
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

822
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Energy Efficient Varying Fanout Indexing Technique for Skewed Access Patterns in the

Wireless Mobile Environments

Mani Dwivedi

MCA Department

AKG Engineering College

Ghaziabad, India

dwivedimani@gmail.com

Anuj Kumar Dwivedi
MCA Department

AKG Engineering College

Ghaziabad, India

anujkdwivedi@gmail.com

Abstract— As we know, due to limited battery power, the most important issue in mobile computing is energy saving, which can be achieved

through indexed data organization to broadcast data over wireless channels to a large no of mobile clients. In this paper, we explore the balanced

and imbalanced index tree with varying fanout over skewed data. We purpose a varying fanout indexing technique with replication for data

broadcast with skewed access pattern over a single wireless communication channel. We also show that replication can be performed at any level

in varying fanout index tree, which increases the length of the overall broadcast cycle but reduces the directory miss. We compared our

technique with the conventional as well as existing techniques. The performance results suggests the superiority of this technique over another

replicated index technique i.e., fixed fanout index in all aspects. Our index technique also ensures correctness of results when larger size of

broadcast file is used. From the performance analysis, the proposed indexing technique outperforms fixed fanout index technique.

Keywords: Varying Fanout, skewed data, replication, directory miss.

__*****___

I. INTRODUCTION

In recent years, the utilization of wireless technology devices

has been growing at an exponential rate. For wireless data

applications, the data dissemination methods are categorised

between the two: point-to-point access and broadcast. In point-

to-point access, a logical channel is established between the

client and the server, where, queries are submitted to the

uplink of server and returns the results to the client as in a

wired network. In broadcast, data is transmitted

simultaneously to all users who are residing in the broadcast

area. It is to choice of a client to select the data it wants[1].

Data broadcasting is referred to as broadcasting which mainly

transmits data, for example characters, shapes, still pictures,

images, sounds etc., and differs from television broadcasting

which mainly transmits videos or radio broadcasting which

transmits sounds only [13]. But there is problem lies with data

broadcast, when a mobile client retrieve a data item, it has to

continuously monitor the broadcast channel until the data item

of its interest arrives. This will consumes a lot of battery

power. The limited battery capacity of mobile client’s device

makes power conservation a critical issue in the design of

broadcast systems. It is important for mobile clients for energy

saving will operate in two different modes: active mode and

doze mode. The mobile clients can retrieve data from

broadcast channels in the active mode only. However, the

clients have much higher rates of battery consumption in the

active mode than in the doze mode. The wireless devices can

stay in the power saving mode or doze mode and tune into the

broadcast channel only when the data items of interest to them

arrive, hence lots of energy of these devices can be saved

[1].The efficiency of the broadcast channels is estimated by

two criteria used frequently :access latency and tuning time.

The access latency refers to how fast. the client can access the

requested data and tuning time refers to the duration for which

the client stays active to receive the requested data items[13].

 The performance of broadcast systems is always

characterized by these two metrics. The tuning time can be

reduced by means of air indexing. So by adding an index

information to the broadcast file one can save mobile device

power battery. Without indexing, the clients have to be

continuously active and monitor the broadcast channel until

the requested data item would arrive. This consumes

significant amount of battery power and sacrifices energy

efficiency. So the issue is to save battery power with

minimized access latency during data broadcast in the single

channel where data and index can broadcasted in the same

channel.

II. RELATED WORK

The broadcast disks in [7] takes into consideration for non-

uniform data access distribution. In this approach, the several

data items with similar access rates are grouped together to

form logical disks. Each disk is assigned a relative broadcast

frequency; more popular items are assigned higher

frequencies. The broadcast schedule is then constructed by

circularly picking up items from the disks based on their

relative broadcast frequencies. Another indexing technique

proposed in [9], a signature-based indexing method.

Specifically, a broadcast cycle is divided into a number of

frames. Each frame is preceded by a signature of its data item

in the broadcast schedule. This allows the client to check

whether a requested item is in the frame by investigating the

signature only. However, this signature does not provide the

arrival times of data items. Thus, when a match is found in a

signature, the data items which are indexed by the signature

have to be searched sequentially. Moreover, since a signature

does not contain global information about the broadcast, data

accesses require sequential scans of signatures. In[1] authors

applied the tree-based index designed for traditional disk

storage to wireless data broadcast. The index nodes in the tree

are interleaved with data items in the broadcast schedule.

Starting from the root index node, the client follows the links

in the tree and tunes to selected index nodes to locate the

requested item. The tree-based indexes are extended in

[10,11] by constructing multiple index trees that share links.

The resultant index structure allows searching to start at

anywhere in the broadcast. Unfortunately, most tree-based

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

823
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

indexes are applicable to flat broadcast only because they

require data items be ordered by their key values in the

broadcast schedule. Besides from tree-based indexes, hash

functions can also be used for indexing purpose to map data

items to the slots in the broadcast schedule [8]. A salient

feature of hash-based index is that it eliminates the need to

broadcast index structures , since only a hash function is

broadcast together with data. While the broadcast overhead of

a tree based index structure normally increases with the

number of data items, the broadcast overhead of a hash

function is largely independent of the latter. Another energy

efficient indexing scheme called MHash that optimizes tuning

time and access latency in an integrated fashion [14].
 It is noted that, in most databases, the access

frequencies of different data items are usually different from
one another [2]. Among the selective tuning strategies, in [3]
constant fanout (CF) and variant fanout (VF) index tree takes
the access probabilities of data items into consideration. More
popular data item may be frequently accessed by the mobile
clients than the less popular ones. This is known as skewed
data access. However, VF assumes the sorted data items
according to the access probabilities and index tree is
constructed according to this sorted order. But in real life
applications, the index tree should be constructed according to
the key values of the data items, not according to access
probabilities. The Alphabetic Huffman tree [4],[5] preserve leaf
ordering on any input sequence used to construct them(similar
to B+ Trees) ,i.e., left-to-right scan of the leaves of each tree
will show the leaves ordering by their keys, and function as
search trees. In order to minimize the tuning time, we consider
two cases: one for fixed index fanout, and one for variant index
fanout considering k-ary Alphabetic Huffman tree construction.
For the case of fixed index fanout, in light of Alphabetic
Huffman tree construction, we consider binary fanout. And for
the case of variant index fanout we construct the k-ary
Alphabetic Huffman tree which will produce varying fanout
(between 2 and k). In VF, the replication of index nodes would
not be considered. That means mobile clients always have to
wait for the next cycle to traverse the index tree to get the
requested data, resulting in the increase of the access time. In
this paper we will consider the replication of index nodes at
fixed level of tree in both fixed index fanout tree and variant
fanout tree.

III. BACKGROUND KNOWLWDGE

In the wireless communication environment, a broadcast cycle

consists of a collection of data items which are broadcasted

cyclically on the wireless channel. The mobile client in the

broadcast area listen to the channel to retrieve the data item of

their interest. This is known as selective tuning [1]. If the data

is broadcasted without any index ,the mobile client will have

to listen to the wireless channel, on the average, half of the

total broadcasting time for the complete file. Hence by using

proper indexing this selective tuning allows mobile clients to

stay active only when the data of interest is present , thereby

saving lot of battery consumption. In this section we will talk

about the balanced and imbalanced index tree techniques.

A. Balanced Index Trees

Most of the prior work is on symmetric balanced index tree
with all leaves are in the same level and essentially the same
fanouts for all index nodes. B+ tree indexing is a widely used
indexing technique in traditional disk-based environments. It is
also one of the first indexing techniques applied to wireless
environments. The use of B+ tree indexing in wireless
environments is very similar to that of traditional disk based
environments [15]. Indices are organized in B+ tree structure to
accelerate the search processes. In [1] two indexing schemes
based on B+ tree data structure, (1,m) indexing and distributed
indexing, are presented and assumed as balanced index tree.
In distributed indexing, every broadcast data item is indexed on
its primary key attribute. Indices are organized in a B+ tree
structure.

B. Imbalanced index Trees

In reality index trees may be imbalanced as the distance of leaf

nodes from the root is not same or leaf nodes are not at the

same level of the tree. Most examples of these trees are

Huffman tree. It has been shown by experimental results that

the use of imbalanced index trees will give considerable

improvement in performance over the use of balanced trees,

and such an advantage becomes even more prominent as the

skewness of the data access increases [3]. The B
+

 Tree based

distributed indexing is a technique in which index is partially

replicated introduced in [1] provides a method to multiplex it

together with the corresponding data file on the broadcast

channel. Two different states of Btree i.e. Fixed fanout tree

and Varying fanout tree is well described in our previous work

[16]. The Huffman tree construction considers the minimum

frequency sum so that the index pointers of more popular data

items are higher up in the tree than others. However, the

Huffman tree constructed [4] not a search tree since users will

need to know the encoding of a file before they can traverse

the tree for the given file. We can have the index pointers are

at different levels of the tree based on the popularity

information, there is no way of traversing the tree to find a

desired pointer by knowing only its key. Hence the only way

to access a specific leaf is to know its Huffman code.

 However this is a problem for mobile client since

they only have the key of the file they are searching for. The

mobile client cannot know the Huffman code of the desired

file in advance since the code depends on the popularity

patterns of other files being broadcasted at that time and may

change over time. There exists a special class of Huffman tree

known as Alphabetic Huffman tree [4] [5] which function as

search tree and preserves the leaf ordering.

B.1 Fixed Fanout Tree

Firstly, we construct the fixed fanout Alphabetic Huffman

index tree considering binary fanout [4,5] . For k=2 the fanout

will be constant. Table1 is an example data set with 20 data

items considered in [6], which will be continuously used for

fixed and varying fanouts in the paper. The Alphabetic

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

824
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

TABLE 1:Files and their popularity patterns

Figure 1(a) The first step of constructing of Fixed Fanout Tree T

Huffman Tree is constructed in two steps given by Hu &

Tucker in [5] shown in Figure 1(a) and Figure 2(b).

Step1: Start with the initial sequence of data items d1, d2,

d3,..........,dn, having leaf nodes in their given order. Combine

the data nodes di , dj such that sum of their frequencies is the

minimum and there are no leaves between them and also di

and dj are the leftmost nodes among all candidates. A new

sequence of data items d1, d2,...,di-1, d(i, j) ,di+2 ,...., dn where d(i, j)

is an index node and other are still leaf nodes ; now combine

some adjacent with minimum frequency in this new sequence

and replace the combined pair with sum and so on. This will

produce a tree T without alphabetic ordering of the data nodes

as in Figure 1 where we record the frequencies of each index

node inside the circle as index key values.

Step 2: Now record the level of each data node of T denoted

as Li . Consider the root node level is 1. From bottom to the

root, rearrange the pointers such that for each level the

leftmost two nodes have the same parent, and then the next

two and so on [6]. Therefore Alphabetic Huffman Tree T’ is

generated without changing the level of each node in T as

shown in Figure 2(b).

We also extended this algorithm in the next section to

construct k-ary(Variant Fanout) Huffman-Tree, by merging at

most k nodes in step1, and combining up to k nodes with the

same parent in step2. After generating the alphabetic Huffman

tree T’ in Fig 3, we cut T’ at level l, and perform a depth first

traversal. The index node above l is still called control index,

and index nodes below l is search index.

The broadcast sequence of this fixed fanout tree is given in

Figure 1(c), in which the control and the search indices are

shaded as grey. In B1
[rep]

 , [rep] indicates the number of

replication of index node B1. Since in this broadcast sequence

every control index node is replicated for fixed number of

times (say for two times) in this example. The index node A is

broadcasted first, then B1 and B2 is traversed. Since the root

node A and its child nodes B1 and B2 are replicated, so they

will appear twice in the broadcast sequence, or we can say for

fixed number of times.

B.2 Varying Fanout Tree

In the modification of above Hu & Tucker algorithm , we

allow at most k nodes to be combined into a single super-node

during the passes in step1 , instead of two nodes in [5]. We

also allow combining k leaf nodes if they are consecutive in

the construction sequence, while the other conditions remain

the same. Also, the second step remains the same except that

we allow upto k nodes to be join together to have the same

parent (i.e. from 2 to k nodesSince the conditions on

combining nodes in the first step are modified minimally, we

can still perform the reordering phase similar to that in [5]. In

our example, the varying fanout number, k=3. So we can join

2 or 3 nodes to have the same parent in the index tree .The k-

ary construction for the Table 1 is given in Figure 2.

IV. REPLICATION IN VARYING FANOUT (RVF)

INDEX TREE

In this paper, the replication of index nodes of index trees

would have been considered for varying fanout. Note that the

number of times a index node is replicated depends on the

number of fanouts it has. In this section we will consider the

same algorithm for the construction of k-ary Huffman Tree in

previous section in which we will consider three data items di ,

dj ,dk , such that they are consecutive and their frequency sum

is minimum [5, 6]. The Alphabetic Huffman tree constructed.

Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frequency 23 4 12 10 17 31 15 21 29 19 7 12 16 14 20 48 11 22 18 8

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

825
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Figure 1(b) The Final Huffman Tree T’

Figure 1(c) Broadcast Sequence of Huffman Tree T’

in this paper will be imbalanced index tree. The k-ary

Alphabetic Huffman tree in Figure 3, which have

varying fanout will be replicated.

 We cut the tree T’’ at level l so that the index

nodes above l is still called control index, and index

nodes below l is search index. Now we will perform the

depth first traversal of the replicated tree given in Fig

3(a) and hence the final broadcast sequence B generated

in this example is given in Fig 3(b). The index node A is

broadcasted first. Next the subtree rooted by B1 is

traversed , then B2 is traversed in preorder. Since root

node A and its child nodes B1 and B2 are in the

replicated part, these nodes are broadcasted again. As

root node A is having its two child nodes B1 and B2 will

be replicated two times. But the index node B1 is having

child nodes 1, C1 and 9, then it will replicated three

times and B2 will also replicate three as it has its child

nodes as C2, C3, C4.

The important feature of this k-ary index trees is

that we may end up with a tree with smaller depth

resulting in smaller broadcast sequence. It is important to

note that in the k-ary construction, it may not be always

possible (or optimal) to combine k nodes together.

Therefore this k-ary Alphabetic Huffman tree will have a

fanout that varies between 2 and k.This indexing

technique would solve the problem of directory miss

which would be occurring in previous VF because

replication is not considered. Moreover this technique

would result in reduced average access time.

 After seeing the broadcast sequence of both

fixed and varying fanout index tree in Figure 1(c) and

Figure 3(b), we found that root node A is replicated two

times both in fixed fanout and varying fanout. But the

index node B1 of Figure 3(c) is replicated two and that

of Figure 3(b)is three times. Likewise happen with index

node B2 would replicate two times in fixed fanout index

tree but three times in varying fanout index tree. Hence it

is possible in varying fanout index tree the index nodes

replication would vary at different levels of the tree.

Now, by taking into account both the broadcast

sequence, we found that the length of fixed fanout tree is

larger than the varying fanout index tree. The summary

of these findings is given in Table 2.

A. Control Index

The bcast of every index tree will contain the control

index, search index and data index. Each search index

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

826
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Figure 2 The k-ary Alphabetic Huffman Tree T’’

Figure 3(a) The k-ary Alphabetic Huffman Index Tree T’’’with replication at l=2.

node and data index node have an address to its nearest

replicated index node of following broadcast. Each

control replicated index node has control in Figure 3(b),

which can guide to the proper index node. The control

indexes of replicated index nodes of Figure 3(b) are

shown in Figure 4. The first entry in the control index

B2
[1]

 is {9, Begin}, given in Figure 4,which means that if

the client searching for a data item with the key K≤9,

then it has to wait till the beginning of the next broadcast

cycle. The second entry {14, B2
[2]

}implies that if a client

is searching for a data item with key K> 14, then wait till

the arrival of B2
[2]

. So, this control index indicates that

the subtree immediately after it, will direct to data node

with the key values K in the range {9, 14}.

B. Access Protocol

Now, we describe the client access

protocol for the proposed technique. Assume that the

data item with the key K is requested. The access

protocol is given as:

1. Tune into broadcast channel with the key K

randomly.

2. let B= current bucket.

3. read B to get the offset of the nearest

replicated index node.

4. go into doze mode.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

827
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Figure 3 (b) Broadcast sequence of k-ary Huffman tree T’’’

TABLE 2 :Summary of Fixed and Varying Fanout (with replication) with Non Replicated Varying Fanout

Issues Replicated

Fixed Fanout

Replicated Varying

Fanout (RVF)

Non replicated

Varying Fanout

Replicated index nodes Fixed Vary Zero

Depth of index tree Deep Less deep Same as RVF

Length of broadcast

sequence

Larger Smaller Smallest

Directory miss Reduced Reduced Increased

5. tune in again at nearest replicated

index node.

6. assume B=control index bucket.

7. Read the index bucket B

8. if K ≤ B.Key , then

9. go into doze mode until the beginning

of next broadcast cycle.

10. else if K=B.Key, then

11. read the offset to the actual data item

 go into doze mode and

became active when the requested

data bucket arrives

12. download the data item.

13. Else

14. go to higher level index node that

contains the control index

15. repeat from step 7

V. PERFORMANCE ANALYSIS

In this section, we study the performance

of the proposed technique. We compare our proposed

algorithm with fixed fanout index tree technique (Zhong

et. al 2011). The parameters used in performance

evaluation are given in Table 3. Let Pr(i),1 ≤ i ≤ n, is the

access probability based on the Zipf distribution. The

Zipf distribution is typically used to model non-uniform

access patterns and can be expressed as

 ,1 ≤ i ≤ n, …(1)

where Ѳ is a parameter named access

skew coefficient. When Ѳ=0, we have the uniform

distribution. When the value of Ѳ increases, the access

probabilities become more skewed(Chen et al, 2003).

The height of a k-ary is given as

 …(2)

where k is the number of fanout in a tree and N is the

total number of nodes in an index tree, which is given as

 …(3)

Since in a k-ary tree h denotes the height

of the tree and the tree constructed using Hu-Tucker

algorithm is an unbalanced tree. The value of h tells that

the data nodes starts from this level when traversing

from the root node in an index tree. So the number of

levels in an index tree is given by L. We will cut the tree

at l by assuming (h-1)=l, because data nodes are at h in

an unbalanced tree. Now, the number of nodes above l,

that is in the replicated part are known to be control

indices which is given by,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

828
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Figure 4 The Control Indexes

 …(4)

The total number of index nodes I, is

obtained by subtracting the number of data items from the

total number of nodes. Also, the index nodes below l are

known as C is obtained by subtracting the number of

replicated nodes above above l from total number of internal

nodes. An index bucket may have different size from a data

bucket, so r is the ratio of data bucket size to index bucket

size. So the length of bcast in data bucket units,

 … (5)

Note that, RP denote the average of replicated

part and NRP denotes the average length of non replicated

part. Hence, we have

 ,

 … (6)

and

 …(7)

TABLE 3: Parameters List

Parameters Description

N Total number of data items

T An index tree

N Total number of nodes in an index tree

K Maximum number of fanouts in a tree T

L Level of T

L Level to cut T for replication

I Total number of index nodes in a T

Rind Total number of replicated index nodes in

a T

S Total number of subtrees at l+1 on T

RP Length of replicated part of a T

C Total number of nodes below l

NRP Length of non replicated part of a T

BC Length of Bcast on a channel

R Ratio of data bucket size to that of index

bucket size

Ѳ Zipf factor

A. Average Access Time

The access time is the sum of bcast wait and

the prob wait. For the analysis of the access time, there are

two cases: (1) The clients tune in at i
th

 node before the

corresponding nearest-replicated index node to the wanted

data node, w is shown in Figure5(a); (2) the clients tune in

after i
th

 corresponding nearest-replicated index node as

shown in Figure 5(b). In the first case, the clients can

retrieve the data node of interest in the same cycle; but in

the second case, the clients have to wait for the next cycle to

retrieve that wanted data node. Then the average access time

is

 …(8)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

829
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Figure 5(a) Tune in Before Corresponding Nearest Replicated Index

Figure 5(b) Tune in After Corresponding Nearest Replicated Index

B. Average Tuning time

The tuning time primarily depends on the

number of levels L of the index tree which is equal to the

number of probes by a client. There are two steps for

determining the tuning time. Firstly the client tunes into the

broadcast channel and search for the right index and then,

the client searches for the index that directs the client to the

required data and goes into doze mode and becomes active

when data appears and download the data. In the first step,

there may be any one of the following cases: (1) client tunes

into a control index (in the replicated part), (2) the first

visited bucket is a data bucket, and (3) the first visited

bucket is a search index(in the non replicated part).

where dsize is the size of each data item.

VI. RESULT ANALYSIS

In this section, results are used to evaluate

the performance of RVF over fixed fanout technique. The

performance metrics (AAT and ATT) are implemented

using JDK1.6 on Intel(R) Atom(TM) CPU N455 computer

with 2GB memory, and Windows XP operating system.

The proposed technique is tested for the

database of 5000 data items (Zhong et al, 2011), each of

which has different sizes say from 1KB to 4KB, and

multiple clients sending their request for different set of data

items. The access probability of each data item must

satisfies the zipf distribution and considers the skew factor

Ѳ = 0.95. The size of each data bucket is set to 1 KB then

the size of each index bucket is 0.1KB. We also assume the

same scenario (Zhong et al, 2011) for deriving the results

that is set up r = 10. Another important factor is the number

of fanout k which would vary in the result.

By considering k = 3, which would vary k

from 2 to 3 for varying fanout and k = 2 for fixed fanout

index tree, we vary the number of data items from 1000 to

5000 to compare bcast, average access latency and average

tuning time of varying fanout technique and fixed fanout

technique. Firstly, we evaluated the broadcast cycle length

(bcast) of varying fanout index tree and fixed fanout index

tree. We consider the bucket size ratio r for analyzing bcast

length, AAL and ATT. Since both the trees are unbalanced,

but their fanouts are different, so these two approaches have

different bcast length after index and data allocation.The

calculated bcast length of both the techniques with the

increasing number of data items is given in Table 4.

TABLE 4:The Length of Bcast for Increasing Value of n

No. of data

items (n)

Varying

Fanout
Fixed Fanout

1000

2000

3000

4000

5000

2007.9

3557.9

5959.3

7509.3

9059.12

2661

5324.2

8550.6

10650.91

15003.40

In Figure 6, the bcast of fixed fanout

technique is always longer than varying fanout technique.

Since the number of fanouts are fixed in the fixed fanout

technique, so it has much more index nodes than varying

fanout technique, even when we use the same data set and

cut the tree at same level. The average access time for

increasing data items is shown in Table 5. Now from Figure

7, we can see that the varying fanout technique has much

shorter average access latency than fixed fanout technique,

while the average access latency of both the techniques

gradually increases as the number of data items increases.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

830
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

Figure 6 Bcast Length with the Increasing Value of n

Since the average tuning time is dependent on

the number of levels in the index tree, we firstly calculate

the total number of nodes in the tree and then find out the

number of levels. And putting the value of r and BC, we get

the average tuning time of varying fanout technique which is

given in Table 6. In Figure 8 varying fanout technique needs

less average tuning time than fixed fanout technique which

means that varying fanout technique is more energy

efficient. Also, as the number of data items increasing, the

average access latency and average tuning time gap between

varying fanout and fixed fanout also increases.
TABLE 5 :The Average Access Time

No. of

data items

(n)

Varying

Fanout

Fixed

Fanout

1000

2000

3000

4000

5000

1884.52

3338.44

5600.11

7055.22

8508.67

2842.96

5692.42

9484.12

11391.35

17067.08

Figure 7 AAT with the Increasing Number of Data Items.

TABLE 6: The Average Tuning Time

No. of data

items (n)

Varying

Fanout

Fixed

Fanout

1000

2000

3000

4000

5000

51.02

101.02

150.40

200.49

250.52

76.00

150.95

225.49

300.51

375.52

Figure 8 ATT with the Increasing Number of Data Items

VII. CONCLUSION

In this paper, we proposed a varying fanout

indexing technique with replication for data broadcast with

skewed access pattern over a single wireless communication

channel. Our proposed technique takes the frequency of

each data item into consideration i.e. skewed pattern and

generates the alphabetic Huffman tree. Then replication is

performed in this tree at any fixed level . This varying

fanout tree will generate a tree with smaller depth, which

results a smaller broadcast sequence. We also found that the

number of times a index node is replicated, would also vary.

The length of overall broadcast cycle is increased but it

reduces the directory miss because the root node is more

times replicated than the non replication. Finally, the

comparison of results between the existing technique i.e.,

fixed fanout and the replicated varying fanout tree have been

performed. The major advantages of this replicated varying

fanout (RVF) index tree technique are: (1)The problem of

directory miss has been reduced significantly in this

technique because the root node is more times replicated

than in the non replication. (2) This proposed technique also

improved the performance metrics: (a) average access time;

(b) average tuning time. From our results, we have shown

that the proposed technique (RVF) needs the shorter average

access time and average tuning time than the fixed fanout

indexing technique. So, the result reveals that replicated

varying fanout (RVF) index tree is more energy efficient

and also responses much faster than the existing techniques.

VIII. REFERENCES

[1] .T. Imielinski, S. Viswanathan, and B. R. Badrinath.

“Energy efficient indexing on air”. In Proceedings of the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 822 – 831

__

831
IJRITCC | May 2017, Available @ http://www.ijritcc.org
__

International Conference on SIGMOD, pages 25–36,

1994.

[2] A. Dan, D.M. Dias, and P.S. Yu, “The effect of Skewed

Data Access on Buffer Hits and Data Contention in a

Data Sharing Environment”, Proc. 16th Large Dtabases

Conf., pp.419-431, Aug.1990.

[3] Chen , M.S., Wu, K.L, “ Optimizing index allocation for

sequential data broadcast in wireless mobile computing”,

IEEE Transactions on Knowledge and Data Engineering,

15(1), pp. 161-173, 2003.

[4] Shivakumar, N., Venkatasbramanian, S.,” Energy

efficient indexing for Information Dissemination in

wireless Systems”, ACM Journal of Wireless and

Nomadic Application ,1996.

[5] Hu, T.C., Tucker, A.C.,“Optimal computer search trees

and variable-length alphabetic codes“ ,SIAMJ. Applied

Mathematics, 21(1), pp. 514-532, 1971.

[6] Jiaofei Zhong ,Weili Wu and Yan Shi, “ Energy

Efficient Tree Based Indexing Schemes for Information

Retrieval in Wireless Data Broadcast”, DASFAA 2011,

Part II, LNCS 6588, pp.335-351, 2011.

[7] S. Acharya, R. Alonso, M.J. Franklin, and S. Zdonik,

“Broadcast Disks: Data Management for Asymmetric

Communication Environments,” Proc. ACM SIGMOD

’95, pp. 199-210, May 1995.

[8] T. Imielinski, S. Viswanathan, and B.R. Badrinath,

“Power Efficient Filtering of Data on Air,” Proc. Fourth

Int’l Conf. Extending Database Technology, pp. 245-

258, Mar. 1994.

[9] W.-C. Lee and D.L. Lee, “Using Signature Techniques

for Information Filtering in Wireless and Mobile

Environments,” Distributed and Parallel Databases, vol.

4, no. 3, pp. 205-227, July 1996.

[10] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A

Parameterized Distributed Indexing Scheme for Data on

Air,” Proc. ACM/ USENIX MobiSys, pp. 153-164, June

2004.

[11] J. Xu, W.-C. Lee, X. Tang, Q. Gao, and S. Li, “An Error-

Resilient and Tunable Distributed Indexing Scheme for

Wireless Data Broadcast,” IEEE Trans. Knowledge and

Data Eng., vol. 18, no. 3, pp. 92-404, Mar. 2006.

[12] J.Shen, Y.Chang,” A skewed distributed indexing for

skewed access patterns on the wireless broadcast”, The

Journal of Systems and Software 80(2007), Elsevier Inc.,

pp. 711-723, October,2006.

[13] J.Xu, DL Lee,Q Hu and WC Le, “ Data Broadcast”,

Chapter11, Handbook of wireless networks and mobile

computing, 2002, pp.243-265.

[14] Y. Yao, X. Tang, EP Lim and A. Sun,” An energy

efficient and access latency optimized indexing Scheme

for Wireless Data broadcast”, IEEE Trans. Knowledge

and Data Eng.,vol. 18 no.8, pp. 1111-1124. August 2006.

[15] X.Xang and A. Bougettaya,”Broadcast-Based Data

Access in Wireless Environments”, EDBT 2002, LNCS

2287, pp. 553-571, 2002.

[16] Mani Pandey and Vikas Goel, “The Replication in

Varying Fanout Indexing Technique for Skewed Access

Patterns in the Wireless Mobile Environments”

International Journal of Computer Applications, Vol. 51,

No. 4, August 2012.

http://www.ijritcc.org/

