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Abstract—With the evolution of the Internet, we are witnessing the birth of an increasing number of applications that rely on the 

network; what was previously executed on the user's computers as stand-alone programs has been redesigned to be executed on 

servers with permanent connections to the Internet, making the information available from any device that has network access. 

Instead of buying a copy of a program, users can now pay to obtain access to it through the network, which is one of the models of 

cloud computing, Software as a Service (SaaS). The continuous growth of Internet bandwidth has also given rise to new 

multimedia applications, such as social networks and video over the Internet; and to complete this new paradigm, mobile 

platforms provide the ubiquity of information that allows people to stay connected. Service providers may own servers and data 

centers or, alternatively, may contract infrastructure providers that use economies of scale to offer access to servers as a service in 

the cloud computing model, i.e., Infrastructure as a Service (IaaS). As users become more dependent on cloud services and mobile 

platforms increase the ubiquity of the cloud, the quality of service becomes increasingly important. A fundamental metric that 

defines the quality of service is the delay of the information as it travels between the user computers and the servers, and between 

the servers themselves. Along with the quality of service and the costs, the energy consumption and the CO2 emissions are 

fundamental considerations in regard to planning cloud computing networks. In this research work, an Optimus Scheduler 

algorithm to be proposed for Add, Remove or Resize an application by using Tabu Search Algorithm. 

Keywords-Optimus Scheduler, Tabu Search Heuristic Algorithm, Virtual Machine, Data Center, First Fit 

__________________________________________________*****_________________________________________________  

I. INTRODUCTION 
The algorithm proposed in this chapter is characterized as 

online because application requests are received consecutively, 
each one at a different time. For each application request, the 
decision to make is which server will host each requested VM 
for that application. After the decision is made, the hypervisors 
of the target servers create the VMs in real time. The objective 
is to minimize delay among VMs, maximize the network 
throughput available among VMs, and minimize the server 
energy consumption. The application elasticity is also taken 
into account, that is, the workload is expected to increase and 
decrease over time. Our placement strategy can be 
characterized as: 

1. based on application graph, 
2. communication-aware, 
3. energy-efficient, 
4. and elastic. 
In what follows, we explain each of these points 

 
 

Figure 1: Graph of a multi-tier application. 

II. RELATED WORKS 

VM placement problem is a non-deterministic problem. 
Number of virtual machine placement algorithms has been 
studied in [1] that run under cloud computing environment. 
This section explains some of the exiting virtual machine 
placement approaches and their anomalies. 

First Fit: It is a greedy approach. In this approach scheduler 
visits the PM sequentially one by one and placed VM to first 
PM that has enough resources. Each time when the new VM 
arrived, scheduler starts searching the PM sequentially in the 
data center till it finds the first PM that has enough resources. If 
none of the physical machine satisfied the resource requirement 
of the VM, then new PM is activated and assigns VM to the 
newly activated PM. Main problem with this approach is that 
load on the system can imbalanced. 

Single Dimensional Best Fit: This methods use the single 
dimension (CPU, memory, bandwidth etc.) for placing a VM. 
When VM arrived, scheduler visit the Physical Machines in the 
decreasing order of their capacity used in a single dimension 
and place the VM to the first PM that has the enough resources. 
That means VM place to the PM which used the maximum 
capacity along with the given dimension. Problem with 
approach is that it can increase the resource imbalancing 
because resource in the cloud is multi-dimension (CPU, 
memory, bandwidth etc.). So there may be a situation where a 
host utilize their full CPU capacity while other resources such 
as memory and bandwidth are underutilized. 

Volume Based Best Fit: This heuristic used the volume of 
the VM for placing a VM. This approach visits the Physical 
Machines in a decreasing order of their volume and place VM 
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to the first PM that has the enough resources. That means 
Physical Machine which has the maximum volume will be 
considered first. 

Dot Product Based Fit: In this heuristic resource 
requirement of virtual machine and the total capacity of the 
physical machine along the specified dimensions are expressed 
as vectors. Dot product of these two vectors is calculated and 
then PMs are arranged into the decreasing order of their dot 
product. For the proper utilization of the resources it is 
necessary that the virtual machine which required more CPU 
and less memory should be placed on the physical machine 
which has low CPU and more memory utilization. This method 
seems good, but it can choose the wrong PM, because they the 
not using the length of virtual machine and the remaining 
capacity of the physical machine. 

Constraint based approach: Constraint based approaches are 
use in the combinatorial search problems [2]. In these approach 
some constraint are apply and these constraint must be fulfil 
during VM placement. These constraints are Capacity 
Constraints: For all dimension (CPU, memory and bandwidth) 
of a given physical machine, sum of the resource utilize by all 
VMs running in that host should be less than or equal to the 
total available capacity of that physical machine. Placement 
Constraints: All virtual machines must be placed on to the 
available host. SLA constraint: VM should be placed to the PM 
where it fulfils the SLA. Quality of services (QoS) constraint: 
Some quality of services constraint such as throughput, 
availability etc. must be considered during the VM placement. 
Constraint Programming is useful where the input data is 
already known. That means we know the demands of the VMs, 
before calculating the cost function. 

Bin packing problem: Bin packing problem [3] is a NP hard 
problem. If PM and the VM are consider as a three dimension 
object, then VM placement problem is similar to the bin 
packing problem where item represent the VM and container 
represent the PM. In the bin packing problem number of item 
(VM) are placed inside a large container (PM). The aim is to 
places a number of items into a single container as possible. So 
that the number of container required to packing the item is 
minimized. Bin packing problem is different from the VM 
placement problem. In the bin packing problem bins can be 
placed side by side or one on top of the other. But in the case of 
VM placement, placing VMs side by side or one on top of the 
other is not a valid operation. This is because the resource 
cannot be reused by any other VM, once a resource is utilized 
by a VM. 

Stochastic Integer Programming: Stochastic Integer 
Programming is used to optimize the problems, which involve 
some unknown data. VM placement problem can be consider 
as a Stochastic Integer Programming because resource demand 
of the VM are known or it can be estimated and the objective is 
to find the suitable host which consume less energy and 
minimize the resources wastage. Stochastic Integer 
Programming can be use where the future demands of the 
resources are not known, but their probability distributions are 
known or it can be calculated. 

Genetic Algorithm: Genetic algorithm is a global search 
heuristics. It is useful where objective functions changed 
dynamically. This approach is inspired by the evolutionary 
biology such as inheritance. Genetic Algorithm can be use to 
solve the bin packing problem with some constraints. It is 
useful for the static VM placements, where the resource 
demands do not vary during a predefine period of time. 

Ahmad NaharQuttoum et al. [4] presented a Smart 
Placement Approach (SPA) that provides for smart placement 
maps of VDNs over CDNs. In this, author pointed out that 
choosing the placement maps for such VDNs should satisfy its 
requirements while: maintaining load-balancing over the 
hosting CDNs, guaranteeing its Quality of Service (QoS) 
levels, and assuring low placement costs. The VDNs are 
usually hosted over physical networks; overlaying its resources 
to gain the dynamic required services. Cloud-service 
Datacenter Networks (CDNs) can provide such a service under 
a delivery model that is called Infrastructure as a Service 
(IaaS). 

CHONGLIN GU et al. [5] proposed a tree regression-based 
method to accurately measure the power consumption of VMs 
on the same host. The merits of this method are that the tree 
structure will split the data set into partitions, and each is an 
easy-modeling subset. Cloud computing is developing so fast 
that more and more data centers have been built every year. 
This naturally leads to high-power consumption. Virtual 
machine (VM) consolidation is the most popular solution based 
on resource utilization. In fact, much more power can be saved 
if we know the power consumption of each VM. Therefore, it 
is significant to measure the power consumption of each VM 
for green cloud data centers. Since there is no device that can 
directly measure the power consumption of each VM, 
modeling methods have been proposed. However, current 
models are not accurate enough when multi-VMs are 
competing for resources on the same server. One of the main 
reasons is that the resource features for modeling are correlated 
with each other, such as CPU and cache. 

Zhaoning Zhang et al. [6][7] defined that Infrastructure as a 
service (IaaS) allows users to rent resources from the Cloud to 
meet their various computing requirements. The pay-as-you-
use model, however, poses a nontrivial technical challenge to 
the IaaS cloud service providers: how to fast provision a large 
number of virtual machines (VMs) to meet users’ dynamic 
computing requests? We address this challenge with 
VMThunder, a new VM provisioning tool, which downloads 
data blockson demand during the VM booting process and 
speeds up VM image streaming by strategically integrating 
peer-to-peer (P2P) streaming techniques with enhanced 
optimization schemes such as transfer on demand, cache on 
read, snapshot on local, and relay on cache. In particular, 
VMThunder stores the original images in a share storage and in 
the meantime it adopts a tree-based P2P streaming scheme so 
that common image blocks are cached and reused across the 
nodes in the cluster. 

Jiaxin Li et al. [1] proposed a Layered Progressive resource 
allocation algorithm for multi-tenant cloud data centers based 
on the Multiple Knapsack Problem (LP-MKP). The LP-MKP 
algorithm uses a multi-stage layered progressive method for 
multi-tenant VM allocation and efficiently handles unprocessed 
tenants at each stage. This reduces resource fragmentation in 
cloud data centers, decreases the differences in the QoS among 
tenants, and improves tenants’ overall QoS in cloud data 
centers. 

Gursharan Singh et al. [2] proposed a technique that 
reduces the size of data image stored on source host before 
migration. When a Virtual Machine migrates to another host, 
the data image for that VM is kept in the source host after 
removing unwanted data according to the probability factor. 
When the VM migrates back to the original host later, the kept 
memory image will be “reused”, i.e. data which are identical to 
the kept data will not be transferred and comparative to existing 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                           ISSN: 2321-8169 
Volume: 5 Issue: 5                                              159 – 165 

_______________________________________________________________________________________________ 

161 
IJRITCC | May 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

system the size of memory image is small. To validate this 
approach, results evaluated using different threshold levels and 
probability factor of change in data. Proposed system required 
less memory to store the memory image and allow more VMs 
to be hosted. 

Narander Kumar et al. [3] focused on quantitative analysis 
of live migration within a cloud data centre with the aim of 
understanding the factors which are responsible for cloud’s 
efficiency. Various key parameters, such as, virtual machine 
size, network bandwidth available and dirty rate of a cloud 
application are discussed in detail and given the comparisons 
also, to give a clear view of their role in live migration’s 
performance. The analysis presented in this paper gives a 
proper platform for considering future enhancements and/or 
modifications in the existing migration technology. 

Aarti Singh et al. [7] proposed an Autonomous Agent 
Based Load Balancing Algorithm (A2LB) which provides 
dynamic load balancing for cloud environment. Cloud 
Computing revolves around internet based acquisition and 
release of resources from a data center. Being internet based 
dynamic computing; cloud computing also may suffer from 
overloading of requests. Load balancing is an important aspect 
which concerns with distribution of resources in such a manner 
that no overloading occurs at any machine and resources are 
optimally utilized. However this aspect of cloud computing has 
not been paid much attention yet. Although load balancing is 
being considered as an important aspect for other allied internet 
based computing environments such as distributed computing, 
parallel computing etc. Many algorithms had been proposed for 
finding the solution of load balancing problem in these fields. 
But very few algorithms are proposed for cloud computing 
environment. Since cloud computing is significantly different 
from these other types of environments, separate load balancing 
algorithm need to be proposed to cater its requirements. 

S. Sohrabi et al. [8] introduced two new virtual machine 
selection policies, Median Migration Time and Maximum 
Utilization, and show that they outperform existing approaches 
on the criteria of minimising energy consumption, service level 
agreement violations and the number of migrations when 
combined with different hotspot detection mechanisms. 
Applications are first assigned to virtual machines which are 
subsequently placed on the most appropriate server host. If a 
server becomes overloaded, some of its virtual machines are 
reassigned. This process requires a hotspot detection 
mechanism in combination with techniques that select the 
virtual machine(s) to migrate. 

Mohammad Mehedi Hassan et al. [9] proposed a cost 
effective and dynamic VM allocation model based on Nash 
bargaining solution. With various simulations it is shown that 
the proposed mechanism can reduce the overall cost of running 
servers while at the same time guarantee QoS demand and 
maximize resource utilization in various dimensions of server 
resources. 

Christina Terese Josepha et al. [10] proposed a novel 
technique to allocate virtual machines using the Family Gene 
approach. Experimental analysis proves that the proposed 
approach reduces energy consumption and the rate of 
migrations, The concept of virtualization forms the heart of 
systems like the Cloud and Grid. Efficiency of systems that 
employ virtualization greatly depends on the efficiency of the 
technique used to allocate the virtual machines to suitable 
hosts. The literature contains many evolutionary approaches to 
solve the virtual machine allocation problem, a broad category 
of which employ Genetic Algorithm. 

Antony Thomas et al. [11] introduced an improved 
scheduling algorithm after analyzing the traditional algorithms 
which are based on user priority and task length. High 
prioritized tasks are not given any special importance when 
they arrive. Min-Min algorithm is used to reduce the make span 
of tasks by considering the task length. Keeping this in mind, 
cloud providers should achieve user satisfaction. Thus research 
favours scheduling algorithms that consider both user 
satisfaction and resources availability. 

DoshiChintanKetankumar et al. [12] proposed a green 
cloud broker for resource procurement problem by considering 
the metrics of energy efficiency and environmental friendly 
operations of the cloud service provider. Author used 
mechanism design methods to decide the allocation and 
payment for the submitted job dynamically and performed 
experiments and show the results of comparisons of energy 
consumption and emission of greenhouse gases between the 
allocation decided by the proposed green cloud broker and a 
without taking the green metric into consideration. 

A. I. Awad et al. [13] proposed mathematical model using 
Load Balancing Mutation (balancing) a particle swarm 
optimization (LBMPSO) based schedule and allocation for 
cloud computing that takes into account reliability, execution 
time, transmission time, make span, round trip time, 
transmission cost and load balancing between tasks and virtual 
machine .LBMPSO can play a role in achieving reliability of 
cloud computing environment by considering the resources 
available and reschedule task that failure to allocate. Our 
approach LBMPSO compared with standard PSO, random 
algorithm and Longest Cloudlet to Fastest Processor (LCFP) 
algorithm to show that LBMPSO can save in make span, 
execution time, round trip time, transmission cost. 

Arunkumar. G et al. [14] outlined the existing cloud 
technologies, interoperability issues and possible solution to 
overcome the problems. Most of the consumers are analyzing 
the appropriateness of cloud to employ themselves for their 
enterprise or personalized operations. Customers are self-
satisfied at the inception, but expectation changes. Based on 
their business escalation it needs further adoption of modern 
cloud services the existing cloud provider fails to offer. Hence 
the user needs interoperability and portability to ship their 
assets from one cloud to other cloud. The complication faced 
by the customers in shifting their assets remains as a challenge 
to be addressed. 

AtulVikasLakra et al. [15] proposed a multi-objective task 
scheduling algorithm for mapping tasks to a VMs in order to 
improve the throughput of the datacenter and reduce the cost 
without violating the SLA (Service Level Agreement) for an 
application in cloud SaaS environment. The proposed 
algorithm provides an optimal scheduling method. Most of the 
algorithms schedule tasks based on single criteria (i.e execution 
time). But in cloud environment it is required to consider 
various criteria like execution time, cost, bandwidth of user etc. 

Narander Kumar et al. [16] proposes a demand-based 
preferential resource allocation technique that designs a 
market-driven auction mechanism to identify users for resource 
allocation based on their payment capacities and implements a 
payment strategy based on a buyer’s service preferences. A 
comparison is drawn between the proposed allocation 
technique and the famous off-line VCG auction mechanism and 
results show a performance benefit in revenues to service 
provider, payments of cloud users besides ensuring an optimum 
resources use. 
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NidhiBansal et al. [17] developed a method to calculate cost 
of QoS-driven task scheduling algorithm and compare with 
traditional task scheduling algorithm in cloud computing 
environment. It also defined many parameters that are to be 
considered in QoS driven like makespan, latency and load 
balancing. But allocation cost parameter is not considered in 
QoS-driven scheduling algorithm. Minimizing the total 
allocation cost is an important issue in cloud computing. 

Mehmet Sahinoglua et al. [18] addressed a discrete event 
CLOUD simulator, namely CLOURAM (CLOUD Risk 
Assessor and Manager) to estimate the risk indices in large 
CLOUD computing environments, comparing favorably with 
the intractably theoretical Markov solutions or hand 
calculations that are limited in scope. The goal is to optimize 
the quality of a CLOUD operation and what countermeasures 
to take to minimize threats to the service quality by reserve 
planning of reserve crew members. 

Mohammad Mehedi Hassan et al. [19] proposed an 
automatic method, based on Multi-Objective Particle Swarm 
Optimization, for the identification of power models of 
enterprise servers in Cloud data centers. The average 
consumption of a single data center is equivalent to the energy 
consumption of 25.000 households. Modeling the power 
consumption for these infrastructures is crucial to anticipate the 
effects of aggressive optimization policies, but accurate and 
fast power modeling is a complex challenge for high-end 
servers not yet satisfied by analytical approaches. 

III. PROPOSED OPTIMUS SCHEDULER ALGORITHM 

FOR ADD, REMOVE OR RESIZE AN APPLICATION BY 

USING TABU SEARCH ALGORITHM 

Given that a VM scheduler in a cloud data center could 

need to scale to more than 100,000 servers and VMs, we 

developed a very efficient hierarchical heuristic based on tabu 

search. We name the proposed method Optimus Scheduler 

(OS). We exploit the fact that data center topologies are split 

in clusters and sub clusters (pods). As the topology, each pod 

in the test cases contains 1,600 servers that can host a total of 

6,400 VMs. Then each pod has a separate scheduler that 

handles VMs assigned to it. Each pod is split in racks of 

servers-e.g., 40 racks of 40 servers. Each server in a rack is 

symmetrical to the other servers in the same rack because they 

are all connected to the same rack switch with the same link 

capacity. 

The general structure of the heuristic shown in flowing 

Optimus Scheduler Algorithm has important differences in the 

neighborhood relation between solutions, objective function 

calculation, tabu list size, number of iterations before stopping. 

the execution, and in the possibility to resize applications on 

the fly. 

In this problem, a solution S is a mapping between VMs 

and servers. The neighborhood N(S) is the set of solutions that 

differ in the placement of one of the VMs that is being 

scheduled. To take advantage of the symmetry between 

solutions, each possible movement is to move each VM to the 

first available server in each rack. Thus, the number of 

possible movements is reduced to the number of VMs to 

schedule multiplied by the number of racks in a pod. The 

reduction of movements is valid because the servers in the 

same rack are equal in terms of delay. Furthermore, choosing 

the first one available optimizes the second objective that is 

the power consumption because a server will be activated only 

if the previous ones were full. This assumes that servers are 

sorted by energy efficiency in each rack. Thus, the first 

available server will also be the most efficient one among all 

availabilities. 

The number of iterations q to keep a movement in the tabu 

list is the square root of the neighborhood size. In this case, a 

second restriction was added to the tabu movements. Each VM 

that is moved to a server is then kept in that server for a 

number of iterations that is half of the number of VMs to 

schedule. Keeping a VM fixed in a new rack for a number of 

iterations allows the other VMs to be moved to that rack, and 

that solution with the whole application in a different rack can 

be evaluated by the algorithm. When the solution does not 

improve for MAX ITERATIONS the algorithm stops. That 

value was set to the number of VMs to schedule multiplied by 

the number of racks. 

ALGORITHM 

Step 1: function optimus Scheduler (Request, M) 

Step 2: an← Request application 

Step 3: if Request type is add then 

Step 4: M ← Initial Greedy Solution(an, M) 

Step 5: M ←TabuSearch(an, M) 

Step 6: end if 

Step 7: if Request type is remove then 

Step 8: Remove an's VMs from M 

Step 9: end if 

Step 10: if Request type is resize then 

Step 11: Remove an's VMs from solution M 

Step 12: Add or remove VMs from an 

Step 13: Place existing VMs in the same servers than before in 

M 

Step 14: if an has new VMs to schedule then 

Step 15: M←InitialGreedySolution(an, M) 

Step 16: M ←TabuSearch(an, M) 

Step 17: end if 

Step 18: end if 

Step 19: end function 

Step 20: function InitialGreedySolution(an, S) 

Step 21: for each vm in vmsToSchedule(an) do 

Step 22: Move vm to the server that least increases z(S) 

Step 23: end for 

Step 24: return S 

Step 25: end function 

Step 26: function TabuSearch (an, Current) 

Step 27: S ← Current 

Step 28: Best ← Current 

Step 29: L← {} 

Step 30: i ← 0 

Step 31: repeat 

Step 32: Choose the pair (c; s) 𝜖 N(S) - L that minimizes z 

when moving vm to s in S. 

Step 33: Move c to s in S 

Step 34: Add (c; s) to tabu list L for q iterations 

Step 35: i ← i + 1 

Step 36: if z(S) <z(Best) then 

Step 37: Best ← S 

Step 38: i ← 0 

Step 39: end if 

Step 40: until i = MAX ITERATIONS 
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Step 41: return Best 

Step 42: end function 

IV. RESULTS AND DISCUSSIONS 

This section analyzes the proposed Optimus Scheduler (OS) 
for the case study, and compares OS with First Fit (FF) policy. 
We first analyze an initial period when the applications are 
deployed, and then the whole day with a varying workload. 

A. Initial Period 

We first added 800 applications with a total of 5,027 VMs 
corresponding to the workload between 5 PM and 6 PM to a 
pod of 1,600 servers. For each application, OS uses the tabu 
search algorithm to place its VMs. In another experience with 
the same applications and VMs, the policy to place each VM 
was FF that is to choose for each VM the first server with 
enough capacity. 

Table 1 shows the results obtained by the two policies. The 
average transmission delay was 70% higher in FF than in OS, 
and the average link utilization was 9.9% higher in FF than OS. 
That is because OS has the minimization of delay as first 
priority, and FF does not take traffic into account to place VMs. 
When an application with multiple VMs is deployed, FF picks 
the first the server for the first VM. If that server has not 
enough space for the second VM, then it will be placed in a 
second server. The traffic between these VMs will use the links 
between the servers and the rack switch. On the other hand, OS 
will pick a server with enough space for two VMs, and the 
traffic between both VMs will be kept within the server and 
will not use any link. 

 
Table 1: Optimus Scheduler vs First-Fit after adding 800 applications 

Solution OS (Optimus 

Scheduler) 

FF 

(First-

Fit) 

Average Delay 12.3𝜇s 19.6 𝜇s 

Average Link Utilization 12.3% 24.0% 

Average Inter Switch Link 

Utilization 

11.2% 12.3% 

Maximum Inter Switch 

Link Utilization 

32.2% 36.7% 

Number of VMs 5,027 5,027 

Number of servers 1,258 1,257 

Total power 267.5 kW 267.4 

kW 

 
Considering the links that connect rack and pod switches, 

the average link utilization was 1.4% higher in FF than OS. 
That improvement is because OS minimizes delay by placing 
the VMs of each application in a single rack, and reduces the 
use of inter-rack links. Because FF places the VMs of an 
application in consecutive servers, they will often be placed in 
the same rack. However, when a rack is almost full, an 
application will be split and the links between rack and pod 
switches will be used. As we will see, the difference between 
OS and FF is larger when applications are resized over the day. 

With respect to power consumption, both mechanisms are 
power-efficient because they tend to fill an active server with 
VMs before turning on an inactive server. In some cases, OS 
will temporally consume more power because it will prefer to 
turn on a server to place VMs of the same application in the 
same rack. However, the VMs of the next applications will use 
the server that had been kept partially occupied, and the total 
number of servers used is almost the same. 

OS minimizes power consumption by taking into account 
the consumption of each type of server. In the case shown, all 
the racks have servers with the same type of energy 
consumption. When racks of energy-efficient servers and 
energy-inefficient servers are alternated, OS consumes 332kW 
and FF, 357 kW, an 8% advantage for OS. 

B. Workload 

Once the 800 applications are deployed, we consider a 

workload that varies over the day. Each application is resized 

each hour according to the maximal workload expected for 

that hour. New VMs are deployed when the workload 

increases in size, and VMs are removed in periods where the 

workload decreases. Figure 7.1 shows the number of VMs 

used to match the workload in each period and the power 

consumption achieved by CC in a pod of 1,600 servers. 

 
Figure 2: Number of VMs used and power consumption in 

each period. 

 
First, we compare how much energy is saved by considering 
the variation of workload instead of dimensioning for the peak 
period. In this case, the peak period is at 9 PM when 291.8 kW 
are consumed by the VMs placed by OS in a pod, or 23.3 MW 
if the pod power consumption is extrapolated to the whole data 
center. If the servers used in that peak period consume that 
power during a year, 204.4 millions kWh would be consumed. 
Multiplying by an electricity price of $0.16 / kWh  gives a 
total of $32.7 millions for the electricity employed by the data 
center during a year. Using OS to resize applications during 
the day and suspending unused servers saves 4.9% of energy 
consumption, which becomes $1.6 millions per year. These 
savings are from the cloud provider point of view. Users that 
deploy applications would achieve higher savings in the cost 
paid to the provider to host VMs. Applications whose 
workload have more variability during the day benefit the 
most. 
 OS is then compared to the FF policy at the time of 
resizing applications each hour of the day. Table 2 presents 
results of both policies in the peak period. The first remark 
that can be highlighted is that FF produces 47% more delay 
than OS. That also implies that the links are 10.3% more used, 
thus increasing the queuing delay and degrading the QoS. In 
particular, links that connect rack switches with pod switches 
reach up to 80% utilization in FF. That is because 32 racks are 
used and 8 racks remain free after placing the applications in 
the initial period. VMs added in high activity periods are then 
placed in the last racks. 
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Table 2:Optimus Scheduler vs First-Fit in the highest period (9 PM) 

Solution Optimus Scheduler First-Fit 

Average Delay 13:5 μs 19:9 μs 

Average link utilization 20.7% 31.0% 

Average Inter Switch Link 
Utilization 

15.2% 27.3% 

Maximum Inter Switch Link 
Utilization 

47.0% 80.0% 

Number of VMs 5,490 5,490 

Number of servers 1,385 1,373 

Total power 291.8 kW 290.6 kW 

 
 The traffic of the new VMs is directed to the load 
balancers placed in the first racks using the links between rack 
and pod switches. On the other hand, OS uses 40 racks from 
the starting period leaving available space in each rack for 
VMs that arrive in high periods. Then, OS places each new 
VM in the rack that hosts the corresponding application and 
thus reduces the link utilization between racks and improves 
the QoS. The cost to pay is that 12 more servers are used in the 
pod of 16,000 servers, and power consumption increases 0.4% 
compared to FF in the case where all servers are equally 
energy-efficient. The energy consumed in the whole day is 
0.3% higher in OS than FF because a few more servers were 
used to improve the QoS. 

C. Execution Time 

The execution time of OS was evaluated for different 
application sizes and number of servers. To vary the 
application size, an empty pod with 1,600 servers was 
gradually filled with applications with between 6 and 40 VMs 
each. For each application, the time to schedule the application 
was recorded. With that information, the average execution 
time for each application size was calculated as seen in Figure 
2.  

To analyze the variation of scheduling time as a function 
of the network size, the number of VMs in each application 
was set as 20 and we varied the number of racks, with 40 
servers per rack. For each network size, applications are 
scheduled until all the servers are full with VMs. The average 
scheduling time was calculated for each test. Figure 3 shows 
that the scheduling time of an application grows linearly as a 
function of the number of racks or servers. In particular, 
scheduling an application with 20 VMs in a pod of 1,600 
servers take an average of 283 ms. 

Concerning the workload variation over the day, the 
scheduler must resize each application each hour of the day. 
That implies choosing the servers to place new VMs in the 
periods when an application expands. The fact that only the 
new VMs are deployed makes the operation very quick 
compared to the operation of initial application deployment. 
Adding800 applications with their 5,027 VMs in a pod of 
1,600 servers took 33 seconds in the initial period. Resizing 
those same applications only took a total of half a second in 
each period. 

 
Figure 3: Average scheduler execution time over the application size 

 

 
Figure 4: Average scheduler execution time over the network size 

D. Discussions of the Results 

The method proposed in this chapter shows the importance 

of taking the traffic among VMs into account to improve the 

QoS. The minimization of delay implies that VMs that 

communicate among themselves are placed in nearby servers 

and have more communication bandwidth available. This also 

provokes that links are less used and thus reduces the queuing 

delay. The reduction in delay, probability of congestion, and 

increase in throughput implies that the application QoS is 

improved. 

An alternative to reduce the queuing delay and increase 

throughput among VMs is to augment the link capacity 

between switches. Topologies such as Fat tree [20] and VL2 

[21] achieve full bisectional bandwidth and each pair of 

servers can communicate close to the maximal capacity of 

their network cards. However, that approach has a high cost in 

number of switches and power consumption that could be not 

justified when not all the applications require high throughput 

among VMs. These topologies are indeed useful for specific 

applications that do require an all to all communication pattern 

such as Hadoop clusters. 

Experiences in this chapter study communication delay, 

throughput, and link utilization, metrics that vary depending 

on which server host each VM. The server processing time 

was not included because the processing power is a fixed 

requirement of each VM type, e.g., in number of virtual CPUs 

in a specific frequency. The number of VMs that will be 

assigned to an application will determine the number of 

requests per unity of time that each VM will handle and its 

processing time. However, the total response time is composed 
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of the processing time of each VM that participates, e.g., load 

balancer, web server, database, memcache, and the 

communication delay. The way these times are combined is 

difficult to predict precisely because that will depend how the 

application is implemented. For instance, if a web VM makes 

requests to multiple databases in parallel or in a sequential 

fashion. We believe that the relation between communication 

delay and total response time should be analyzed through 

measurements in specific implementations. The fact that the 

transmission time is expressed in microseconds should not 

mislead to think that is negligible compared to a total response 

time in milliseconds because each application request can 

require multiple internal requests among VMs and because if 

congestion is not avoided the queuing delay could increase. As 

this chapter shows, our approach reduces congestion and 

communication delay and the total response time as a result. 

V. CONCLUSION 
This chapter presented an online method to place VMs in 

servers that optimizes communication among VMs and power 
consumption. The proposed scheduler considers server 
heterogeneity and VMs with different types of requirements. 
Taking advantage of regular network topologies makes 
possible to scale in the delay calculation and parallelization on 
multiple clusters. 

Furthermore, the proposed scheduler considers the elasticity 
of applications to improve the QoS of VMs that arrive in peak 
periods. The method was formalized through a Mixed Integer 
Programming (MIP) model and a heuristic was developed 
scaling to more than 100,000 servers and applications. 
Applications can be added and removed on the y, and the 
number of VMs of an application can be changed to match the 
workload that varies over the day. A case study shows the 
advantages of the proposed approach. Compared to first-fit 
policy, the delay among VMs is reduced by 70% and the most 
used network links are decreased a 33%. We also found that a 
4.9% of power consumption is saved compared to statically 
provisioning of resources for the peak period. In a large data 
center with 128,000 servers, these annual savings represent 
$1.6 millions when the energy is charged $0.16 / kWh. Using 
first-fit in each period of the day taking into account the 
varying workload achieved 0.3% less energy consumption than 
our approach. That is because a few more servers were 
activated, which is a small price to pay that gives important 
benefits on the QoS. These results show that the proposed 
scheduler can be a key element in the management of a cloud 
provider contributing competitive advantages in QoS, energy 
consumption, and costs. 
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