
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 570 – 572

570

IJRITCC | May 2017, Available @ http://www.ijritcc.org

Distributed Software Requirement Specification- An Overview

Neha Bhateja

Department of Computer Science & Engineering,

Amity University Haryana,

Abstract: :- The requirement phase plays an important role in the software development process. This paper presents an overview of the

distributed software requirement specification. It covers the various topics like characteristics, categories of requirement specification,

requirement inconsistency.

Keyword: Software Requirement Specification, DSRS, Inconsistency.

__*****___

I. Introduction

In today’s life, software became a vital component

in business. To get the advantage of the competition in IT

sector, each individual organizations depends on software.

Software requirement specification plays an important role

in the software development process. A SRS is a

requirement definition document which is the first phase of

any software development process. A Software

Requirements Specification (SRS) presents the complete

structure or behavior of the system which is to be developed.

It describes all the ways by which a user can interact with

the software. Or say, SRS is a two-way insurance policy that

confirms that both the client and the organization understand

each and every aspect of the requirements of the software.

The software project team is distributed

geographically on a worldwide scale. This task is

characterized as Distributed Software Development (DSD).

Distributed Software Requirement Specification (DSRS)

defined as a document that is prepared by collecting the

requirements from different users with different viewpoints

and from different geographical locations [1].A Software

Requirement Specification is described in a natural language

and is collected from the different stakeholders, which

becomes a main reason that the requirement specification is

inconsistent. In consistency refers as when more than one

requirement or description do not follow the rules that are

defined to hold them.

II. Characteristics of Software Requirements

Specifications

To achieve the quality in Software Requirement

Specification, the following characteristics must be in SRS

[3].

 Complete: Completeness is the required feature of the

requirement phase. No requirement should be missing

because missing requirement is hard to locate. So the in

the Software Requirement Specification, the requirement

should be in organized manner so that it can help the

reviewers to understand the functionality of the structure

and easily locate the missing data.

 Consistent: Requirement phase should be consistent.

Before proceeding to the development phase, the

conflicts in the requirement must be fixed. Requirement

document must be reviewed if some modification is done

in the requirement.

 Modifiable: Keeping a record of the changes made in the

requirement to achieve the unambiguity. This can be

achieved by inserting the table of contents, indexes and

cross reference links.

 Traceable: Every requirement should be linked with its

origin (from its source), with the source code in the

design phase and also linked with the test cases that are

executed on it. This activity can be done by assign the

labels to each requirement or by the apply bullet lists.

 Ranked: to make the design process more convenient,

each individual requirement should be arranged

according to the level of their security, level of

implementation (easy or problematic), stability etc.

 Unambiguous: Each individual requirement that are

defined in the Software Requirement Specification

should represent unique significance. There is no conflict

between them.

 Valid: Software Requirement Specification is valid in

terms when all the individuals who are associated with it

can understand, accept, analyze and approve it.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 570 – 572

571

IJRITCC | May 2017, Available @ http://www.ijritcc.org

Fig: Characteristics of SRS

III. Categories of requirements engineering in

Global Software Distribution

There are various factors that are involved in these

categories [4]. These are as follow:

 Communication: The communication is the basic factor on

which the requirements engineering process depends.

Clear communication is must to avoid misunderstandings

and conflicts. The components that are identified with

communication are language, communication medium and

time zone.

 Culture: the requirement engineering process can be

effected by the culture of the organization and the

individual team members. The primary variables identified

with culture are context, state of mind and values.

 Knowledge Management: The requirements engineering

process deals with a huge amount of data. The knowledge

management skills are required to collect, process, store

and use the data related to the requirements process. The

elements related to knowledge management are awareness,

expectations and management of cultural information.

 Technical aspects: In distributed environment, various

technical features can affect requirements engineering

process. The coordination and control mechanisms

features are must in the requirement process. The

identified variables are patterns, process and configuration

management.

Fig: Categories in Global Software Distribution [4]

IV. Levels to Manage the Requirement

Inconsistency

In requirement process, inconsistency can be managed at the

following levels [5]:

 Inconsistency Detection: Inconsistency detection is

picking up the violation of a consistency rule between

two or more descriptions. Detection must be an

automatic process, that does not need any support from

users. Detection of inconsistency specified in policies or

those arising due to addition, deletion or modification of

descriptions.

 Inconsistency Diagnosis: The diagnosis process begins

whenever an inconsistency is detected. Diagnosis help to

determining what parts of a description have broken a

consistency rule and Identifying the cause of an

inconsistency.

 Inconsistency Handling: Inconsistency Handling

involves actions taken in response to the inconsistency

encountered. Handling actions can range from simple

actions, such as modifications to descriptions, to

complex handling actions like ignoring, defer etc.

 Inconsistency Tracking: Inconsistency Tracking is the

recording of the events and actions, and information

associated with inconsistency. Details to be recorded

about inconsistency are (a) the reasoning for the

detection of an inconsistency (b) the source and cause of

inconsistency (c) the handling actions that were

considered and (d) the arguments for the decision to

select one of these options and reject the other.

 Inconsistency Measurement: Inconsistency Measurement

is needed to ensure efficient and effective inconsistency

management. Measures are needed such as benefit and

risks related with the numerous handling actions of

inconsistencies. Measures relating to make a decision on

which choice is “more consistent”.

Fig: Management levels of Inconsistency

SRS

Complete

consistent

Modifiable

TraceableRanked

Unambigu
ous

Valid

Inconsistency

Inconsistency
Detection

Inconsistency
Diagnosis

Inconsistency
Handling

Inconsistency
Tracking

Inconsistency
Measurement

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 570 – 572

572

IJRITCC | May 2017, Available @ http://www.ijritcc.org

a. Classes of inconsistency

The classification of requirement inconsistencyis defined at

three levels i.e. process, product and instance level [6].

Based on these three levels, classes of inconsistency are

defined as follow:

 a process-level- It is a state evolution in the

requirements engineering (RE) process that results in terms

of inconsistency between the rules of process-level and the

process state at the product level;

 an instance-level - Itis a state transition of a running

system that results in terms of inconsistency between a

product-level requirement and a specific state of the running

system;

 a terminology clash- It occurs when a single real-world

concept is given different syntactic names in the

requirements specification;

 a designation clash- It occurs when a single syntactic

name in the requirements specification designates different

real-world concepts;

 a structure clash- It occurs when a single real-world

concept is given different structures in the requirements

specification;

Conclusion:

DSRS plays a vital role in the process of software

development as project team members are distributed

globally to collect the data from various stakeholders and

from various locations. Requirement engineering is the first

phase of software development process, so it should be

consistent.

 References:

[1] M.Kamalrudin and S. Sidek, “ A Review on software

Requirement Validation and Consistency

Management,” International Journal of Software

Engineering and its Applications, Vol.9, No.10,

pp:39-58 2015.

[2]Ivo Krka and Nenad Medvidovic, “Distributed

Refinements of a system-level partial Behavior

Model”, IEEE Explore,2013

[3] Donn Levie, Jr. “Writing Software Requirement

Specification”, Whitepaper.

[4] Leandro Loper, Rafael Prinklannicki and

A.Majdenbaum: “Requirement Specification in

Distributed Software development”: a Process

Proposal (2008).

[5] K.Mu, Weiru Liu, Zhi Jin and David Bell:” Handling

Inconsistency In Distributed Software

Requirements Specifications Based On

Prioritized Merging”; Fundamental Informaticae

91(2009) 1-40, DOI 10.3233/FI-2009-2008, IOS

Press.

[6] K.Mu, Weiru Liu, Zhi Jin and David Bell:” A Merging-

Based Approach to Handling Inconsistency in

Locally Prioritized Software Requirements”;

KSEM 2007, LNAI 4798, pp. 103–114,

Springer-Verlag Berlin Heidelberg 2007.

[7] Irit Hadar and Anna Zamansky, “ Cognitive factors in

inconsistency Management”, IEEE Explore

2015.

[8] M.Kamalrudin: “Automated Software Tool Support for

Checking the Inconsistency of Requirements”;

IEEE/ACM Int’l Conf. On Automated Software

Engineering, 2009.

http://www.ijritcc.org/

