Optical Quadruple Feynman Gate using SLM and Savart Plate

Animesh Bhattacharya*
Department of AEIE,
NetajiSubhash
Engineering College,
Kolkata-700152, India. Email:
animeshb_17@yahoo.com

Goutam Kumar Maity
Department of Physics,Pingla
Thana Mahavidyalaya,
Maligram, PaschimMedinipur-
721140, India.
Email:
gkm20021976@gmail.com

Amal K Ghosh
Department of AEIE,
NetajiSubhashEngineering College,
Kolkata-700152, India.
Email:
amal_k_ghosh@rediffmail.com

Kazi A H TaslimArif
Department of BME,
NetajiSubhashEngineering College, Kolkata-152, India
Email:
arifprojectju17@gmail.com

*Corresponding Author

Abstract

$\boldsymbol{A} \boldsymbol{b s t r a c t}$-In recent years, Reversible logic is emerged as a promising computing paradigm with applications in low-power CMOS, quantum computing, optical computing and nanotechnology. The classical set of gates such as AND, OR, andEXOR are not reversible. However, optical computing technology the trinary and quadruple valued logic systems are the most important ones in the many valued logic system.In this paper, spatial light modulator (SLM) and Savart Plate based circuit has been proposed and described for realization of quadruple Fenyman Gate. It is optical in nature. SLM and Savart Plate can play a significant role in this field of ultra-fast all optical signalprocessing.

Keywords-Di-bit; Feynman Gate;Quadruple;SavartPlate; SLM.

I. Introduction

Recently, there have been major advances in integrated circuit technology that have made feasible implementation of electronic circuits operating with more than two discrete levels of signal. Such circuits called multi-valued logic circuits, offer several potential opportunities for the improvement of present VLSI circuit designs. E.V. Dubrova [1] and others have proposed and developed multi -valued logic (MVL) circuit design, revealing both the opportunities they offer and the challenges they face [2-4]. Vasundara Patel and K. S. Gurumurthy demonstrated the arithmetic operations like addition, subtraction and multiplications in modulo-4 arithmetic, and also addition, multiplication in Galois field, using MVL [5]. Quaternary to binary and binary to quaternary converters are designed using down literal circuits. Negation in modular arithmetic is designed with only one gate. Logic design of each operation is achieved by reducing the terms using Karnaugh diagrams, keeping minimum number of gates and depth of net into consideration. Quaternary multiplier circuit is proposed to achieve required optimization. This architecture enables one to perform all-optical processing of signals, including two input logic operations, half-adder, fulladder, full sub-tractor, one-bit data comparator, etc.

During the last thirty years due to the needs of tremendous operational speed and processing a number of data, many new ideas are being floated in the field of computing. These include exploration of implementation of optical processor for switches in one hand and on the other hand the logical developments from binary to multivalued logic are also being included in their field of activities. Though the major attraction for optical processors lies in the parallel operation but it was also felt that it is possible to implement multivalued logic in optical system using the polarization states of light beam along with the presence or absence of light [6]. The parallelism of optical beam could not be properly utilized using cascaded single- bit operating units thereforea signeddigit number system was initiated with the pioneering works of Avizienis [7]. The carryfree operation was also suggested using a modified signed digit [8-11] or modified
trinary [12] system. The demand for implementations of such gates has also extended the activities in the field. However, Lukasiewicz [13] who initiated the use of ternary logic based on three states and has modified it later with an idea that four states logic is a much better proposition.

Design of reversible logic is highly demanding in many applications for lossless data processing[14-17]. Conservative and reversible logic gates are widely known to be compatible with revolutionary computing paradigms such as optical and quantum computing. To this aim, we have presented optical quadruple Feynman Gate using SLM and Savart Plate in this paper. The superiority of the proposed scheme is verified by simulation results and compared with selected other models.

The proposed paper is arranged as follows: The quadruple valued logic systemsare reported in Section II. Section III describes briefly the truth tables based on di-bit representation. Section IV presents the working principle of basic building block using SLM and Savart Plate. The working principle and design of Quadruple Feynman gateare presented in Section V. Section VI shows logical simulation results and finally concluding remarks are made in Section VII.

II. Quadruple Valued Logic SYSTEM

The four-state representations of the quadruple valued logic system may be classified as the true, partly true, partly false and the false [18-20]. In this case we have considered these four states explicitly as $\{0,1,2,3\}$ and their di-bit representations as $\{00,01,10,11\}$. It is to be noted here that the four valued system with states $\{0,1,2,3\}$ does not satisfy the basic field conditions whereas as a di-bit representation of the form $00 \rightarrow 0,01 \rightarrow 1,10 \rightarrow 2$ and $11 \rightarrow 3$ may be used to represent a four valued logic where the basic two valued logic are applicable. As four is not a prime number, it cannot be considered as a field nevertheless this can be included in Galois Field $\operatorname{GF}\left(\mathrm{k}^{\mathrm{r}}\right)$, where k is a prime number and r is a positive integer. The logical states, their representations and corresponding di-bit representations and the state of polarization is given in the Table I.

TABLE I. QUADRUPLE-VALUED LOGIC SYSTEM

III. Truth Tables Based On Di-bit Representation

The basic logical operations with dibit representation as mentioned in the earlier section may be expressed in the following fashion. In the present system the normal logical gates e.g., OR, AND, NOT, XOR, NAND, NOR and XNOR may be represented bit-wise. The truth table for these conventional bit wise logic gates are represented in Table II.

TABLE II. TRUTH TABLES FOR (A) OR, (B) AND, (C) NOT (D) XOR, (E) NAND, (F) NOR AND (G) XNOR GATES

$$
\begin{aligned}
& \text { (a) } \\
& \text { (c) } \\
& \text { (b) } \\
& \begin{array}{c|cccc}
B & 00 & 01 & 10 & 11 \\
\hline 00 & 00 & 01 & 10 & 11 \\
01 & 01 & 00 & 11 & 10 \\
10 & 10 & 11 & 00 & 01 \\
11 & 11 & 10 & 01 & 00 \\
\cline { 2 - 4 } & & & &
\end{array} \\
& \text { (d) } \\
& \text { (e) } \\
& \text { (f) }
\end{aligned}
$$

A A 00 0 01	10	11		
00	11	10	01	00
01	10	11	00	01
10	01	00	11	10
11	00	01	10	11

(g)

IV. TheBasic Building Block

The basic building block to implement the logical operations in quadruple valued logic system is shown in Fig. 1. Light from a laser source L after passing through the polarizer P is polarized at an angle 45° with respect to the two crystal axes and incident on the Savart Plate S_{1} as shown in Fig. 1. The light incident on S_{1} is splitted into two orthogonal components and comes out of S_{1} with a spatial shift between them. The electrically addressable negative SLMs - P_{1} and P_{2} are then used for the controlling of two components of inputs beam. The nature of the negative SLM is such that it is transparent when there is no electric voltage applied on it and it becomes opaque when an electric voltage is applied on it.

The property of positive SLM is just reverse. Hence the input may be considered as in the form of di-bit (two bits) representation. The outputs from SLM are finally combined by the Savart Plate S_{2}.

Figure 1. The Basic Building Block

V. QUADRUPLE FEYnMAN GATE : PRINCIPLE AND DESIGN

Feynman gate is a (2:2) one-through reversible logic gate. It has two inputs (A, B) and two outputs (X, Y) satisfy the relation as follows:

The binary truth table is given in Table III.

TABLE III. BINARY TRUTH TABLE OF FEYNMAN GATE

Input		Output		
A	B	X	Y	
0	0	0	0	
0	1	0	1	
1	0	1	1	
1	1	1	0	

The quadruple truth table with di-bit representation is given in Table IV.The SLM and Savart Plate based circuit for optical reversible Feynman gate is given in Fig. 2.

TABLE IV. QUADRUPLE TRUTH TABLE OF FEYNMAN GATE

\boldsymbol{A}	$A 1$	$A 2$	\boldsymbol{B}	$B 1$	$B 2$	\boldsymbol{X}	$X 1$	$X 2$	\boldsymbol{Y}	$Y 1$	$Y 2$
$\mathbf{0}$	0	0									
$\mathbf{0}$	0	0	$\mathbf{1}$	0	1	$\mathbf{0}$	0	0	$\mathbf{1}$	0	1
$\mathbf{0}$	0	0	$\mathbf{2}$	1	0	$\mathbf{0}$	0	0	$\mathbf{2}$	1	0
$\mathbf{0}$	0	0	$\mathbf{3}$	1	1	$\mathbf{0}$	0	0	$\mathbf{3}$	1	1
$\mathbf{1}$	0	1	$\mathbf{0}$	0	0	$\mathbf{1}$	0	1	$\mathbf{1}$	0	1
$\mathbf{1}$	0	1	$\mathbf{1}$	0	1	$\mathbf{1}$	0	1	$\mathbf{0}$	0	0
$\mathbf{1}$	0	1	$\mathbf{2}$	1	0	$\mathbf{1}$	0	1	$\mathbf{3}$	1	1
$\mathbf{1}$	0	1	$\mathbf{3}$	1	1	$\mathbf{1}$	0	1	$\mathbf{2}$	1	0
$\mathbf{2}$	1	0	$\mathbf{0}$	0	0	$\mathbf{2}$	1	0	$\mathbf{2}$	1	0
$\mathbf{2}$	1	0	$\mathbf{1}$	0	1	$\mathbf{2}$	1	0	$\mathbf{3}$	1	1
$\mathbf{2}$	1	0	$\mathbf{2}$	1	0	$\mathbf{2}$	1	0	$\mathbf{0}$	0	0
$\mathbf{2}$	1	0	$\mathbf{3}$	1	1	$\mathbf{2}$	1	0	$\mathbf{1}$	0	1
$\mathbf{3}$	1	1	$\mathbf{0}$	0	0	$\mathbf{3}$	1	1	$\mathbf{3}$	1	1
$\mathbf{3}$	1	1	$\mathbf{1}$	0	1	$\mathbf{3}$	1	1	$\mathbf{2}$	1	0
$\mathbf{3}$	1	1	$\mathbf{2}$	1	0	$\mathbf{3}$	1	1	$\mathbf{1}$	0	1
$\mathbf{3}$	1	1	$\mathbf{3}$	1	1	$\mathbf{3}$	1	1	$\mathbf{0}$	0	$\mathbf{0}$

Figure 2. SLM and Savart Plate based Feynman gate

The polarized parallel beam coming from the Laser source L through polarizer P is incident on the beam splitter BS_{1} where it is splitted into two directions as shown Fig. 2. One part is incident on the Savart Plate S_{1} and the other part on the beam splitter BS_{2}. The Savart Plate S_{1} splits the beam into two orthogonal components - the p-polarization and the s-polarization. The input A (combination of A_{1} and A_{2}) controls the positive SLMs P_{1} and P_{2} and accordingly the ppolarization and s-polarization come out of P_{1} and P_{2}.The outputs of P_{1} and P_{2} are recombined by the Savart Plate S_{2} and incident on the beam splitter BS_{3}. The one part of the output of BS_{2} is incident on S_{8} and by similar process it is also spatially modulated by the positive SLMs P_{7} and P_{8} depending on the input $\mathrm{A}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and finally they recombined by S_{9}. The other part of the output of BS_{2} ray reflected by the mirror M_{6} is incident on the Savart Plate S_{11} and by similar process it is also spatially modulated by the positive SLMs P_{9} and P_{10} depending on the input which is the output of S_{10}. The output of S_{10} passes through the optoelectrical converters (O / E) which are used to convert the light signal into electric voltage. The one output of BS_{3} is fed to BS_{5} which splits the light again in two directions. One is reflected by mirror M_{8} and produce the output $\mathrm{X}=\mathrm{A}$. Another one is incident on Savart Plate S_{3} and it is also specially modulated by the positive SLMs P_{3} and P_{4} depending on the control input $B\left(B_{1}, B_{2}\right)$ and finally they recombined by S_{4}. By the same procedure finally the output
of S_{14} and S_{7} combined by BS_{4} and produce the other output Y=A XOR B. The different cases are explained as follows:
(1)When $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ then no light is present at the output of S_{2}, so $X=0\left(X_{1}=0, X_{2}=0\right)$. There will be no light at the output of S_{7} and S_{14}, so the output, $\mathrm{Y}=0\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$.
(2)When $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=1\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ then no light at the output of S_{2}, hence $X=0\left(X_{1}=0, X_{2}=0\right)$. There will be no light at the output of S_{7}. As the P_{9} and P_{10} are the -VE SLM, so both polarized light will be present at the output of S_{12}.As $P_{11}=0$ and $P_{12}=1$, the output of S_{14} will give vertical polarization. There is no light at the output of S_{7}. The final output is $\mathrm{Y}=1\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1\right)$.
(3) When $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=2\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=0\right)$ then no light at the output of S_{2}, hence $\mathrm{X}=0\left(\mathrm{X}_{1}=0, \mathrm{X}_{2}=0\right)$. As the bit representation of B is reverse with respect to the previous case so $P_{11}=1$ and $P_{12}=0$. The outputof S_{14} consists ofhorizontal polarization. There is no light at the output of S_{7}. The final output is $\mathrm{Y}=2\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0\right)$.
(4) As $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=3\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=1\right)$ so light at the output of S_{2}, hence $X=0\left(X_{1}=0, X_{2}=0\right)$. The output of $S 14$ consists of vertical and horizontal polarized light. There is
no light at the output of S_{7}. The final output is $\mathrm{Y}=3$ ($\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1$).
(5) When $\mathrm{A}=1\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ so the output of S_{2} is at logic 1 state, hence $X=1\left(X_{1}=0, X_{2}=1\right)$.The output of S_{7} consists of only vertically polarized light and no light at the output of S_{14}. The final output is $\mathrm{Y}=1$ $\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0\right)$
(6) When $\mathrm{A}=1\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=1\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 1 state, hence $X=1$ ($\mathrm{X}_{1}=0, \mathrm{X}_{2}=1$). There is no light at the output of S_{7} and S_{14}. The final output is $\mathrm{Y}=0\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$.
(7) When $\mathrm{A}=1\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=2\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 1 state, hence $X=1\left(X_{1}=0, X_{2}=1\right)$. The output of S_{7} consists of vertically polarized light and the output of S_{14} consists of horizontally polarized light. The final output consists of both polarized light i.e. $\mathrm{Y}=3$ ($\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1$).
(8) When $\mathrm{A}=1\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=3\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 1 state, hence $X=1 \quad\left(X_{1}=0, X_{2}=1\right)$. There is no light at the output of S_{7} and the output of S_{14} consists of horizontally polarized light. The final output consists of only horizontally polarized light i.e. $\mathrm{Y}=2$ ($\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0$).
(9) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ so the output of S_{2} is at logic 2 state, hence $X=2\left(X_{1}=1, X_{2}=0\right)$. There is no light at the output of S_{14} and the output of S_{7} consists of horizontally polarized light. The final output consists of only horizontally polarized light i.e. $\mathrm{Y}=2$ ($\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0$).
(10) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=1\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 2 state, hence $X=2\left(X_{1}=1, X_{2}=0\right)$. The output of S_{7} consists of horizontally polarized light and the output of S_{14} consists of vertically polarized light. The final output consists of both polarized light i.e. $\mathrm{Y}=3\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1\right)$.
(11) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=2\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=0\right)$ so the output of S_{2} is at logic 2 state, hence $X=2\left(X_{1}=1, X_{2}=0\right)$. There is no light at the output of S_{7} and S_{14}. The final output is $\mathrm{Y}=0\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$.
(12) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right)$ and $\mathrm{B}=3\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 2 state, hence $X=2\left(X_{1}=1, X_{2}=0\right)$. There is no light at the output of S_{7} and the output of S_{14} consists of vertically polarized light. The final output consists of only vertically polarized light i.e. $\mathrm{Y}=1$ ($\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1$).
(13) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ so the output of S_{2} is at logic 3 state, hence $X=3 \quad\left(X_{1}=1, X_{2}=1\right)$. There is no light at the output of S_{14} and the output of S_{14} consists of both horizontally as well as vertically polarized light. The final output consists of both polarized light i.e. $\mathrm{Y}=3\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1\right)$.
(14) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=1\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $X=3$
($\mathrm{X}_{1}=1, \mathrm{X}_{2}=1$).There is no light at the output of S_{14} and the output of S_{7} consists of horizontally polarized light. The final output consists of only horizontally polarized light i.e. $\mathrm{Y}=2\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0\right)$.
(15) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=2\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $X=3\left(X_{1}=1, X_{2}=1\right)$. There is no light at the output of S_{14} and the output of S_{7} consists of vertically polarized light. The final output consists of only vertically polarized light i.e. $\mathrm{Y}=1$ ($\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1$).
(16) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right)$ and $\mathrm{B}=2\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $X=3\left(X_{1}=1, X_{2}=1\right)$. There is no light at the output of S_{7} and S_{14}. The final output is $\mathrm{Y}=0\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$.

VI. Performance Evaluation Throuth Simulation and Discussion

Simulation is done in Mathcad-7. The power of the input pulse is taken $A=B=1.13 \mathrm{dBm}$. Here we use $50: 50$ beam splitters.The vertical axis in Fig. 3 indicates power in dBm, while horizontal axis represents time scale in ps. The time instant for the occurrence of bit pattern are at $0,5,10,15 \mathrm{ps}$.

Figure 3: Logical simulation result [x - axis: time (ps) and y -axis: power (dBm)].

Upper two set waveforms indicate the input bit sequences 0011, 0101 for the input variables A and Brespectively. Similarly, the lower two waveforms indicate bit sequence 0011,0110 bit pattern change of output variables X and Yrespectively.

VII. CONCLUSION

In this paper, SLM and Savart Plate based quadruple Feynman Gate circuit has been proposed and described. The results obtained numerically and the theoretical models developedare very much useful to future optical reversible
logic computing system.Different arithmetic and logic operations in reversible system can easily be performed with this gate.The purpose of this study is to explore the quadruple logic system in four-state implementation by whichit is possible to handle huge volume of data at a time. It is expected that the proposed work will provide to a new paradigm to the arena of reconfigurable computing.

REFERENCES

[1] E. V. Dubrova, "Multiple-Valued Logic in VLSI Design," Electronic System Design, Royal Institute of Technology, Sweden.
[2] S. Liu, C. Li, J. Wu and Y. Liu, "Optoelectronic multiplevalued logic implementation," Optics Letters, vol. 14, no.14, 713-715, 1989.
[3] P. Ghosh and S. Mukhopadhyay, "Implementation of tristate logic based all optical flip-flop with nonlinear material," Chinese Optics Letters, 3(8), 478-479, 2005.
[4] T. Chattopadhyay, G. K. Maity, and J. N. Roy,"Designing of all-optical Tri-state Logic system with the help of optical nonlinear material", Journal of Nonlinear Optical Physics and Materials, World Scientific, vol.17, no. 3, pp. 315-328, 2008.
[5] K. S. V. Patel and K. S. Gurumurthy, "Arithmetic Operation in Multi valued logic," International Journal of VLSI design \&communication system (VLSICS), vol. 1, no.1, 2010.
[6] A.W.Lohmann,"Polarization and optical logic,"Appl.Opt., vol.25,pp.1594-1597, 1986.
[7] A.Avizienis,"Signed-Digit Number Representation for Fast Parallel Arithmetic," IRE Trans. Electron. \& Comp. EC-10, pp. 389-400, 1961.
[8] B.L. Drake, R.P.Bocker, M.E.Lasher, R.H.Patterson and W.J. Miceli, "Photonic computing using the modified-signed-digit number representation," Opt. Eng., vol.25, pp.38-43, 1986.
[9] R.P.Bocker, B.L.Drake, M.E.Lasher and T.B. Henderson, "Modified signed-digit addition and subtraction using optical symbolic substitution," Appl.Opt, vol. 25, no. 15, pp.24562457, 1986
[10] A.K.Cherri and M.A.Karim, "Modified signed digit arithmetic using an efficient symbolic substitution," Appl.Opt., vol.27,no.18,pp.3824-3827, 1988.
[11] A. K. Ghosh, P.P.Choudhury and A.Basuray, "Modified Trinary Optical Logic Gates and their Applications in Optical Computation", presented in the Third International Conference on CISSE 2007, IEEE, University of Bridgeport, 3-12, 2007 and published in the proceeding on Innovations and Advanced Techniques in Systems, Computing Sciences and Software, Springer, pp. 87-92, 2008.
[12] A.K.Datta, A.Basuray and S.Mukhopadhyay, "Arithmetic operations in optical computations using a modified trinary number system,"Optics Letters, vol.14, pp.426-428, 1989.
[13] J.Łukasiewicz:"O logice trojwartosciowej," Ruch Filozoficny, vol.5, pp.169- 171, 1920. [English translation in: Łukasiewicz (1970).]
[14] G. K. Maity, J. N. Roy, S. P. Maity, " Mach-Zehnder Interferometer based all-optical Peres Gate," International Conference on Advances in Computing and Communications, Kochi, India, pp. 22-24, 2011.
[15] G. K. Maity, S. P. Maity, T. Chattopadhyay, J. N. Roy, "Mach-Zehnder Interferometer Based All-Optical Fredkin Gate," International Conference on Trends in Optics and Photonics, Kolkata, India, 2009
[16] G. K. Maity, S. P. Maity, J. N. Roy: Design of All-Optical reversible TOAD-based Feynman and Toffoli Gate. International Conference on

Advanced Computing \& Communication Technologies (ACCT12), Rohtak (India), 2012.
[17] S. Mandal, S.Samanta, G.K.Maity, S.Mukhopadhyay,"Alloptical Reversible Logic Gate Implementation using TOAD" ,International Journal of Computer Science and Information Security ,vol. 14, no. 12, 2016.
[18] A. K. Ghosh, A. Bhattacharya, M. Raul and A.Basuray,"Trinary Arithmetic and Logic unit (TALU) using savart plate and spatial light modulator (SLM) suitable for optical computation in multivalued logic", Optics \& Laser Technology, vol. 44, no. 5, pp. 1583-1592, 2012.
[19] A. K. Ghosh, A.. Bhattacharya, A.Basuray "Quadruple Valued Logic System Using Savart Plate and Spatial Light Modulator (SLM) and It's Applications" Journal of Computational Electronics, Volume 11, Issue 4, pp 405413,2012
[20] A. Bhattacharya, A. K. Ghosh" Encoder, Decoder, Multiplexer and Demultiplexer in Quadruple-Valued Logic System Using Savart Plate and Spatial Light Modulator (SLM)' 'International Journal of Modern Trends in Engineering and Research (IJMTER) vol. 02, no. 08, pp 3143, 2015.

