
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 929 – 934

929
IJRITCC | May 2017, Available @ http://www.ijritcc.org

An improved approach of FP-Growth tree for Frequent Itemset Mining using

Partition Projection and Parallel Projection Techniques

Rana Krupali

Parul Institute of Engineering and

technology,

Parul University, Limda, Vadodara,

Gujarat

Email: krupalirana97@gmail.com

Dweepna Garg

Parul Institute of Engineering and

technology,

Parul University, Limda, Vadodara,

Gujarat

Email: dweeps1989@gmail.com

Ketan Kotecha

Parul Institute of Engineering and

technology,

Parul University, Limda, Vadodara,

Gujarat

Abstract— In Data mining, it is about analyzing data; about extracting information out of data. It is a very actual as well as interesting issue

having more and more data stored in database. The most important usage: customer behavior in market purchasing, shopping cart processed

information provide, management of campaign , customer relationship management, mining about web usage called web mining, mining of text.

In the current age of science we developed such technology by using it each type of data related to anything such like person, place, shop, or any

organization can be stored. By analysis it is found that FP-growth is efficient in terms of tree construction as compared to Apriori and Tree

Projection. Tree Projection is faster and more scalable than Apriori. The parallel projection technique is proved to be more scalable than partition

projection as partition projection saves memory space as it works well for the dataset which is dispersed, if the FP-growth tree algorithm and

Tree Projection are compared on the basis of benefits it holds on, Apriori does not result to be convenient enough. The pros of FP-growth as

compared to Apriori concludes to be transparent as the datasets which it contains has an enormous number of combinations of short-narrative

frequent patterns. FP-growth tree implemented along with projection techniques i.e. Partition projection technique constructed to reduce

execution time for constructing FP-Growth tree has to be carried out.

Keywords- FP-Growth tree, Apriori algorithm, Association Rule, Projection techniques, frequent sequential patterns, database projection

algorithms, parallel processing.

__*****___

I. INTRODUCTION

FP-Tree, frequent pattern mining, in data mining breaks the

Apriori bottlenecks problem.
[1][3][7]

 In the construction

procedure, without generation candidate item-set, the set of

frequents occurring item-sets can be generated with the number

of passes: 2 over the whole database. As compared to Apriori

algorithm, FP-Growth Tree Algorithm performs a way better as

support threshold is kept low, but in case of Apriori algorithm

the number and length of frequently generated item-sets

increases dramatically.
[9][21]

 If the construction of FP-Growth

Tree has to be carried out successfully, first task to be done

would be importing a solid data-structure that can genuinely

justify the requirements of the FP-Growth Tree. Still it cannot

be ensured that construction of such a pattern tree will be most

efficient one as there may arise problem in making

combinations of the candidate generation.
[10]

FP GROWTH TREE ALGORITHM
[17][20]

Input:1.A transaction database DB 2.minimum support

threshold ξ.

Output: FP-growth tree

Procedure:

Step-1: Scan the transactional database and find support count

for each item.

Step-2: If item_id < support, discard the item.

Step-3: Construct a header table called I-list to store the sorted

of frequent item-sets in declining order based on its support

and node link.

Step-4: Initially, construct FP-Growth tree .in the first step, it

creates the root of an FP-Growth tree and labels it as “null”.

And Read the item in each transaction and created branch for

each transaction. If the each node has shared a common prefix

so increment by 1 otherwise create new node.

Step-5: In header table, each item points to its corresponding

occurrences in the tree through a single link list it is represent

by dotted lines.

Step-6: Construct the mine FP tree is call FP growth tree.

Figure: 1 Architectural view of FP-Growth Tree

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 929 – 934

930
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Table: 1 Comparison between various types of algorithms with respect to its layouts
[5][11][14]

There has been various algorithms used for frequent item-set

mining.
[2][19]

But FP-Growth Tree algorithm works on divide

and conquer strategy.
[8][12]

 The above comparison table shows

comparison between various layout based algorithms such as

Horizontal layout based algorithms
Vertical layout based

algorithm
Projected layout based algorithm

Algorithm/

Parameter

Apriori

algorithm

DHP

algorithm

Partition

algorithm

Eclat algorithm FP-Tree

algorithm

H- mine algorithm

Storage

structure

Array based Array

based

Array based Array based Tree based Tree based

Technique Uses apriori

property ,

join and

prune

method

Uses

hashing

technique

for finding

frequent

itemsets

Partition the

database to

find the local

frequent item

first

Uses interaction of

transaction ids for

generating candidate

itemset

It constructs

conditional

frequent

pattern tree

and

conditional

frequent

pattern base

It uses hyperlink pointers

to store partition projected

database in the main m/m.

Memory

Utilization

Large

memory

Less space

at initial

pass and

more later

on

Each partition

can be easily

occupied in

the main

memory

Less memory space as

compared to apriori

algorithm

Less

memory

space due to

compact

structure

Memory utilized as per

required for partitions of

projected database

Database Sparse as

well as

dense

datasets

Medium

database

Large

database

Medium database and

dense database

Large and

medium

datasets

Sparse as well as dense

datasets

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 929 – 934

931
IJRITCC | May 2017, Available @ http://www.ijritcc.org

horizontal layout based algorithms, vertical layout based

algorithms and projection layout based algorithms.

II. PARALLEL PROJECTION TECHNIQUE

 Scans the database for projection once.

 If there exist more than one program it would be

executed at a time as all the projected datasets would

be stored in the same memory location from where it

may be retrieved easily, this procedure is termed as

parallel projection.

 In the end of the scanning process, parallel projection

provides parallel processing as a result of all the

projected databases would be available for

mining.
[13][15]

 Databases which are projected will be accessible and

can be easily mined in parallel but it uses a vast

memory space.

Figure: 2 Architectural view of parallel projection Database

III. PARTITION PROJECTION TECHNIQUE

 Scans the original or α-projected for carrying out

projection.

 Since an operation has to be individually projected

for only a single projected database scan, once

scanning process of the whole database would be

divided logically w.r.t the projection scheme in the

formation of a set of projected segments & each

segment have to be processed individually with its

own local memory, this king of projection can be

termed as partition projection.
[16][18][21]

Figure: 3 Architectural view of partition projection

Database

IV. IMPLEMENTATION RESULTS

For projecting the database, a projection technique is introduced to

deal in the condition when the Frequent Pattern tree cannot fit in main

memory. Extensive experimental results have been reported.

Experimental result shows that at some point where the size of

Frequent Pattern Tree on the projection of data to generates Frequent

Pattern Tree. The portion of the frequent pattern which consist shared

parts would be brought together by applying single prefix structure

until count registration is done. On the basis of order of frequent items

two or more record accord a common prefix.

Table 2: Minimum support Count& execution time for FP-

Growth Tree Algorithm

Minimum support count

FP-GROWTH Tree

Execution Time

(In Milliseconds)

2 130

3 124

4 88

5 73

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 929 – 934

932
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Figure 4: Graph representing execution time vs minimum

support count for basic FP-Growth Tree Algorithm

Table 3: Represents no. of records &execution time for FP-

Growth Tree Algorithm

Figure 5: Graph representing execution time (in

milliseconds) VS number of records for basic FP-Growth

Tree Algorithm

Minimum

 support

Execution Time

(In millisecond)

FP-Growth

Tree

Execution Time

(In millisecond)

FP- Growth Tree-

partition projection

2 130 113

3 124 95

4 88 68

5 77 48

Table 4: Represents the minimum support and execution

time for FP-Growth Tree & FP- Growth Tree Partition

projection

Figure 6: Graph representing the comparison of FP-

Growth Tree & FP- Growth Tree with Partition projection

when minimum support varying

Table 5: Comparison between FP- Growth Tree

with conditional and FP- Growth Tree with Data

base Partition projection technique

Figure 7: Representation of the comparison of FP-

Growth Tree and FP- Growth Tree with Parallel

projection when no. of records varying

Number of records Execution Time

(In millisecond)

200 87

300 98

400 144

500 199

Number of

records

Execution time

(In millisecond)

FP-Growth

Tree

Execution time

(In

millisecond)

FP- Growth

Tree- partition

projection

200 87 64

300 97 77

400 140 123

500 201 188

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 929 – 934

933
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Number

of

records

Execution time

(In millisecond)

FP-Growth

Tree-partition

projection

Execution time

(In millisecond)

FP-Growth Tree-

parallel projection

200 90 83

300 101 69

400 148 134

500 204 192

Table6: Comparison between FP- Growth Tree VS FP-

Growth tree with Parallel projection on the basis of number

of records varying

Figure 8: Graph representing the variation of FP-Growth

Tree with Parallel Projection and FP-Growth Tree with

Partition projection when number of records varying

Minimum

Support

Count

Executio

n time

(In

millisec

ond)

FP-

Growth

Tree

Execution

time

(In

millisecon

d)

FP-

Growth

Tree-

partition

projection

Execution time

(In millisecond)

FP- Growth

Tree- parallel

projection

2 134 153 102

3 124 131 85

4 84 95 60

5 74 79 45

Table 7: Representation of the minimum support count and

execution time for FP-GrowthTree, FP-GrowthTree parallel

projection and FP-GrowthTree Partition projection

Figure 9: Graph representing the variation of FP-Growth

Tree, Parallel Projection and Partition projection when

minimum support count varying

V. CONCLUSION

The transactional databases are projected and the list of

frequent items is mined. First the least frequent item from the

parallel projected database would be mined and continue

further. A unique approach has been introduced which shows

significant improvement over the results. To observe the actual

performance all the three techniques, it should be tested under

the same environment. As it may differ in various ways,

sometime the dataset may differ, sometimes the input/output

devices may perform variably. A console based application

has been provided here in which there is no GUI control. In

this approach the selection of procedure (parallel or partition)

is not dynamic. The user will decide which type of technique

he wants to use.

REFERENCES
[1] R.C. Agarwal, C. Aggarwal, and V.V.V. Prasad. “A tree

projection algorithm for generation of frequent

itemsets”,Journal of Parallel and Distributed Computing

(Special Issue on High Performance Data Mining), 2000.

[2] R. Agrawal and J.C. Shafer. “Parallel mining of association

rules”,IEEE Transactions on Knowledge and DataEng.,

8(6):962–969, December 1996.

[3] R. Agrawal and R. Srikant. “Fast algorithms for mining

association rules”, In Proc. of the 20th VLDB

Conference,pages 487–499, Santiago, Chile, 1994.

[4] S. Brin, R. Motwani, and C. Silversteim” Beyond market

baskets: Generalizing association rules to correlations”, In

Proc. of 1997 ACM-SIGMOD Int. Conf. on Management of

Data, Tucson, Arizona, 1997.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

“Introduction to Algorithms”MIT Press, McGraw-Hill,

NewYork, NY, 1990.

[6] E. W. Dijkstra, W. H. Seijen, and A. J. M. Van Gasteren.

Derivation of a termination detection algorithm for

adistributed computation. Information Processing Letters, 16–

5:217–219, 1983.

[7] Ananth Grama, Anshul Gupta, George Karypis, and Vipin

Kumar. Introduction to Parallel Computing: Designand

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 929 – 934

934
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Analysis of Algorithms, 2nd Edition. Adison Wesley

Publishing Company, Redwood City, CA, 2003.

[8] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data

mining for association rules. IEEE Transactions on

Knowledge and Data Eng., 12(3):337–352, 2000.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without

candidate generation. In Proc. of 2000 ACMSIGMODInt.

Conf. on Management of Data, 2000.

[10] Mahesh V. Joshi, George Karypis, and Vipin Kumar.

Universal formulation of sequential patterns. Technicalreport,

Universit of Minnesota, Department of Computer Science,

Minneapolis, 1999.

[11] G. Karypis and V. Kumar. METIS: Unstructured graph

partitioning and sparse matrix ordering system.

Technicalreport, Department of Computer Science,

University of Minnesota, 1995. Available on the WWW at

URLhttp://www.cs.umn.edu/˜karypis/metis.

[12] G. Karypis and V. Kumar. Multilevel algorithms for multi-

constraint graph partitioning. In Proceedings of

Supercomputing, 1998. Also available on WWW at URL

http://www.cs.umn.edu/˜karypis.

[13] George Karypis and Vipin Kumar. Unstructured tree search

on simd parallel computers. Journal of Parallel and

Distributed Computing, 22(3):379–391, September 1994.

[14] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering

frequent episodes in sequences. In Proc. of the FirstInt’l

Conference on Knowledge Discovery and Data Mining,

pages 210–215, Montreal, Quebec, 1995.

[15] Message Passing Interface Forum. MPI: A Message-Passing

Interface Standard, May 1994. Available at

http://www.mpi-forum.org.

[16] Andreas Mueller. Fast sequential and parallel algorithms for

association rule mining: A comparison. TechnicalReport CS-

TR-3515, College Park, MD, 1995.

[17] J. Park, M. Chen, and P. Yu. An efficient parallel data mining

for association rules. In Proceedings of the 4th International

Conference on Information and Knowledge Management,

1995.

[18] J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based

algorithm for mining association rules. In Proc. Of 1995

ACM-SIGMOD Int. Conf. on Management of Data, 1995.

[19] J.S. Park, M.S. Chen, and P.S. Yu. Efficient parallel data

mining for association rules. In Proceedings of the 4thInt’l

Conf. on Information and Knowledge Management, 1995.

[20] S. Parthasarathy, M. Zaki, M. Ogihara, and W. Li. Parallel

data mining for association rules on shared-memorysystems.

Knowledge and Information Systems, 3(1):1–29, 2001.

[21] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Ping,

Qiming Chen, Umeshwar Dayal, and Mei-Chun

Hsu.Prefixspan: Mining sequential patterns efficiently by

prefix-projected pattern growth. In Proceedings 2001

InternationalConference on Data Engineering, 2005.

http://www.ijritcc.org/

