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Abstract—Software Designers should be aware of address design smells that can evident as results of design and decision. In a software 

project, technical debt needs to be repaid habitually to avoid its accretion. Large technical debt significantly degrades the quality of the software 

system and affects the productivity of the development team. In tremendous cases, when the accumulated technical reckoning becomes so 

enormous that it cannot be paid off to any further extent the product has to be abandoned.   In this paper, we bridge the gap analyzing to what 

coverage abstract information, extracted using textual analysis techniques, can be used to identify smells in source code. The proposed textual-

based move toward for  detecting  smells  in  source  code,  fabricated  as  TACO (Textual  Analysis for Code smell detection), has been 

instantiated for detecting  the long parameter list  smell and  has been evaluated on three sampling  Java open source  projects. The results 

determined that  TACO is able  to  indentified  between  50%  and  77%  of the  smell  instances with a exactitude  ranging between 63% and 

67%. In addition, the results show that TACO identifies smells that are not recognized by approaches based on exclusively structural 

information. 

 

Index Terms— Code Smell, Software refactoring, Technical Debt, Code Debt. 

_________________________________________________*****_________________________________________________  

I. INTRODUCTION 

In real world environment source code of software is becomes 

more intricate to read or debug and even harder to widen. 

Cleaning up bad smells in the source code is used to improve 

software readability and extensibility. Software refactoring is 

the process of changing the internal structure of object-oriented 

software to improve the quality of software code, especially in 

terms of maintainability, extensibility, and reusability while 

software outer performance remains unchanged. In order to 

improve software refactoring, several tools has been employed 

for code smell detection.  

Bad smells in the code  

The term bad smell was introduced by Fowler and Beck. 

According to Martin Fowler, ―A code smell is a exterior 

suggestion that usually corresponds to a deeper problem in the 

system‖. Code smells are not usually bugs-that are technically 

weaknesses in design the term appears to have been coined by 

Kent Back and Wards Wiki in late 1990‘s. The term code smell 

is also used by agile programs. Smells are come from some 

recurring, poor designs solution also known as anti patterns. 

The smells need to the carefully detected and monitored by 

Researchers.  

 

 

 

TABLE I 

The Primary smells are 

Code Smells Descriptions 

Feature Envy 

This smell, in which class is involved to use 

data or function of another class in the source 

code 

Large Class 

Too much functionality is collected into one 

class. Some programmers or developers make 

a large class for their handiness but it lead to 

many confusions where the code is analyzed 

or read by the programmer it is really hard to 

understand the functionality of large classes 

Duplicate 

Code 

The simplest duplicated code problem is when 

the same expressions in two methods of same 

classes 

Long Method 
Long procedure or method used in classes, so 

it is difficult to understand 

Long 

Parameter list 
Parameter list is too long 

Divergent 

Change 

One class is commonly changed in different 

ways from different reasons 

Temporary 

field 

Class has a variable which is used in some 

situations 

Dead Code 
Code that is never run or does not perform any 

functionality in the source code 
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II. TECHNICAL DEBT 

Technical debt (also known as design debt or code 

debt) is ―A concept in training that reflects the extra 

development work that arises when code that is easy to 

implement in the short run is used as a substitute of applying 

the best overall solution". Technical Debt is metaphor coined 

by Ward Cumminghan in a 1992 report. Technical Debt is 

analogous to financial debt. There is multiple source of 

technical debt. Dimension of technical debt include 

a. Code debt: 

b. Design debt 

c. Test debt 

d. Documentation debt  

III. RESEARCH PROBLEM AND MOTIVATION 

 

 

 

 

 

 

 

 

 

 

 

             

 

 

Fig 1. DIMENSION OF TECHNICAL DEBT 

III. RESEARCH PROBLEM AND MOTIVATION 

Technical debt is an symbol used to describe the 

consequences of poor software design and bad coding. In 

particular, the  debt  represents  a  measure  of  code  that  

needs  to  be  re- written or accomplished before a particular 

task can be considered complete [9]. The image explains well 

the trade-offs between delivering the most suitable but still 

immature product, in the shortest time possible [7], [9], [13], 

[14], [24].  Code smells i.e., symptoms of poor design and 

implementation choices [11], are one of the most important 

factors subscribe to technical debt. In the past and, most  

conspicuously in recent years, several studies investigated the 

relevance that code smells have for developers [21], [32], the 

extent to which code smells favor to remain in a software 

system for long periods of time [2], [8], as well as the side 

effects of code smells, such as increase in change and 

responsibility proneness[12] or decrease of software 

understandability [1] and maintainability [25], [31], [30]. 

The results achieved in these studies have recommended the 

need  to  properly  manage  smells  aiming  at  improving  the 

quality  of  software  systems.  Thus,  several tools  and 

methods approaches  have  been  projected  for  detecting  

smells  [17],  [18], [19],  [20],  [22],  [23],  [26],  [27],  [28],  

and,  whenever  possible, triggering refactoring operations [5], 

[4], [27]. While approaches to appropriate smells have 

investigated the use of both structural and conceptual 

information extracted from source code, approaches to identify 

smells are based on structural information only. Recently, 

Palomba et al. [22] have also used chronological information to 

identify smell. In the framework of their study, the authors 

obtained that using chronological information it is possible to 

identify smell instances that are missed using structural in 

sequence only. In this paper, we speculate that also by using 

conceptual information it is possible to categorize smell 

instances that are missed by using other sources of information. 

In other words, we suppose that, as obtained in other software 

engineering tasks (see e.g., [6],  [15],  [16]), conceptual 

properties can provide complementary information to structural 

properties when identifying smells in source code. In order to 

verify our conjecture, we present TACO (Textual Analysis for 

Code smell detection), a textual-based smell detection 

approach. TACO has been instantiated for the detection of a 

specific smell, i.e., Long parameter list. However, the approach 

can be easily extended to other smells. The choice of Long 

parameter list is not random, but guided by the idea that such a 

smell is a ideal candidate to evaluate the benefits of conceptual 

information. certainly, a method with a high number of lines of 

code likely implements different responsibilities and thus 

textual examination could be mostly suitable to identify such 

responsibilities.  

IV. APPROACH AND UNIQUENESS 

Fowler [11] described the  Long parameter list as  a  method  

Long parameter list is a parameter list that is too long and thus 

difficult to understand.  

Symptoms:  A method with too many parameters that is 

difficult to understand Solution: Introduce Parameter Object, 

Replace Method with Method Object 

Thus, the key idea behind TACO is that a Long parameter 

list contains a set of code blocks conceptually unrelated each 

that should be managed separately.  Figure 1overviews the 

main steps of the proposed approach. First, TACO extracts 

from a method Mi the blocks composing it, applying the 

technique proposed by Wang et al.  [29]. Then, from each 

block TACO extracts the identifiers and comments 

concentrated effort the text from non-relevant words, such as 

language keywords.  Each cleaned block of code is viewed as a 

document, and for each pair of code block is computed a value 

of similarity using Latent Semantic Indexing (LSI) [10]. The 

similarity values between all the possible pairs of blocks are 

stored in a block similarity matrix, where a nonspecific entry 

ci,j represent the similarity between the method blocks bi   and 

bj . If in the block similarity matrix there is ingress (i.e., 

similarity between two code blocks) lower than α, then a Long 

parameter list instance is identified. The constraint ‗α‘ has been 
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empirically evaluated and set to 0.4. 

V. PRELIMINARY EVALUATION 

We estimate the accuracy of TACO in detecting Long 

Parameter list smell instances in three softwares, Phython , 

Apache Xerces2  and Eclipse Core3 . Be- sides the 

investigation of the accuracy of TACO we also prepare the 

projected approach with a structural-based technique, namely 

DECOR [18]. In  order  to  appraise  the  precision  of  the  

experimented techniques,  we  compare  the  set of  Long  

parameter list instance identified by a specific technique with 

the set of instances manually identified in the object system. 

Details on how these smells have been manually recognized 

can be found in the paper by Palomba et al. [21]. Then, we 

appraise the accuracy of the experimented techniques by using 

three widely-adopted Information Retrieval (IR) metrics, 

namely recall, precision, and F-measure [3].  

In addition, we also evaluate the overlap between TACO and 

DECOR by measuring the smell instances accepted by both the 

technique (TACO ∩ DECOR), the instances identified by 

TACO only (TACO \ DECOR) and the instances identified by 

DECOR only (DECOR \ TACO). Table I shows the results 

achieved. As we can see, TACO is able to detect Long 

parameter list instances with good accuracy in all the object 

systems. certainly, TACO is able to achieve, overall, a 

precision of 75% and a recall of 62% (F-measure=63%), while 

DECOR is able to achieve a precision of 54% and a recall of 

74% (F-measure=51%). 

TABLE II 

OVERLAP BETWEEN TACO AND DECOR 

    System            TACO \ DECOR           TACO n DECOR       

DECOR n TACO 

      phython                     12%                                   44%                          

44% 

      Clion                          0%                                    43%                          

57% 

     Eclipse                        77%                                  23%                          

0% 

 

In Eclipse Core, where DECOR detects a large number of 

candidate smells (i.e., 122), obtaining a very low value of 

precision. On this system, TACO detects 6 instances of Long 

parameter list, achieving a good concession between precision 

and recall (F- measure=71%). Analyzing more in details the 

reasons behind this result, we observed that Eclipse has several 

number of  methods  having  more  than  100  lines  of  code,  

and  this is  why  they  are  detected  as  Long  parameter list by  

the  code analysis technique. However, the most part of these 

methods manage a single responsibility, but in a long piece of 

code. For example, the method find Types From Imports of the 

-class Completion Engine is identified by DECOR as Long 

parameter list since it has 125 lines of code, but it only contains 

the implementation of an algorithm that ends the reference of a 

class looking at its imports. On the other hand, our approach is 

able to identify different types of Long parameter list.  

As an example, the method finds Types and Packages of the 

class Completion Engine allows to discover the classes and the 

packages of a given project. Clearly, this method manages 

different tasks, even if its size is not high. This means that the 

use of textual analysis is actually useful to let alone the 

identification of many false positive candidates, but also to 

detect instances of Long parameter list that the structural 

technique is not able to detect. This claim is supported by the 

results achieve when analyze the overlap between TACO and 

DECOR . 

                      TABLE III 

          DECOR                                   TACO   

 

(see Table II). The two approaches are highly complementary 

on two out of three systems analyzed in the study. This result 

suggests that structural and abstract information are 

complementary when used to identify smells and thus better 

accuracy might be obtained by combining the two approaches. 

Future work will be loyal to investigate such an aspect. 

VI. CONCLUSION 

We presented TACO (Textual Analysis for Code smell 

detection), an approach to detect Long parameter list smells in 

source code by analyzing the textual information extracted by 

the code blocks in a method. The analysis of textual 

information for smell detection represent a ruler of this paper, 

since all the detection approaches proposed in the literature so 

far use structural or past information. As future work, we plan 

to instantiate TACO for detecting other kinds of smells. For 

example,   Eclipse and Gene-based Algorithm used detected 

Project              Prec.   Recall   F-measure Prec. Recall F-

measure 

 Phython            0.84       0.5           0.63        0.63    0.5      

0.56 

 Clion                 0.63      0.72         0.67         0.68    0.57   

0.62 

Eclipse               0.10     1 0.             19         0.67     0.77    

0.71 

Overall            0.52     0.74          0.51        0.65     0.61    

0.63 

 

Replace. 

 
parameter method 

 

 

Long parameter 

list 
Block b1 

Pruned block 

Long 

parameter 

identifier 

yes

  

Compute 

similarity For 

each pair 

Extract blocks 

Similar matrix 

 

Fig. 2.  TACO Identification of Long  parameter smell. 
  



International Journal on Recent and Innovation Trends in Computing and Communication                                                                   ISSN: 2321-8169 

Volume: 5 Issue: 5                                                                                907 – 911 

______________________________________________________________________________________________ 

910 
IJRITCC | May 2017, Available @ http://www.ijritcc.org 

_______________________________________________________________________________________ 

 

smells and applying the same technique presented in this paper 

at a higher level of granularity, i.e., instead of computing 

comparison between code blocks it is necessary to compute the 

relationship between methods (in case of  Eclipse) or classes 

(in case of  Gene-based). Also the Feature Envy smell can be 

detected by using TACO. In this case it is necessary to compute 

the similarity between a method and all the used classes aiming 

at identifying the envied class. In addition, the preliminary 

estimate of TACO indicated a quite low overlap between the 

set of smells identified by TACO and a structural based 

detection technique. 

In future, a new approach is the possibility of combine the 

two approaches to concentrated a mixture and more accurate 

smell detector  
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