
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

159
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Proposing Optimus Scheduler Algorithm for Virtual Machine Placement Within

a Data Center

Dr. M. Sughasiny

Assistant Professor, Department of Computer Science

SrimadAndavan Arts and Science College (Autonomous)

Trichy, Tamilnadu, India

sughasiny5.cs@gmail.com

M. Hari Prakash

Research Scholar, Department of Computer Science

SrimadAndavan Arts and Science College (Autonomous)

Trichy, Tamilnadu, India

line 4: e-mail: name@xyz.com

Abstract—With the evolution of the Internet, we are witnessing the birth of an increasing number of applications that rely on the

network; what was previously executed on the user's computers as stand-alone programs has been redesigned to be executed on

servers with permanent connections to the Internet, making the information available from any device that has network access.

Instead of buying a copy of a program, users can now pay to obtain access to it through the network, which is one of the models of

cloud computing, Software as a Service (SaaS). The continuous growth of Internet bandwidth has also given rise to new

multimedia applications, such as social networks and video over the Internet; and to complete this new paradigm, mobile

platforms provide the ubiquity of information that allows people to stay connected. Service providers may own servers and data

centers or, alternatively, may contract infrastructure providers that use economies of scale to offer access to servers as a service in

the cloud computing model, i.e., Infrastructure as a Service (IaaS). As users become more dependent on cloud services and mobile

platforms increase the ubiquity of the cloud, the quality of service becomes increasingly important. A fundamental metric that

defines the quality of service is the delay of the information as it travels between the user computers and the servers, and between

the servers themselves. Along with the quality of service and the costs, the energy consumption and the CO2 emissions are

fundamental considerations in regard to planning cloud computing networks. In this research work, an Optimus Scheduler

algorithm to be proposed for Add, Remove or Resize an application by using Tabu Search Algorithm.

Keywords-Optimus Scheduler, Tabu Search Heuristic Algorithm, Virtual Machine, Data Center, First Fit

__*****___

I. INTRODUCTION
The algorithm proposed in this chapter is characterized as

online because application requests are received consecutively,
each one at a different time. For each application request, the
decision to make is which server will host each requested VM
for that application. After the decision is made, the hypervisors
of the target servers create the VMs in real time. The objective
is to minimize delay among VMs, maximize the network
throughput available among VMs, and minimize the server
energy consumption. The application elasticity is also taken
into account, that is, the workload is expected to increase and
decrease over time. Our placement strategy can be
characterized as:

1. based on application graph,
2. communication-aware,
3. energy-efficient,
4. and elastic.
In what follows, we explain each of these points

Figure 1: Graph of a multi-tier application.

II. RELATED WORKS

VM placement problem is a non-deterministic problem.
Number of virtual machine placement algorithms has been
studied in [1] that run under cloud computing environment.
This section explains some of the exiting virtual machine
placement approaches and their anomalies.

First Fit: It is a greedy approach. In this approach scheduler
visits the PM sequentially one by one and placed VM to first
PM that has enough resources. Each time when the new VM
arrived, scheduler starts searching the PM sequentially in the
data center till it finds the first PM that has enough resources. If
none of the physical machine satisfied the resource requirement
of the VM, then new PM is activated and assigns VM to the
newly activated PM. Main problem with this approach is that
load on the system can imbalanced.

Single Dimensional Best Fit: This methods use the single
dimension (CPU, memory, bandwidth etc.) for placing a VM.
When VM arrived, scheduler visit the Physical Machines in the
decreasing order of their capacity used in a single dimension
and place the VM to the first PM that has the enough resources.
That means VM place to the PM which used the maximum
capacity along with the given dimension. Problem with
approach is that it can increase the resource imbalancing
because resource in the cloud is multi-dimension (CPU,
memory, bandwidth etc.). So there may be a situation where a
host utilize their full CPU capacity while other resources such
as memory and bandwidth are underutilized.

Volume Based Best Fit: This heuristic used the volume of
the VM for placing a VM. This approach visits the Physical
Machines in a decreasing order of their volume and place VM

http://www.ijritcc.org/
mailto:name@xyz.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

160
IJRITCC | May 2017, Available @ http://www.ijritcc.org

to the first PM that has the enough resources. That means
Physical Machine which has the maximum volume will be
considered first.

Dot Product Based Fit: In this heuristic resource
requirement of virtual machine and the total capacity of the
physical machine along the specified dimensions are expressed
as vectors. Dot product of these two vectors is calculated and
then PMs are arranged into the decreasing order of their dot
product. For the proper utilization of the resources it is
necessary that the virtual machine which required more CPU
and less memory should be placed on the physical machine
which has low CPU and more memory utilization. This method
seems good, but it can choose the wrong PM, because they the
not using the length of virtual machine and the remaining
capacity of the physical machine.

Constraint based approach: Constraint based approaches are
use in the combinatorial search problems [2]. In these approach
some constraint are apply and these constraint must be fulfil
during VM placement. These constraints are Capacity
Constraints: For all dimension (CPU, memory and bandwidth)
of a given physical machine, sum of the resource utilize by all
VMs running in that host should be less than or equal to the
total available capacity of that physical machine. Placement
Constraints: All virtual machines must be placed on to the
available host. SLA constraint: VM should be placed to the PM
where it fulfils the SLA. Quality of services (QoS) constraint:
Some quality of services constraint such as throughput,
availability etc. must be considered during the VM placement.
Constraint Programming is useful where the input data is
already known. That means we know the demands of the VMs,
before calculating the cost function.

Bin packing problem: Bin packing problem [3] is a NP hard
problem. If PM and the VM are consider as a three dimension
object, then VM placement problem is similar to the bin
packing problem where item represent the VM and container
represent the PM. In the bin packing problem number of item
(VM) are placed inside a large container (PM). The aim is to
places a number of items into a single container as possible. So
that the number of container required to packing the item is
minimized. Bin packing problem is different from the VM
placement problem. In the bin packing problem bins can be
placed side by side or one on top of the other. But in the case of
VM placement, placing VMs side by side or one on top of the
other is not a valid operation. This is because the resource
cannot be reused by any other VM, once a resource is utilized
by a VM.

Stochastic Integer Programming: Stochastic Integer
Programming is used to optimize the problems, which involve
some unknown data. VM placement problem can be consider
as a Stochastic Integer Programming because resource demand
of the VM are known or it can be estimated and the objective is
to find the suitable host which consume less energy and
minimize the resources wastage. Stochastic Integer
Programming can be use where the future demands of the
resources are not known, but their probability distributions are
known or it can be calculated.

Genetic Algorithm: Genetic algorithm is a global search
heuristics. It is useful where objective functions changed
dynamically. This approach is inspired by the evolutionary
biology such as inheritance. Genetic Algorithm can be use to
solve the bin packing problem with some constraints. It is
useful for the static VM placements, where the resource
demands do not vary during a predefine period of time.

Ahmad NaharQuttoum et al. [4] presented a Smart
Placement Approach (SPA) that provides for smart placement
maps of VDNs over CDNs. In this, author pointed out that
choosing the placement maps for such VDNs should satisfy its
requirements while: maintaining load-balancing over the
hosting CDNs, guaranteeing its Quality of Service (QoS)
levels, and assuring low placement costs. The VDNs are
usually hosted over physical networks; overlaying its resources
to gain the dynamic required services. Cloud-service
Datacenter Networks (CDNs) can provide such a service under
a delivery model that is called Infrastructure as a Service
(IaaS).

CHONGLIN GU et al. [5] proposed a tree regression-based
method to accurately measure the power consumption of VMs
on the same host. The merits of this method are that the tree
structure will split the data set into partitions, and each is an
easy-modeling subset. Cloud computing is developing so fast
that more and more data centers have been built every year.
This naturally leads to high-power consumption. Virtual
machine (VM) consolidation is the most popular solution based
on resource utilization. In fact, much more power can be saved
if we know the power consumption of each VM. Therefore, it
is significant to measure the power consumption of each VM
for green cloud data centers. Since there is no device that can
directly measure the power consumption of each VM,
modeling methods have been proposed. However, current
models are not accurate enough when multi-VMs are
competing for resources on the same server. One of the main
reasons is that the resource features for modeling are correlated
with each other, such as CPU and cache.

Zhaoning Zhang et al. [6][7] defined that Infrastructure as a
service (IaaS) allows users to rent resources from the Cloud to
meet their various computing requirements. The pay-as-you-
use model, however, poses a nontrivial technical challenge to
the IaaS cloud service providers: how to fast provision a large
number of virtual machines (VMs) to meet users’ dynamic
computing requests? We address this challenge with
VMThunder, a new VM provisioning tool, which downloads
data blockson demand during the VM booting process and
speeds up VM image streaming by strategically integrating
peer-to-peer (P2P) streaming techniques with enhanced
optimization schemes such as transfer on demand, cache on
read, snapshot on local, and relay on cache. In particular,
VMThunder stores the original images in a share storage and in
the meantime it adopts a tree-based P2P streaming scheme so
that common image blocks are cached and reused across the
nodes in the cluster.

Jiaxin Li et al. [1] proposed a Layered Progressive resource
allocation algorithm for multi-tenant cloud data centers based
on the Multiple Knapsack Problem (LP-MKP). The LP-MKP
algorithm uses a multi-stage layered progressive method for
multi-tenant VM allocation and efficiently handles unprocessed
tenants at each stage. This reduces resource fragmentation in
cloud data centers, decreases the differences in the QoS among
tenants, and improves tenants’ overall QoS in cloud data
centers.

Gursharan Singh et al. [2] proposed a technique that
reduces the size of data image stored on source host before
migration. When a Virtual Machine migrates to another host,
the data image for that VM is kept in the source host after
removing unwanted data according to the probability factor.
When the VM migrates back to the original host later, the kept
memory image will be “reused”, i.e. data which are identical to
the kept data will not be transferred and comparative to existing

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

161
IJRITCC | May 2017, Available @ http://www.ijritcc.org

system the size of memory image is small. To validate this
approach, results evaluated using different threshold levels and
probability factor of change in data. Proposed system required
less memory to store the memory image and allow more VMs
to be hosted.

Narander Kumar et al. [3] focused on quantitative analysis
of live migration within a cloud data centre with the aim of
understanding the factors which are responsible for cloud’s
efficiency. Various key parameters, such as, virtual machine
size, network bandwidth available and dirty rate of a cloud
application are discussed in detail and given the comparisons
also, to give a clear view of their role in live migration’s
performance. The analysis presented in this paper gives a
proper platform for considering future enhancements and/or
modifications in the existing migration technology.

Aarti Singh et al. [7] proposed an Autonomous Agent
Based Load Balancing Algorithm (A2LB) which provides
dynamic load balancing for cloud environment. Cloud
Computing revolves around internet based acquisition and
release of resources from a data center. Being internet based
dynamic computing; cloud computing also may suffer from
overloading of requests. Load balancing is an important aspect
which concerns with distribution of resources in such a manner
that no overloading occurs at any machine and resources are
optimally utilized. However this aspect of cloud computing has
not been paid much attention yet. Although load balancing is
being considered as an important aspect for other allied internet
based computing environments such as distributed computing,
parallel computing etc. Many algorithms had been proposed for
finding the solution of load balancing problem in these fields.
But very few algorithms are proposed for cloud computing
environment. Since cloud computing is significantly different
from these other types of environments, separate load balancing
algorithm need to be proposed to cater its requirements.

S. Sohrabi et al. [8] introduced two new virtual machine
selection policies, Median Migration Time and Maximum
Utilization, and show that they outperform existing approaches
on the criteria of minimising energy consumption, service level
agreement violations and the number of migrations when
combined with different hotspot detection mechanisms.
Applications are first assigned to virtual machines which are
subsequently placed on the most appropriate server host. If a
server becomes overloaded, some of its virtual machines are
reassigned. This process requires a hotspot detection
mechanism in combination with techniques that select the
virtual machine(s) to migrate.

Mohammad Mehedi Hassan et al. [9] proposed a cost
effective and dynamic VM allocation model based on Nash
bargaining solution. With various simulations it is shown that
the proposed mechanism can reduce the overall cost of running
servers while at the same time guarantee QoS demand and
maximize resource utilization in various dimensions of server
resources.

Christina Terese Josepha et al. [10] proposed a novel
technique to allocate virtual machines using the Family Gene
approach. Experimental analysis proves that the proposed
approach reduces energy consumption and the rate of
migrations, The concept of virtualization forms the heart of
systems like the Cloud and Grid. Efficiency of systems that
employ virtualization greatly depends on the efficiency of the
technique used to allocate the virtual machines to suitable
hosts. The literature contains many evolutionary approaches to
solve the virtual machine allocation problem, a broad category
of which employ Genetic Algorithm.

Antony Thomas et al. [11] introduced an improved
scheduling algorithm after analyzing the traditional algorithms
which are based on user priority and task length. High
prioritized tasks are not given any special importance when
they arrive. Min-Min algorithm is used to reduce the make span
of tasks by considering the task length. Keeping this in mind,
cloud providers should achieve user satisfaction. Thus research
favours scheduling algorithms that consider both user
satisfaction and resources availability.

DoshiChintanKetankumar et al. [12] proposed a green
cloud broker for resource procurement problem by considering
the metrics of energy efficiency and environmental friendly
operations of the cloud service provider. Author used
mechanism design methods to decide the allocation and
payment for the submitted job dynamically and performed
experiments and show the results of comparisons of energy
consumption and emission of greenhouse gases between the
allocation decided by the proposed green cloud broker and a
without taking the green metric into consideration.

A. I. Awad et al. [13] proposed mathematical model using
Load Balancing Mutation (balancing) a particle swarm
optimization (LBMPSO) based schedule and allocation for
cloud computing that takes into account reliability, execution
time, transmission time, make span, round trip time,
transmission cost and load balancing between tasks and virtual
machine .LBMPSO can play a role in achieving reliability of
cloud computing environment by considering the resources
available and reschedule task that failure to allocate. Our
approach LBMPSO compared with standard PSO, random
algorithm and Longest Cloudlet to Fastest Processor (LCFP)
algorithm to show that LBMPSO can save in make span,
execution time, round trip time, transmission cost.

Arunkumar. G et al. [14] outlined the existing cloud
technologies, interoperability issues and possible solution to
overcome the problems. Most of the consumers are analyzing
the appropriateness of cloud to employ themselves for their
enterprise or personalized operations. Customers are self-
satisfied at the inception, but expectation changes. Based on
their business escalation it needs further adoption of modern
cloud services the existing cloud provider fails to offer. Hence
the user needs interoperability and portability to ship their
assets from one cloud to other cloud. The complication faced
by the customers in shifting their assets remains as a challenge
to be addressed.

AtulVikasLakra et al. [15] proposed a multi-objective task
scheduling algorithm for mapping tasks to a VMs in order to
improve the throughput of the datacenter and reduce the cost
without violating the SLA (Service Level Agreement) for an
application in cloud SaaS environment. The proposed
algorithm provides an optimal scheduling method. Most of the
algorithms schedule tasks based on single criteria (i.e execution
time). But in cloud environment it is required to consider
various criteria like execution time, cost, bandwidth of user etc.

Narander Kumar et al. [16] proposes a demand-based
preferential resource allocation technique that designs a
market-driven auction mechanism to identify users for resource
allocation based on their payment capacities and implements a
payment strategy based on a buyer’s service preferences. A
comparison is drawn between the proposed allocation
technique and the famous off-line VCG auction mechanism and
results show a performance benefit in revenues to service
provider, payments of cloud users besides ensuring an optimum
resources use.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

162
IJRITCC | May 2017, Available @ http://www.ijritcc.org

NidhiBansal et al. [17] developed a method to calculate cost
of QoS-driven task scheduling algorithm and compare with
traditional task scheduling algorithm in cloud computing
environment. It also defined many parameters that are to be
considered in QoS driven like makespan, latency and load
balancing. But allocation cost parameter is not considered in
QoS-driven scheduling algorithm. Minimizing the total
allocation cost is an important issue in cloud computing.

Mehmet Sahinoglua et al. [18] addressed a discrete event
CLOUD simulator, namely CLOURAM (CLOUD Risk
Assessor and Manager) to estimate the risk indices in large
CLOUD computing environments, comparing favorably with
the intractably theoretical Markov solutions or hand
calculations that are limited in scope. The goal is to optimize
the quality of a CLOUD operation and what countermeasures
to take to minimize threats to the service quality by reserve
planning of reserve crew members.

Mohammad Mehedi Hassan et al. [19] proposed an
automatic method, based on Multi-Objective Particle Swarm
Optimization, for the identification of power models of
enterprise servers in Cloud data centers. The average
consumption of a single data center is equivalent to the energy
consumption of 25.000 households. Modeling the power
consumption for these infrastructures is crucial to anticipate the
effects of aggressive optimization policies, but accurate and
fast power modeling is a complex challenge for high-end
servers not yet satisfied by analytical approaches.

III. PROPOSED OPTIMUS SCHEDULER ALGORITHM

FOR ADD, REMOVE OR RESIZE AN APPLICATION BY

USING TABU SEARCH ALGORITHM

Given that a VM scheduler in a cloud data center could

need to scale to more than 100,000 servers and VMs, we

developed a very efficient hierarchical heuristic based on tabu

search. We name the proposed method Optimus Scheduler

(OS). We exploit the fact that data center topologies are split

in clusters and sub clusters (pods). As the topology, each pod

in the test cases contains 1,600 servers that can host a total of

6,400 VMs. Then each pod has a separate scheduler that

handles VMs assigned to it. Each pod is split in racks of

servers-e.g., 40 racks of 40 servers. Each server in a rack is

symmetrical to the other servers in the same rack because they

are all connected to the same rack switch with the same link

capacity.

The general structure of the heuristic shown in flowing

Optimus Scheduler Algorithm has important differences in the

neighborhood relation between solutions, objective function

calculation, tabu list size, number of iterations before stopping.

the execution, and in the possibility to resize applications on

the fly.

In this problem, a solution S is a mapping between VMs

and servers. The neighborhood N(S) is the set of solutions that

differ in the placement of one of the VMs that is being

scheduled. To take advantage of the symmetry between

solutions, each possible movement is to move each VM to the

first available server in each rack. Thus, the number of

possible movements is reduced to the number of VMs to

schedule multiplied by the number of racks in a pod. The

reduction of movements is valid because the servers in the

same rack are equal in terms of delay. Furthermore, choosing

the first one available optimizes the second objective that is

the power consumption because a server will be activated only

if the previous ones were full. This assumes that servers are

sorted by energy efficiency in each rack. Thus, the first

available server will also be the most efficient one among all

availabilities.

The number of iterations q to keep a movement in the tabu

list is the square root of the neighborhood size. In this case, a

second restriction was added to the tabu movements. Each VM

that is moved to a server is then kept in that server for a

number of iterations that is half of the number of VMs to

schedule. Keeping a VM fixed in a new rack for a number of

iterations allows the other VMs to be moved to that rack, and

that solution with the whole application in a different rack can

be evaluated by the algorithm. When the solution does not

improve for MAX ITERATIONS the algorithm stops. That

value was set to the number of VMs to schedule multiplied by

the number of racks.

ALGORITHM

Step 1: function optimus Scheduler (Request, M)

Step 2: an← Request application

Step 3: if Request type is add then

Step 4: M ← Initial Greedy Solution(an, M)

Step 5: M ←TabuSearch(an, M)

Step 6: end if

Step 7: if Request type is remove then

Step 8: Remove an's VMs from M

Step 9: end if

Step 10: if Request type is resize then

Step 11: Remove an's VMs from solution M

Step 12: Add or remove VMs from an

Step 13: Place existing VMs in the same servers than before in

M

Step 14: if an has new VMs to schedule then

Step 15: M←InitialGreedySolution(an, M)

Step 16: M ←TabuSearch(an, M)

Step 17: end if

Step 18: end if

Step 19: end function

Step 20: function InitialGreedySolution(an, S)

Step 21: for each vm in vmsToSchedule(an) do

Step 22: Move vm to the server that least increases z(S)

Step 23: end for

Step 24: return S

Step 25: end function

Step 26: function TabuSearch (an, Current)

Step 27: S ← Current

Step 28: Best ← Current

Step 29: L← {}

Step 30: i ← 0

Step 31: repeat

Step 32: Choose the pair (c; s) 𝜖 N(S) - L that minimizes z

when moving vm to s in S.

Step 33: Move c to s in S

Step 34: Add (c; s) to tabu list L for q iterations

Step 35: i ← i + 1

Step 36: if z(S) <z(Best) then

Step 37: Best ← S

Step 38: i ← 0

Step 39: end if

Step 40: until i = MAX ITERATIONS

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

163
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Step 41: return Best

Step 42: end function

IV. RESULTS AND DISCUSSIONS

This section analyzes the proposed Optimus Scheduler (OS)
for the case study, and compares OS with First Fit (FF) policy.
We first analyze an initial period when the applications are
deployed, and then the whole day with a varying workload.

A. Initial Period

We first added 800 applications with a total of 5,027 VMs
corresponding to the workload between 5 PM and 6 PM to a
pod of 1,600 servers. For each application, OS uses the tabu
search algorithm to place its VMs. In another experience with
the same applications and VMs, the policy to place each VM
was FF that is to choose for each VM the first server with
enough capacity.

Table 1 shows the results obtained by the two policies. The
average transmission delay was 70% higher in FF than in OS,
and the average link utilization was 9.9% higher in FF than OS.
That is because OS has the minimization of delay as first
priority, and FF does not take traffic into account to place VMs.
When an application with multiple VMs is deployed, FF picks
the first the server for the first VM. If that server has not
enough space for the second VM, then it will be placed in a
second server. The traffic between these VMs will use the links
between the servers and the rack switch. On the other hand, OS
will pick a server with enough space for two VMs, and the
traffic between both VMs will be kept within the server and
will not use any link.

Table 1: Optimus Scheduler vs First-Fit after adding 800 applications

Solution OS (Optimus

Scheduler)

FF

(First-

Fit)

Average Delay 12.3𝜇s 19.6 𝜇s

Average Link Utilization 12.3% 24.0%

Average Inter Switch Link

Utilization

11.2% 12.3%

Maximum Inter Switch

Link Utilization

32.2% 36.7%

Number of VMs 5,027 5,027

Number of servers 1,258 1,257

Total power 267.5 kW 267.4

kW

Considering the links that connect rack and pod switches,

the average link utilization was 1.4% higher in FF than OS.
That improvement is because OS minimizes delay by placing
the VMs of each application in a single rack, and reduces the
use of inter-rack links. Because FF places the VMs of an
application in consecutive servers, they will often be placed in
the same rack. However, when a rack is almost full, an
application will be split and the links between rack and pod
switches will be used. As we will see, the difference between
OS and FF is larger when applications are resized over the day.

With respect to power consumption, both mechanisms are
power-efficient because they tend to fill an active server with
VMs before turning on an inactive server. In some cases, OS
will temporally consume more power because it will prefer to
turn on a server to place VMs of the same application in the
same rack. However, the VMs of the next applications will use
the server that had been kept partially occupied, and the total
number of servers used is almost the same.

OS minimizes power consumption by taking into account
the consumption of each type of server. In the case shown, all
the racks have servers with the same type of energy
consumption. When racks of energy-efficient servers and
energy-inefficient servers are alternated, OS consumes 332kW
and FF, 357 kW, an 8% advantage for OS.

B. Workload

Once the 800 applications are deployed, we consider a

workload that varies over the day. Each application is resized

each hour according to the maximal workload expected for

that hour. New VMs are deployed when the workload

increases in size, and VMs are removed in periods where the

workload decreases. Figure 7.1 shows the number of VMs

used to match the workload in each period and the power

consumption achieved by CC in a pod of 1,600 servers.

Figure 2: Number of VMs used and power consumption in

each period.

First, we compare how much energy is saved by considering
the variation of workload instead of dimensioning for the peak
period. In this case, the peak period is at 9 PM when 291.8 kW
are consumed by the VMs placed by OS in a pod, or 23.3 MW
if the pod power consumption is extrapolated to the whole data
center. If the servers used in that peak period consume that
power during a year, 204.4 millions kWh would be consumed.
Multiplying by an electricity price of $0.16 / kWh gives a
total of $32.7 millions for the electricity employed by the data
center during a year. Using OS to resize applications during
the day and suspending unused servers saves 4.9% of energy
consumption, which becomes $1.6 millions per year. These
savings are from the cloud provider point of view. Users that
deploy applications would achieve higher savings in the cost
paid to the provider to host VMs. Applications whose
workload have more variability during the day benefit the
most.
 OS is then compared to the FF policy at the time of
resizing applications each hour of the day. Table 2 presents
results of both policies in the peak period. The first remark
that can be highlighted is that FF produces 47% more delay
than OS. That also implies that the links are 10.3% more used,
thus increasing the queuing delay and degrading the QoS. In
particular, links that connect rack switches with pod switches
reach up to 80% utilization in FF. That is because 32 racks are
used and 8 racks remain free after placing the applications in
the initial period. VMs added in high activity periods are then
placed in the last racks.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

164
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Table 2:Optimus Scheduler vs First-Fit in the highest period (9 PM)

Solution Optimus Scheduler First-Fit

Average Delay 13:5 μs 19:9 μs

Average link utilization 20.7% 31.0%

Average Inter Switch Link
Utilization

15.2% 27.3%

Maximum Inter Switch Link
Utilization

47.0% 80.0%

Number of VMs 5,490 5,490

Number of servers 1,385 1,373

Total power 291.8 kW 290.6 kW

 The traffic of the new VMs is directed to the load
balancers placed in the first racks using the links between rack
and pod switches. On the other hand, OS uses 40 racks from
the starting period leaving available space in each rack for
VMs that arrive in high periods. Then, OS places each new
VM in the rack that hosts the corresponding application and
thus reduces the link utilization between racks and improves
the QoS. The cost to pay is that 12 more servers are used in the
pod of 16,000 servers, and power consumption increases 0.4%
compared to FF in the case where all servers are equally
energy-efficient. The energy consumed in the whole day is
0.3% higher in OS than FF because a few more servers were
used to improve the QoS.

C. Execution Time

The execution time of OS was evaluated for different
application sizes and number of servers. To vary the
application size, an empty pod with 1,600 servers was
gradually filled with applications with between 6 and 40 VMs
each. For each application, the time to schedule the application
was recorded. With that information, the average execution
time for each application size was calculated as seen in Figure
2.

To analyze the variation of scheduling time as a function
of the network size, the number of VMs in each application
was set as 20 and we varied the number of racks, with 40
servers per rack. For each network size, applications are
scheduled until all the servers are full with VMs. The average
scheduling time was calculated for each test. Figure 3 shows
that the scheduling time of an application grows linearly as a
function of the number of racks or servers. In particular,
scheduling an application with 20 VMs in a pod of 1,600
servers take an average of 283 ms.

Concerning the workload variation over the day, the
scheduler must resize each application each hour of the day.
That implies choosing the servers to place new VMs in the
periods when an application expands. The fact that only the
new VMs are deployed makes the operation very quick
compared to the operation of initial application deployment.
Adding800 applications with their 5,027 VMs in a pod of
1,600 servers took 33 seconds in the initial period. Resizing
those same applications only took a total of half a second in
each period.

Figure 3: Average scheduler execution time over the application size

Figure 4: Average scheduler execution time over the network size

D. Discussions of the Results

The method proposed in this chapter shows the importance

of taking the traffic among VMs into account to improve the

QoS. The minimization of delay implies that VMs that

communicate among themselves are placed in nearby servers

and have more communication bandwidth available. This also

provokes that links are less used and thus reduces the queuing

delay. The reduction in delay, probability of congestion, and

increase in throughput implies that the application QoS is

improved.

An alternative to reduce the queuing delay and increase

throughput among VMs is to augment the link capacity

between switches. Topologies such as Fat tree [20] and VL2

[21] achieve full bisectional bandwidth and each pair of

servers can communicate close to the maximal capacity of

their network cards. However, that approach has a high cost in

number of switches and power consumption that could be not

justified when not all the applications require high throughput

among VMs. These topologies are indeed useful for specific

applications that do require an all to all communication pattern

such as Hadoop clusters.

Experiences in this chapter study communication delay,

throughput, and link utilization, metrics that vary depending

on which server host each VM. The server processing time

was not included because the processing power is a fixed

requirement of each VM type, e.g., in number of virtual CPUs

in a specific frequency. The number of VMs that will be

assigned to an application will determine the number of

requests per unity of time that each VM will handle and its

processing time. However, the total response time is composed

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 159 – 165

165
IJRITCC | May 2017, Available @ http://www.ijritcc.org

of the processing time of each VM that participates, e.g., load

balancer, web server, database, memcache, and the

communication delay. The way these times are combined is

difficult to predict precisely because that will depend how the

application is implemented. For instance, if a web VM makes

requests to multiple databases in parallel or in a sequential

fashion. We believe that the relation between communication

delay and total response time should be analyzed through

measurements in specific implementations. The fact that the

transmission time is expressed in microseconds should not

mislead to think that is negligible compared to a total response

time in milliseconds because each application request can

require multiple internal requests among VMs and because if

congestion is not avoided the queuing delay could increase. As

this chapter shows, our approach reduces congestion and

communication delay and the total response time as a result.

V. CONCLUSION
This chapter presented an online method to place VMs in

servers that optimizes communication among VMs and power
consumption. The proposed scheduler considers server
heterogeneity and VMs with different types of requirements.
Taking advantage of regular network topologies makes
possible to scale in the delay calculation and parallelization on
multiple clusters.

Furthermore, the proposed scheduler considers the elasticity
of applications to improve the QoS of VMs that arrive in peak
periods. The method was formalized through a Mixed Integer
Programming (MIP) model and a heuristic was developed
scaling to more than 100,000 servers and applications.
Applications can be added and removed on the y, and the
number of VMs of an application can be changed to match the
workload that varies over the day. A case study shows the
advantages of the proposed approach. Compared to first-fit
policy, the delay among VMs is reduced by 70% and the most
used network links are decreased a 33%. We also found that a
4.9% of power consumption is saved compared to statically
provisioning of resources for the peak period. In a large data
center with 128,000 servers, these annual savings represent
$1.6 millions when the energy is charged $0.16 / kWh. Using
first-fit in each period of the day taking into account the
varying workload achieved 0.3% less energy consumption than
our approach. That is because a few more servers were
activated, which is a small price to pay that gives important
benefits on the QoS. These results show that the proposed
scheduler can be a key element in the management of a cloud
provider contributing competitive advantages in QoS, energy
consumption, and costs.

REFERENCES
[1] Jiaxin Li, Dongsheng Li, Yuming Ye, Xicheng Lu, "Efficient Multi-

Tenant Virtual Machine Allocation in Cloud Data Centers", TSINGHUA
SCIENCE AND TECHNOLOGY, ISSN: 1007-0214, Volume 20,
Number 1, February 2015, pp: 81-89.

[2] Gursharan Singh, Sunny Behal, Monal Taneja, "Advanced Memory
Reusing Mechanism for Virtual Machines in Cloud Computing", 3rd
International Conference on Recent Trends in Computing, Vol: 57, 2015,
pp: 91-103.

[3] Narander Kumar, Swati Saxena, "Migration Performance of Cloud
Applications- A Quantitative Analysis", International Conference on
Advanced Computing Technologies and Applications, Vol. 45, 2015, pp:
823-831.

[4] Ahmad Nahar Quttoum, Mohannad Tomar, Bayan Khawaldeh, Rana
Refai, Alaa Halawani, Ahmad Freej, “SPA: Smart Placement Approach
for Cloud-service Datacenter Networks”, The 10th International
Conference on Future Networks and Communications, Vol: 56, 2015,
pp: 341-348.

[5] Chonglin Gu, Pengzhou Shi, Shuai Shi, Hejiao Huang, Xiaohua Jia, "A
Tree Regression-Based Approach for VM Power Metering", Special
Section On Big Data For Green Communications And Computing,
IEEE, June 1, 2015.

[6] Zhaoning Zhang, Ziyang Li, Kui Wu, Dongsheng Li, Huiba Li, Yuxing
Peng, Xicheng Lu, "VMThunder: Fast Provisioning of Large-Scale
Virtual Machine Clusters", IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, Vol. 25, No. 12, DECEMBER 2014.

[7] Aarti Singh, Dimple Juneja, Manisha Malhotra, "Autonomous Agent
Based Load Balancing Algorithm in Cloud Computing", International
Conference on Advanced Computing Technologies and Applications,
Vol: 45, 2015, pp: 832-841.

[8] S. Sohrabi, I. Moser, "The Effects of Hotspot Detection and Virtual
Machine Migration Policies on Energy Consumption and Service Levels
in the Cloud", ICCS, Vol: 51, 2015, pp: 2794-2798.

[9] Mohammad Mehedi Hassan, Atif Alamri, "Virtual Machine Resource
Allocation for Multimedia Cloud: A Nash Bargaining Approach",
International Symposium on Emerging Inter-networks, Communication
and Mobility, Vol: 34, 2015, pp: 571-576.

[10] Christina Terese Josepha, Chandrasekaran K, Robin Cyriaca, "A Novel
Family Genetic Approach for Virtual Machine Allocation", International
Conference on Information and Communication Technologies, Vol: 46,
2015.

[11] Antony Thomas, Krishnalal G, Jagathy Raj V P, "Credit Based
Scheduling Algorithm in Cloud Computing Environment", International
Conference on Information and Communication Technologies, Vol: 46,
2015, pp: 913-920.

[12] Doshi Chintan Ketankumar, Gaurav Verma, K. Chandrasekaran, "A
Green Mechanism Design Approach to Automate Resource Procurement
in Cloud", Eleventh International Multi-Conference on Information
Processing, Vol: 54, 2015, pp: 108-117.

[13] A.I.Awad, N.A.El-Hefnawy, H.M.Abdel_kader, "Enhanced Particle
Swarm Optimization For Task Scheduling In Cloud Computing
Environments", International Conference on Communication,
Management and Information Technology, Vol: 65, 2015, pp: 920-929.

[14] Arunkumar. G, Neelanarayanan Venkataraman, "A Novel Approach to
Address Interoperability Concern in Cloud Computing", 2nd
International Symposium on Big Data and Cloud Computing, Vol: 50,
2015, pp: 554-559.

[15] Atul Vikas Lakra, Dharmendra Kumar Yadav, "Multi-Objective Tasks
Scheduling Algorithm for Cloud Computing Throughput Optimization",
International Conference on Intelligent Computing, Communication &
Convergence, Vol: 48, 2015, pp: 107-113.

[16] Narander Kumar, Swati Saxena, "A Preference-based Resource
Allocation In Cloud Computing Systems", 3rd International Conference
on Recent Trends in Computing, Vol: 57, 2015, pp: 104-111.

[17] Nidhi Bansal, Amitab Maurya, Tarun Kumar, Manzeet Singh, Shruti
Bansal, "Cost performance of QoS Driven task scheduling in cloud
computing", Third International Conference on Recent Trends in
Computing, Vol: 57, 2015, pp: 126-130.

[18] Mehmet Sahinoglua, Sharmila Ashokan, Preethi Vasudev, "Cost-
Efficient Risk Management with Reserve Repair Crew Planning in
CLOUD Computing", Cost-Efficient Risk Management with Reserve
Repair Crew Planning in CLOUD Computing, Vol: 62, 2015, pp: 335-
342.

[19] Patricia Arroba, Jos´e L. Risco-Mart´ın, Marina Zapater, Jos´e M. Moya,
Jos´e L. Ayala, Katzalin Olcoz, "Server Power Modeling for Run-time
Energy Optimization of Cloud Computing Facilities", 6th International
Conference on Sustainability in Energy and Buildings, Vol: 62, pp:
2014, pp: 401-410.

[20] U.S. Energy Information Administration, “Average retail price of
electricity to ultimate customers by end-use sector," May 2013.

[21] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture," in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4, 2008, pp. 63-74.

http://www.ijritcc.org/

