopping into DataNodes as shown in below format.

 Figure11: shows blocks distributed over the DataNodes in

HDFS

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1144
IJRITCC | May 2017, Available @ http://www.ijritcc.org

 first random loadbased

20 63950 72393 29101

25 86762 83665 31454

30 82932 33617 43523

35 79521 77924 43696

40 78193 76585 47890

45 77157 75192 48670

50 90023 65924 46455

Figure12: Download time taken to read a file

 first random loadbased

20 1084468 121185 460396

25 1553222 1528609 678011

30 2181309 680139 1092919

35 2081565 2053479 1287607

40 2090863 1978283 1684813

45 1823770 2680788 1529965

50 2501479 2559501 1456254

 first random loadbased

20 54223.4 60909.25 23019.8

25 62128.88 61144.36 27120.44

30 72710.3 22671.3 36430.63

35 59473.29 58670.83 36788.77

40 52271.57 49457.07 42120.32

45 40528.22 59573.07 33999.22

50 50029.58 51190.02 33999.22

Figure13: Total Execution Time for required requests

Figure14: Average requests Execution Time

Figures describe three policies i.e., first, random and

loadbased. We observe the figure12, download time to read

a file inHDFS, the policy is faster than first and random and

if weobserve figure13 and figure14 the total execution time

for therequired requests and average requests execution time

in HDFS, the first and random policies areslower than

loadbased. If we compare the three policies we can observe

that the speed of loadbased is better and faster than

remaining two cases.

VIII. CONCLUSION

Hadoop distributed file system provides a high throughput

access to the data of an application and is suitable for

applications that needs to work with large datasets. HDFS

designed to carry petabytes of data with high fault tolerance.

Petabytes of data are saved redundantly over many servers

or machines. Files containing data are stored redundantly

across number of machines for high availability and

durability to failure. The block size setting is used by HDFS

to divide files into blocks and then distribute those blocks

across the cluster. We have examined the design and

architecture of Hadoop distributed file system. Particularly

our analysis focus on three policies those are first, random

and loadbased. Observes the results comparison between

three policies the speed of download time to read a file in

HDFS is faster in loadbased. HDFS is used for storage and

provides more efficiency to the system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 1137 – 1145

1145
IJRITCC | May 2017, Available @ http://www.ijritcc.org

REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org

[2] Tom White, “Hadoop The Definitive Guide”, 2nd

ed., O‟REILLY, 2011, pp. 41–73.

[3] https://en.wikipedia.org/wiki/Apache_Hadoop

[4] Konstantin Shvachko, Hairong Kuang, Sanjay

Radia, Robert Chansler,“Hadoop Distributed File

System”, 2010

[5] Towards Better Fault Tolerance in HDFS – A

Survey Paper, IJIRT 2014.

[6] https://technocents.wordpress.com/category/hadoo

p/hadoop- distributed-file-system-hdfs/

[7] The Hadoop Distributed File System: Architecture

and Design” by Dhruba Borthakur,

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.

pdf

[8] Keerthivasan M., “Review of Distributed File

Systems: Concepts and Case Studies”, ECE 677

Distributed Computing Systems

[9] Pooja S.Honnutagi, “The Hadoop distributed file

system”, International Journal of Computer Science

and Information Technology, Vol.5(5), 2014, pp.

6238-6243

[10] Jaskaran Singh, Varun Singla “Big Data: Tools and

Technologies in Big Data”. In International Journal

of Computer Applications (0975 – 8887) Volume

112 – No 15, February 2015.

[11] Puneet Singh Duggal, Sanchita Paul ,―

BigDataAnalysis: Challenges and Solutions‖,

International Conference on Cloud, Big Data and

Trust 2013, Nov 13-15, RGPV

[12] Kiran kumara Reddi & Dnvsl Indira “Different

Technique to Transfer Big Data : survey” IEEE

Transactions on 52(8) (Aug.2013) 2348 { 2355}

[13] http://www.informit.com/articles/article.aspx?p=24

60260& seqN=2

[14] S.Vikram Phaneendra & E.Madhusudhan Reddy

“Big Data- solutions for RDBMS problems- A

survey” In 12th IEEE/IFIP Network Operations &

Management Symposium (NOMS 2010) (Osaka,

Japan, Apr 19{23 2013).

[15] Bappalige, S.P. An introduction to Apache Hadoop

for big data. Retrieved Nov 27, 2014, available at

http://opensource.com/life/14/8/introapache-

hadoop- bigdata

[16] Jonathan Stuart Ward and Adam Barker

“Undefined By Data: A Survey of Big Data

Definitions”Stamford, CT: Gartner, 2012.

http://www.ijritcc.org/
http://hadoop.apache.org/
https://en.wikipedia.org/wiki/Apache_Hadoop
https://technocents.wordpress.com/category/hadoop/hadoop-%20distributed-file-system-hdfs/
https://technocents.wordpress.com/category/hadoop/hadoop-%20distributed-file-system-hdfs/
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf

