
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 206 – 211

206
IJRITCC | May 2017, Available @ http://www.ijritcc.org

A Review on Software Architecture Optimization Methods

Akshay Jadhav

PG Scholar, DCEA

NITTTR

Bhopal, India

akshay15jadhav93@gmail.com

Dr. Sanjay Agrawal

Professor, DCEA

NITTTR

Bhopal, India

sagrawal@nitttrbpl.ac.in

Abstract— Due to the remarkable mechanical request for programming frameworks, the expansion of the uncertainty, the quality requirements

and quality of testing, the programming engineering configuration has been transformed into essential progression movement and the

examination site is developing rapidly. In the recent decades, programming engineering involves improved technologies, which means to

organize a scan for design outline for an arrangement of value attributes, have multiplied. In any case, the results shown are divided into

different research groups, many framework areas and different quality features. Coming about the inclusion of current research, we have played

a well-structured writing survey and have broken the result of various check-sheets of different research groups. Considering this study, a

scientific classification has been done which is used for current research. Apart from this, the effective investigation of the examination writing

given in this audit is expected to help in exploration and merging the current research endeavors and inferring an examination plan for future

advancements.

Keywords- Software Architecture Optimization, Systematic Literature Review, Optimization Methods, Problem Overview

__*****___

I. INTRODUCTION

Engineering details and models [6] are used to structure
complex programming systems and to give an arrangement that
is the foundation for later programming engineering works out.
Because of outline judgments, programming experts are better
strengthened in adapting to the extending diverse nature of
today's item structures. Therefore, the building setup stage is
seen as a proponent among the most basic activities in an item
planning [7]. The decisions made in the midst of designing
arrangement have imperative consequences for money related
and quality targets. Instances of configuration level decisions
consolidate the assurance of programming and hardware
components, their replication, the mapping of programming
components to open gear centre points, and the general
structure topology. Due to the in-wrinkling framework many
sided quality, programming models need to look over a
combinatorial developing number of design choices when
hunting down an ideal architecture plan concerning a
characterized set of value attribute(s) and requirements. The
outcomes of these plans are explored in the area of a plan that
are regularly behind human capabilities and provide a test
function to the structural framework.

The requirement for automatic configuration space
investigation that enhances a current engineering detail has
been perceived and a plenty of design improvement approaches
in light of formal design determinations have been created. To
deal with the complexity of the assignment, the enhancement
approaches limit the changeability of engineering choices,
upgrading the design by altering one of its particular
viewpoints such as area, replication, choice of building
components and so forth. Henceforth the examination exercises
are scattered over many research groups, framework spaces,
(for example, installed frameworks or data frameworks), and
quality traits. Comparable methodologies are proposed in
numerous spaces without monitoring each other.

A. Research Approach and Contribution

The deliberate writing survey of the current design
advancement approaches provides an interface to the learning
and gives a far reaching diagram of the present best in class.
Thus, an entryway to new methodologies of engineering
advancement can be opened, joining diverse sorts of
compositional choices during the streamlining or utilizing
offbeat optimization procedures. New exchange of examination
techniques can be produced because of various enhancement
areas. This can convey significant advantages to the general
routine with regards to design advancement. As a rule, with the
study we expect to accomplish the accompanying targets:

 To give a fundamental order structure in type of a
scientific categorization to characterize existing
engineering optimization approaches.

 To give an outline of the present best in class in the
design enhancement area.

 To bring up flow patterns, holes, and headings for
future research.

We inspected various papers from different research sub-
regions, distributed in programming building diaries and
gatherings. At first, we inferred a scientific classification by
pre-framing a formal substance investigation. All the more
particularly, in view of the underlying arrangement of
catchphrases and characterized inclusion and avoidance
criteria, we gathered an arrangement of papers, which we
iteratively examined to recognize the scientific categorization
ideas.

B. Related studies

Design streamlining can be memorized into the general
research which teaches of Search Based Software Engineering
(SBSE) [11] as it applies proficient inquiry techniques to
distinguish an ideal or close ideal design detail. SBSE is
connected in all periods of the product building process,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 206 – 211

207
IJRITCC | May 2017, Available @ http://www.ijritcc.org

including necessities, building, extend administration, plan,
upkeep, figuring out, and programming testing. A far reaching
review of various streamlining techniques connected to
programming, building assignments is given by Harman et al.
[10]. The overview shows that in the previous years, a specific
increment in SBSE movement has been seen, with numerous
new applications being tended to. The paper distinguishes
inquire about patterns and connections between the pursuit
strategies and the applications to which they have been
connected. The concentration of Harman et al's. overview is on
the wide field of SBSE, particularly on methodologies in the
product testing stage which are likewise canvassed in definite
reviews. Nonetheless, the region of engineering streamlining
has not been investigated in detail. The SBSE study records a
few ways to deal with streamlining the programming
configuration, yet does not examine the properties of these
methodologies aside from naming the utilized advancement
methodology.

Adjacent to this general SBSE study, different reviews de-
copyist sub-territories of engineering advancement and
configuration space investigation that are just worried with a
particular framework areas, or a particular streamlining
technique. For example, the review of Grunske et al. [14] is
worried with the space of wellbeing basic installed frameworks
and thinks about 15 engineering enhancement strategies.
Another illustration is the review of Villegas et al. [15], which
assesses 16 approaches that objective run-time engineering
enhancements with an attention on self-versatile frameworks.
In the exploration sub-region of frameworks with high
dependability requests, Kuo and Wan [16] have distributed an
overview in 2007 looking at changed repetition designation
approaches. At last, a few overviews are worried by the use of
a particular advancement system, commonly identified with
Genetic Algorithms [18] or Meta heuristics.

II. RESEARCH METHODS

Our literature review follows the guidelines proposed by
Kitchenham [20], which structure the stages involved in a
systematic literature review into three phases: planning,
conducting, and reporting the review. Based on the guidelines,
this section details the research questions, the performed
research steps, and the protocol of the literature review. First,
Section A describes the research questions underlying our
survey. Then, Section B derives the research tasks conducted,
and thus describe the procedure. Section C then details the
literature search step and highlight the inclusion and exclusion
criteria. Finally, Section D discusses threats to the validity of
our study.

A. Research Questions

Based on the objectives described in the introduction, the
following research questions have been received, which form
the basis for the literature review:

RQ1. How can the current research on software architecture
optimization be classified?

RQ2. What is the current state of software architecture
optimization research with respect to this classification?

RQ3. What can be learned from the current research results
that will lead to topics for further investigation?

B. Research Tasks

To answer the three research questions RQ1-3, four
research tasks have been conducted: one task to set up the
literature review, and three research tasks dedicated to the
identified research questions. The tasks have been conducted
sequentially and interconnected through a number of artefacts
generated by their sub-tasks. The overall research method is
outlined in Figure 1 and detailed in the following text.

The set-up task includes the definition of the review
protocol, the selection of search engines, and the definition of a
keyword list, a keyword-based collection of published
architecture optimization papers, and a review filtering the
papers according to a categorized set of inclusion and
avoidance criteria. The search step and the inclusion/exclusion
review step are explained in more detail in Section C of
research methods.

Based on the set of selected papers, content analysis of the
papers has been performed in the first research task (RQ1). The
goal was to derive taxonomy to classify the current architecture
optimization approaches. An iterative coding process was used
to identify the main categories of the taxonomy. The coding
process was based on the grounded theory [23] qualitative
research method. First, we analyzed each paper with a goal to
identify new concepts for the taxonomy. Second, after all
papers have been reviewed and the taxonomy got updated with
newly identified concepts, we consolidated the taxonomy
terms, mainly by merging the synonyms and unifying the
concepts on different levels of abstraction. Section 3 presents
the findings.

In the second research task (RQ2), each paper collected in
the set-up task was classified and cross-checked to remove
inconsistencies within the classification. Extracted data were
stored in a database, which enabled a descriptive quantitative
analysis. The aim of the data extraction and the resulting
classification was to provide a significant overview of the
current research efforts and the archived results in this domain.
Third section presents the findings.

In the third research task (RQ3), we cross-analyzed the
survey results and integrated conceivable headings for further
research. Consequently, the survey enables the transfer of
knowledge from one research sub-area to another and thus aims
at improving the overall research area. Fourth section provides
conclusions and recommendations for future research.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 206 – 211

208
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Fig. 1 Process model for Literature Review

C. Literature Search Process

The search strategy for the review was towards finding,
published papers in journals and conference proceedings via
the widely accepted literature search engines and databases
such as Google Scholar, IEEE Explore, ACM Digital Library,
Springer Digital Library, and Elsevier ScienceDirect.

In the search we focused on selected keywords, based on
the aimed scope of the literature review. Examples of the
keywords are: automated selection of software components,
deployment optimization, energy consumption optimization,
component selection optimization, automated component
selection, reliability optimization, software safety optimization,
redundancy allocation, optimal scheduling, hardware-software
co-synthesis, and search based software engineering, run-time
and design-time architecture optimization, software
engineering optimization, self-adaptive software systems. The
keywords were refined and extended during the search process.

Although the selection process was primarily based on the

review of paper abstracts and keywords, in the cases where

these two were insufficient, we also considered part of the

introduction, contribution and conclusion sections.

1) Inclusion Criteria : The concentration of this literature

review is on programming architecture streamlining. We

comprehend the architecture of a software system to be ―the

key association of a framework encapsulated in its parts, their

connections to each other, and to the environment, and the

principles managing its design and evolution‖ [6]. Software

architecture optimization is understood as an automated

method aiming to reach an optimal architecture design with

respect to a set of quality attributes. The main criteria for

inclusion were based on the automation of software

architecture optimization, both at run time and at design time.

To enable automated optimization of software architectures,

three basic prerequisites need to be fulfilled:

 A machine process-able representation of the software

architecture must be available as an input for automated

searches.

 A function or procedure which automatically evaluates

aspect of quality for a given software architecture is required,

called quality evaluation function/procedure in this work. Cost

is also considered as optimization objective. Papers which

solve constrained problems are included.

 A meaning of the considered outline space is required

that portrays how a given programming architecture portrayal

can be changed or improved by the streamlining.

2) Exclusion Criteria: We evicted papers that:

 Upgrade a solitary component without integrating

context and interactions with other architectural elements.

 Concentrate on an engineering immaterial issue (e.g.

Necessities prioritization, compiler enhancement, or

assignment distribution to specialists that collaborate in

executing and completing the undertakings)

 Optimize hardware with no relation to software.

 Solely optimize cost without considering whatever

other quality trait.

We did not bar papers for quality reasons, because the quality

of the papers was generally acceptable.

D. Threats to Validuty

One of the major threats to the validity of this literature
review is the incompleteness. The risk of this threat highly
depends on the selected list of catchphrases and the limitations

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 206 – 211

209
IJRITCC | May 2017, Available @ http://www.ijritcc.org

of the employed search engines. To decrease the risk of an
inadequate keyword list, we have used an iterative approach to
keyword list construction. A well known set of papers was used
to build the initial taxonomy which evolved over time. New
keywords were added when the keyword list was not able to
find the state-of-the-art in the respective area of study. We used
multiple search engines in order to omit the limitations implied
by employing a particular search engine.

Another vital issue is whether a scientific classification is
robust enough for the analysis and classification of the papers.
To avoid taxonomy with insufficient capability, we need to
classify the selected papers; therefore we used an iterative
content analysis method to continuously evolve the taxonomy
for every new concept encountered in the papers. New concepts
were introduced into the taxonomy and taxonomy is updated.

Furthermore, in order to make the scientific classification a
better foundation for analyzing the selected papers, we allowed
multiple abstraction levels for selected taxonomy concepts. As
a result, one of the concepts (namely the used optimization
strategy) has different levels of detail, where the highest level is
abstract with fewer classes, whereas lower levels have more
details with more classes used to classify the papers. The
appropriate level was chosen while displaying the outcomes. In
order to reduce the classification tilt, paper classification results
are checked.

III. TAXONOMY

Literature review depends on the quality of the project. The
selected classification scheme, which affects depth of
knowledge about each study approach was recorded In this
paper, an iterative coding process has been employed to
identify classification categories (see section 2 For details) and
to provide an answer for the research questions.

A. The Problem Category

The primary class is identified with the issue the
approaches plan to understand in this present reality. Generally
speaking, the methodologies attempt to accomplish a specific
enhancement objective in a particular setting. For instance, an
improvement objective is to limit the reaction time of an
engineering given costs limitations. A case setting is to
consider implanted frameworks at configuration time. While
the con-content of the issue is controlled by the sub-
classifications area (i.e. The kind of focused frameworks) and
stage (i.e. put in the advancement procedure) of the issue, the
sub-classifications identified with the enhancement objective
incorporate quality properties, limitations, and the
dimensionality of the improvement issue, which is
administered by the question if the arrangement of upgraded
quality characteristics is accumulated into a solitary scientific
capacity or decoupled into clashing targets (single/multi-target
streamlining).

Specifically, the area has three conceivable qualities:
Information Systems (IS) are business related frameworks
worked on a broadly useful PC that incorporate for example e-
business applications, enterprise and government data
frameworks. Embedded Systems (ES) interestingly are
acknowledged on a committed equipment to play out a
particular capacity in a specialized framework. They scale from
little compact gadgets like cell phones to extensive production
lines and power plants. On the off chance that an approach is
intended for both spaces, the third conceivable quality
"general" is utilized. The stage class determines whether the
issue is happening at configuration time (DT) or run-time (RT).

The principle distinction between the two is that while the
setting of a design time issue is known earlier, the setting of a
run-time issue changes progressively (e.g. new task can arrive
during run-time planning). Once more, the esteem "General"
can be utilized here to mean methodologies that address both
DT and RT.

The objective of the streamlining undertaking is normally
the expansion of the product design quality under given
requirements. Since the nature of a product framework as an
idea is hard to characterize, because of its subjective nature,
programming specialists don't characterize the quality directly
however relate it to various framework characteristics, called
quality properties [19]. In this work, we just consider
quantifiable quality characteristics (cf. section C Segment 2).
Cases are execution, dependability, cost, accessibility, and
other settled quality characteristics (locate the full rundown in
at [24]). While classifying quality traits, we took after generally
acknowledged definitions and quality characteristic scientific
classifications [25], [7], [26], [27]. In our scientific
categorization, we recognize quality attributes to be advanced
(classification quality traits) from extra limitations on quality
characteristics or other framework properties (class
imperatives). For instance, diminishing the reaction time and
the expenses of a framework however much as could be
expected is a setting with two quality credits to be streamlined.
Expanding the accessibility while keeping the reaction time
lower than 5 seconds and adhering to auxiliary requirements is
a setting with one quality at-tribute to be optimized
(accessibility) and two imperatives (for execution and basic).

Ultimately, the dimensionality class reflects if the approach
addresses a solitary target streamlining (SOO) or multi-target
streamlining (MOO) issue. The SOO upgrades a solitary
quality trait only. The MOO streamlines different quality
characteristics instantly, so that the nature of each engineering
model is a vector of qualities. As quality traits regularly
struggle, for the most part there is no single ideal outcome
however a set of outcomes non-commanded by the others from
the perspective of the improved qualities – i.e. arrangements
that are Pareto-ideal [28]. Since in MOO a choice must be gone
up against the last engineering outline chosen from the
arrangement of coming about competitors, one can likewise
utilize the multi-target changed to single-target streamlining
(MTS) approaches, which encode the determination criteria
taking after MOO into a solitary mathematical function, which
is then upgraded as a solitary goal.

For an organized view on everyone of the estimations of the
talked about sub-classifications variety [30]. The conceivable
qualities are those found in the evaluated papers, gathered by
equivalent words, since no current order, (for example, for
quality traits) is accessible to utilize, thus, we clarify them in
more detail in the following passages. The choice degrees of
flexibility are worried with choosing substances in the design.
These substances can be programming elements, (for example,
modules) or equipment elements, (for example, servers or
gadgets), bringing about "delicate product choice" and
"equipment choice" qualities. We unambiguously recognize
"component selection", since a few areas have a specific idea of
a segment. For instance, in embedded system plan, segment
determination could mean choosing a part understanding
usefulness in equipment and a segment with broadly useful
equipment acknowledging usefulness in programming.
Besides, we unequivocally distinguish "service selection", on
the grounds that by choosing the product to execute, choosing

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 206 – 211

210
IJRITCC | May 2017, Available @ http://www.ijritcc.org

an administration likewise incorporates choosing the service
provider (in this way including equipment angles too).

Replication degrees of opportunity are worried with
changing the variety of a structural component. Under the
expression "equipment replication", we subsume all degrees of
opportunity that worry the quantity of an equipment element's
duplicates, while perhaps at the same time changing the
multiplicity of programming components (e.g. programming
parts conveyed to the repeated servers). The prevalent term
repetition designation is along these lines incorporated into
"equipment replication". Under the expression "programming
replication", we subsume degrees of opportunity that change
the quantity of duplicates of programming elements as it were.
For quickness, we incorporate both indistinguishable duplicates
of the product and distinctive implementations of a similar
usefulness (e.g. n-version programming) in the expression
"programming replication" in this paper.

Parameter degrees of opportunity allude to different
parameters of design components. We recognize "programming
parameters" (e.g. number of strings of an application server)
and "equipment parameters" (e.g. parameters for the hard disk
drive). Equipment parameters may cover with equipment
choice, in light of the fact that the decision (e.g. of a CPU with
various speed) can be demonstrated both as equipment choice
and as a parameter of the facilitating server.

B. The Solution Category

The solution category classifies the approaches according to
how they achieve the optimization goal and thus describes the
main step of the optimization process, which is depicted in Fig.
2. First, the subcategory architecture representation is the
process input that describes the architecture to optimize.
Second, the subcategory degree of freedom describes what
changes of the architecture are considered as variables in the
optimization. Third, the subcategory quality evaluation
describes the used quality evaluation procedures which make
up the objective function(s) of the optimization process. In
addition, this category contains the techniques used to solve the
formulated optimization problem: Subcategories are the overall
optimization strategy and constraint handling.

Fig. 2 Optimization process

C. The Validation Category

For the validation classification, two subcategories are
considered, they are:

The approach validation describes techniques used to
evaluate the practicality and correctness of the approach. This

includes specifically the effort used up on the modeling of
quality prediction functions and evaluating their accuracy.
Possible validation types found in the reviewed approaches
include revelation with a simple example, validation with
dedicated standard problems or experiments with randomly
generated problems, and validation with an academic or
industrial case study. Besides these, the possible validation type
also includes mathematical proofs with accurateness of the
results and evaluation with related literature.

In contrast to the approach validation, the optimization
validation purposely validates the used optimization strategy.
Such a validation may evaluate 1) how well an approach
approximates the global optimum and/or 2) the performance of
an approach compared to other approaches. A possible type of
an optimization validation for an approach that uses a heuristic
is a comparison with a random search strategy, an exact
algorithm, or a baseline heuristic algorithm.

IV. CONCLUSION

In this article, we have presented the results of a systematic
literature review on architecture optimization which includes
different approaches. Based on this review, we derived a
scientific classification that aims to help researchers to classify
existing and future approaches in this research area. Using this
scientific classification, we have analyzed the present
approaches and how it will help researchers, to relate their
work with the current scenario and to identify the future
approaches in a direction.

During the systematic literature review process, we learned
about the different research areas and how they provide
recommendation for future research in that sub-area. We
acquired knowledge that, although there is some research
communities that are interrelated through cross-citation of their
research work. Such as community of reliability and
performance architecture optimization, because of similarities
in their research models. But still there are some communities
remaining, which are isolated from others, e.g. scheduling
community, optimization community, i.e. whose priority is to
only focus on optimization strategies. The information
presented in this survey aims to bridge the gap among the
communities and allow for easier knowledge transfer.

In summary, we believe that the results of our systematic
review will help to advance the architecture-optimization
research area, and since we expect this research area to grow in
the future. We hope that scientific classification in this paper
will be useful in enhancing and judging new methods.

ACKNOWLEDGMENT

I would like to thank Dr. Sanjay Agarwal, who is involved
in the review of this research paper, without his passionate
participation and input; review could not have been
productively conducted.

REFERENCES

[1]. T. Back, ¨ Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic
Algorithms. New York: Oxford University Press, 1996.

[2]. D. Ardagna and R. Mirandola, ―Per-flow optimal service selec-tion
for Web services based processes,‖ The Journal of Systems and
Software, vol. 83, no. 8, pp. 1512–1523, Aug. 2010.

[3]. D. Ardagna, G. Giunta, N. Ingraffia, R. Mirandola, and B. Pernici,
―QoS-driven web services selection in autonomic grid environ-
ments,‖ in On the Move to Meaningful Internet Systems 2006, ser.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 206 – 211

211
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Lecture Notes in Computer Science, R. Meersman and Z. Tari, Eds.,
vol. 4276. Springer, 2006, pp. 1273–1289.

[4]. A. Arcuri and L. C. Briand, ―A practical guide for using statistical
tests to assess randomized algorithms in software engineering,‖ in
Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, R. N. Taylor, H. Gall, and N. Medvidovic,
Eds. ACM, 2011, pp. 1–10.

[5]. B. R. Arafeh, K. Day, and A. Touzene, ―A multilevel parti-tioning
approach for efficient tasks allocation in heterogeneous distributed
systems,‖ Journal of Systems Architecture - Embedded Systems
Design, vol. 54, no. 5, pp. 530–548, 2008.

[6]. ISO/IEC Standard for Systems and Software Engineering—
Recommended Practice for Architectural Description of Software-
Intensive Systems, Int’l Standards Organization, ISO/IEC 42010
IEEE Std 1471-2000, first ed. 2007-07-15, p. c1-24, 2007.

[7]. L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, second ed. AddisonWesley, 2003.

[8]. Y. P. Aneja, R. Chandrasekaran, and K. P. K. Nair, ―Minimal-cost
system reliability with discrete-choice sets for components,‖

[9]. J. D. Andrews and L. M. Bartlett, ―A branching search approach to
safety system design optimisation,‖ Reliability Engineering &
System Safety, vol. 87, no. 1, pp. 23–30, 2005.

[10]. M. Harman, ―The Current State and Future of Search Based
Software Engineering,‖ Proc. Int’l Conf. Software Eng., L.C. Briand
and A.L. Wolf, eds., pp. 342-357, 2007.

[11]. M. Harman, S.A. Mansouri, and Y. Zhang, ―Search Based Software
Engineering: A Comprehensive Analysis and Review of Trends
Techniques and Applications,‖ Technical Report TR- 09-03, Dept.
of Computer Science, King’s College London, Apr. 2009.

[12]. A. Aleti, S. Bjornander,¨ L. Grunske, and I. Meedeniya,
―Archeopterix: An extendable tool for architecture optimization of
AADL models,‖ in ICSE 2009 Workshop on Model-Based Method-
ologies for Pervasive and Embedded Software, MOMPES 2009.
IEEE Computer Society, 2009, pp. 61–71.

[13]. J. T. Alander, ―An indexed bibliography of genetic algorithms in
testing,‖ Univ. of Vaasa, Finland, Tech. Rep. 94-1-TEST, 2008.

[14]. L. Grunske, P.A. Lindsay, E. Bondarev, Y. Papadopoulos, and D.
Parker, ―An Outline of an Architecture-Based Method for
Optimizing Dependability Attributes of Software-Intensive
Systems,‖ Architecting Dependable Systems IV, R. de Lemos, C.
Gacek, and A.B. Romanovsky, eds., pp. 188-209, Springer, 2006.

[15]. N.M. Villegas, H.A. Mu¨ ller, G. Tamura, L. Duchien, and R.
Casallas, ―A Framework for Evaluating Quality-Driven Self-
Adaptive Software Systems,‖ Proc. Int’l Symp. Software Eng.
Adaptive and Self-Managing Systems, pp. 80-89, 2011.

[16]. W. Kuo and R. Wan, ―Recent Advances in Optimal Reliability
Allocation,‖ Computational Intelligence in Reliability Eng.g,
Evolutionary Techniques in Reliability Analysis and Optimization,
G. Levitin, ed., pp. 1-36, Springer, 2007.

[17]. M. Agarwal, S. Aggarwal, and V. K. Sharma, ―Optimal re-
dundancy allocation in complex systems,‖ Journal of Quality in
Maintenance Engineering, vol. 16, pp. 413–424, 2010.

[18]. H. Jiang, C. Chang, D. Zhu, and S. Cheng, ―A Foundational Study
on the Applicability of Genetic Algorithm to Software Engineering
Problems,‖ Proc. IEEE Congress Evolutionary Computation, pp.
2210-2219, 2007.

[19]. Neha Sharma, Amit Sinhal, Bhupendra Verma, ―Software
assessment parameter optimization using GA‖, International
Journals of Computer Applications (0975-8887), vol. 72- no. 7, May
2013

[20]. Barbara Kitchenham, O. Pearl Brereto , David Budgen , Mark
Turner, John Bailey, Stephen Linkman, ‖Systematic literature
reviews in software engineering – A systematic literature review‖,
Information and Software Technology 51 (2009) 7–15

[21]. Brajesh kumar Singh, A.K. Mishra, ―Software Effort Estimation by
GA tuned Parameters of Modified Constructive Cost model for
NASA Software Projects‖, International Journals of Computer
Applications (0975-8887), vol. 59- no. 9, Dec 2012

[22]. A. Azaron, C. Perkgoz, H. Katagiri, K. Kato, and M. Sakawa,
―Multi-objective reliability optimization for dissimilar-unit cold-
standby systems using a genetic algorithm,‖ Computers & OR, vol.
36, no. 5, pp. 1562–1571, 2009.

[23]. B. Glaser and A. Strauss, Grounded Theory: The Discovery of
Grounded Theory. de Gruyter, 1967.

[24]. A. Aleti, B. Bu¨hnova´, L. Grunske, A. Koziolek, and I. Meedeniya,
―Optimization Survey,‖ https://sdqweb.ipd.kit.edu/wiki/
OptimizationSurvey, 2012.

[25]. A. Avizienis, J.-C. Laprie, B. Randell, and C.E. Landwehr, ―Basic
Concepts and Taxonomy of Dependable and Secure Computing,‖
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1, pp.
11- 33, Jan.-Mar. 2004.

[26]. B.R. Arafeh, K. Day, and A. Touzene, ―A Multilevel Partitioning
Approach for Efficient Tasks Allocation in Heterogeneous
Distributed Systems,‖ J. Systems Architecture—Embedded Systems
Design, vol. 54, no. 5, pp. 530-548, 2008.

[27]. J. Balasubramanian, A.S. Gokhale, A. Dubey, F. Wolf, C. Lu, C.D.
Gill, and D.C. Schmidt, ―Middleware for Resource-Aware
Deployment and Configuration of Fault-Tolerant Real-Time
Systems,‖ Proc. IEEE Real-Time & Embedded Technology and
Applications Symp., pp. 69-78, 2010.

[28]. P.G. Busacca, M. Marseguerra, and E. Zio, ―Multiobjective
Optimization by Genetic Algorithms: Application to Safety
Systems,‖ Reliability Eng. & System Safety, vol. 72, no. 1, pp. 59-
74, Apr. 2001.

[29]. Anne Koziolek, Lars Grunske, Barbora Buhnova, Aldeida Aleti,
Indika Meedeniya, "Software Architecture Optimization Methods:
A Systematic Literature Review", IEEE Transactions on Software
Engineering, vol. 39, no. , pp. 658-683, May 2013,
doi:10.1109/TSE.2012.64.

[30]. S. Burmester, H. Giese, E. Mu¨ nch, O. Oberschelp, F. Klein, and P.
Scheideler, ―Tool Support for the Design of Self- Optimizing
Mechatronic Multi-Agent Systems,‖ Int’l J. Software Tools for
Technology Transfer, vol. 10, no. 3, pp. 207-222, June 2008.

https://sdqweb.ipd.kit.edu/wiki/

