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Abstract. In this paper, we stablish miscellaneous properties of the full graph of a graph. We obtain characterizations 

of this graph. Also, we prove that for any connected graph G, the full graph of G is not separable. 
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 1. Introduction 

All graphs considered here are finite, undirected 

without loops and multiple edges. For all definitions 

and notations not given in this paper, we refer to [4]. 

A graph G with p vertices and q edges is called a (p, q) 

graph, the number p is referred to as the order of a 

graph G and q is referred to as the size of a graph G 

[4]. 

If B = {u1, u2, u3, ..., ur, r≤2} is a block of a graph G, 

then we say that vertex u1 and block B are incident 

with each other, as are u2 and block B and so on. If B 

= {e1, e2, e3, ..., es, s≤1} is a block of a graph G, then 

we say that edge e1 and block B are incident with each 

other, as are e2 and B and so on. If two distinct blocks 

B1 and B2 are incident with a common cut vertex then, 

they are adjacent blocks [6]. The vertices, edges and 

blocks of a graph are called its members. A cut vertex 

of a connected graph G is a vertex whose removal 

increases the number of components of G [4]. 

A set D of vertices in a graph G is called dominating 

set of G if every vertex in V − D is adjacent to some 

vertex in D, the minimum cardinality of a dominating 

set in G is called the domination number γ(G) of a 

graph G [5]. A dominating set D is a total dominating 

set if the induced subgraph D has no isolated vertices, 

the minimum cardinality of a total dominating set in G 

is called the total domination number γt(G) of G [5]. 

The girth of a graph G, denoted girth(G) is size of the 

smallest cycle in G. The chromatic number χ(G) of a 

graph G is the minimum number of colors required to 

assign to the vertices of G in such a way that no two 

adjacent vertices of G receive the same color [4]. 

A graph G is called a null graph (or empty graph) if 

E(G) is empty, a null graph of order p is denoted by Np 

[9]. A graph G is called planer if it can be drawn in the 

plane without any intersecting edges [3]. 

The eccentricity e(v) of a vertex v in a connected 

graph G is defined as e(v)=max{d(v, u)|u ∈ V (G)} 

where d(v, u) is the distance between u and v. The 

radius r(G) is the minimum eccentricity among the 

vertices of G, and the diameter d(G) is the maximum 

eccentricity [4]. 

A wheel graph Wp of order p, sometimes simply called 

a p-wheel is a graph that contains a cycle of order p − 

1, and for which every vertex in the cycle is joined to 

one other vertex in the center [4]. A cycle passing 

through all the vertices of a graph is called a hamil- 

tonian cycle. A graph containing a hamiltonian cycle is 

called a hamil- tonian graph [4]. 

The line graph L(G) of a graph G is the graph whose 

vertex set is the set of edges of G and two vertices are 

adjacent if the corresponding edges are adjacent in G 

[4]. 

The block graph B(G) of a graph G is the graph whose vertex 

set is the set of blocks of G and two vertices are adjacent if the 
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corresponding blocks are incident with a cut vertex in G [4]. 

The full graph F (G) of a graph G is the graph whose set of 

vertices is the union of the set of vertices, edges and blocks of 

G, in which two vertices are adjacent if the corresponding 

members of G are adjacent or one corresponds to a vertex and 

the other to an edge incident with it or one corresponds to a 

block B and other to a vertex v of G and v is in B or one 

corresponds to a block B and the other to an edge e of G and 

e is in B [7]. Many other graph valued functions in graph 

theory were studied, for example, in [2, 4, 8, 10]. 

The following results will be useful in the proof of our 

results. 

Theorem 1.1.  [4] A vertex v of a connected graph G with 

at least three vertices is a cut vertex of G if and only if there 

exist vertices u and w of G distinct from v such that v is in 

every u −  w path in G. Theorem 1.2.  [4] A nontrivial 

graph is bipartite if and only if all its cycles are even. 

 

 2. Miscellaneous properties of full graph 

Remark 2.1. For any graph G, the block graph B(G) of a 

graph G is a subgraph of F (G). 

Remark 2.2.  For any graph G, the line graph of G is a 

subgraph of F (G). 

Theorem 2.1. For any cycle C
p
, the wheel W

2p+1 is a 

spanning subgraph of F (Cp) .  

Proof. Suppose G is a cycle C
p
, then the number of blocks 

is 1, then in F (Cp) there is a vertex v corresponding to this 

block and by definition of F (Cp) this vertex must be 

joined to all vertices corre- sponding to vertices and edges of 

Cp. So, v will be the center vertex adjacent to all vertices in 

F (Cp), and the other vertices of F (Cp)  form a cycle since any 

vertex corresponding to edge of Cp is adjacent to two vertices 

corresponding to vertices of Cp and so on, this establishes a 

wheel W2p+1. 

Corollary 2.1.  For any cycle C
p
,  r (F (C

p
))  = d(F (C

p
)) 

= 2. 

Corollary 2.2. For any cycle C
p , F (C

p
)  is hamiltonian 

graph. 

Proposit ion 2.1.  Let G = (p, q)  be a graph which is a block. 

Then the maximum degree in F (G) is the degree of the 

vertex corresponding to the block of G which (p + q) . 

Proof. Let G be a graph which is a block, then in F (G) 

there is a vertex v corresponding to this block and v is 

adjacent to all vertices in F (G) that corresponds to vertices 

and edges of G, thus the degree of v is (p + q), which is the 

maximum degree in F (G) since |V (F (G)) |=p + q + 1. 

 

Lemma 2.1. If v is a vertex of cycle C
p 

,  and v is the 

corresponding vertex in F (Cp) ,  then deg (v )  = 5. 

Proof. Let G be a cycle Cp, then deg(v) = 2 for any 

vertex v in Cp, let v  be the corresponding vertex in F 

(Cp), v is adjacent to two vertices corresponding to two 

vertices in Cp , v is adjacent to two vertices which 

corresponds to two edges in Cp , also v  is adjacent to a 

vertex corresponding to a block in Cp , then deg( v )  = 5. 

Theorem 2.2.  For any connected graph G, F (G) has no 

cut ver- tices. 

Proof. Let G be a connected graph, first let v be any 

vertex in F (G) which corresponds to a vertex or an edge of 

G, and let u, w be any two distinct vertices of F (G) which 

are diff erent from v, if u, w correspond to adjacent blocks in 

G then u, w are adjacent, otherwise there exists a u −  w path 

starting from u passing through some vertices which correspond 

to blocks of G, this means v is not on this path. By Theorem 

1.1, v is not a cut vertex of F (G). Next, let v be any vertex 

in F (G) which corresponds to a block of G, if G has one 

block then F (G) −  v is total graph of G which is connected 

since G is connected. Now if G has more than one block 

then in F (G) −  v there is a vertices which correspond to the 

blocks of G and the total graph (vertices which corresponding 

to vertices and edges of G), since G is connected then total 

graph of G is connected, also each one of the vertices 

corresponding to the blocks of G is adjacent with at least one 

vertex from the vertices which correspond to a vertices of G, 

this means that F (G) −  v is connected, then v isn’t a cut 

vertex of G, therefore F (G) has no cut vertex. 

Corollary 2.3. For any connected graph G, F (G) is not 

separable. 

Theorem 2.3.  For any tree T ,  if v is a cut vertex, and 

deg(v) = n, then in F (T ), deg(v ) = 3n, where v is the 

vertex corresponding to v in F (T ). 

Proof. Let v be a cut vertex in a tree T , and deg(v) = 

n, this means that v is adjacent to n vertices and incident 

with n edges in T , since v is a cut vertex and every edge in 

T is a block, v lies in n blocks, therefore by the definition 

of F (T ), v is adjacent to n vertices 

 corresponding to vertices of T , and to n vertices corresponding 

to edges of T , and to n vertices corresponding to blocks of T , 

then deg(v ) = 3n. 

 

Theorem 2.4.  For any edge in a graph G, with edge degree n, 

the degree of the corresponding vertex in F (G) is n + 3. 

 

Proof. If an edge e in G is of edge degree n. Then e is 

adjacent to n edges, say, e1, e2, , en. Let v be a vertex in F 

(G) which is corresponding to e clearly v is adjacent to n 

vertices in F (G) corre- sponding to, e1, e2, …, en. Also v 

is adjacent to two vertices that correspond to vertices incident 

with e in G, and v is adjacent to one vertex which is 

corresponding to a block B in G and e is in B. This means 
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v is adjacent to n + 3 vertices in F (G). 

 

Theorem 2.5.  For any connected graph G = (p, q) ,  F (G) 

is tree if and only if 
1KG  .  

Proof. Suppose a connected graph G is K1
, then in F (G) 

there are two vertices one corresponding to the vertex of G 

and the other one to a block of G, by definition of F (G), 

both vertices are adjacent, this establishes P2, then F (G) is a 

tree. Conversely, suppose F (G) is tree, we now prove that G 

is K1. On the contrary, assume that connected graph G is 

not K1, clearly p ≥ 2. Then G has a block B. Let vertices 

u, v ∈ B. Since u, v are incident with B, it implies that 

the vertices corresponding to B, u, v, form a cycle C3 in F 

(G), this means F (G) is not tree, a contradiction. We 

conclude that 
1KG  . 

Theorem 2.6.  If graph G has the path P2 as a subgraph, then F 

(G) is not a bipartite graph. 

 

Proof. Let G be a graph having the path P
2 as a subgraph. 

Then G has a block B. Let vertices u, v ∈ B. Since u, v 

are incident with B, it implies that the vertices corresponding 

to B, u, v, form a cycle C3 in F (G). By Theorem 1.2, F 

(G) is not a bipartite graph.Theorem 2.7. If G has the path 

P
2 as a subgraph, 

girth(F (G)) = 3 

.  

Proof. Let G be a graph having the path P
2 as a subgraph, 

then by the proof of Theorem 2.7, F (G) contains a cycle 

C3 which is the shortest cycle, then girth(F (G)) = 3. 

Proposit ion 2.2. If G has the path P
2 as a subgraph, then 

F (G) 

has K4 as an induced subgraph . 

Proof. Let G be a graph having the path P
2 as a subgraph, 

then G has a block B which contains one edge e and two 

vertices say, v, u. Since e, v, u, are incident with B, and v, 

u, are incident with e, then the vertices corresponding to u, v, 

e, B, form a complete graph K4 in F (G). 

Corollary 2.4.  If G has the path P
2 as a subgraph, χ(F 

(G)) ≥  4. 

Theorem 2.8.  For any connected graph G, γ(F (G)) ≤  |B| 

where 

|B| is the number of blocks of G. 

Proof. Let G be a connected graph. The following cases are 

considered. 

Case1. G has one block, then in F (G) the vertex 

corresponding to this block is adjacent to all other vertices of 

F (G). By the definition 

of F (G), in this case γ(F (G)) = 1 = |B|. 

Case2. G has more than one blocks, then in F (G) every 

vertex cor- responding to a block of G is adjacent to all 

vertices corresponding to vertices and edges of G that lie in 

this block. Also the vertices corre- sponding to blocks of G are 

connected since G is connected, this means that the vertices 

corresponding to blocks of G together are adjacent to all vertices 

of F (G), then they are dominating set of F (G), therefore 

γ(F (G)) ≤  |B|. 

Corollary 2.5.  For any connected graph G, 

γ
t
(F (G)) ≤ |B|.  

Theorem 2.9.  For any connected graph G with 

|B|≤  2,  γ( )(GF )  =2. 

Proof. Suppose that G is a connected graph with |B| ≥ 2, 

then there are at least two blocks say, B1, B2, and there are 

two distinct vertices v ∈ B1, u ∈ B2, such that v and u are 

not cut vertices. Let v , u  , be the vertices in F (G) 

corresponding to v, u, respectively. Clearly by the definition 

of F (G), v  is adjacent only to vertices corresponding to 

elements of G lying in B1 and the same is to u  in B2. Now in 

( )(GF ), v  is djacent to all vertices which corresponds to 

elements of G that are not in B1, and u  is adjacent to all 

vertices corresponding to elements of G that are not in B2. 

This means v , u  are dominating ( )(GF ), then γ( )(GF ) 

= 2. 
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