
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 145 – 150

145
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Proposed Energy Aware Scheduling Algorithm in Data Center by using

MapReduce

Dr. M. Sughasiny

Assistant Professor, Department of Computer Science

Srimad Andavan Arts and Science College (Autonomous)

Trichy, Tamilnadu, India

sughasiny5.cs@gmail.com

G. Murali

Research Scholar, Department of Computer Science

Srimad Andavan Arts and Science College (Autonomous)

Trichy, Tamilnadu, India

gmuralimphil.cs@gmail.com

Abstract—The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-

source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the

energy costs a considerable fraction of the data center's overall costs. Therefore minimizing the energy consumption when

executing each MapReduce job is a critical concern for data centers. We propose a framework for improving the energy efficiency

of MapReduce applications, while satisfying the service level agreement (SLA). We first model the problem of energy-aware

scheduling of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called Energy-aware

MapReduce Scheduling Algorithms (EMRSA-I and EMRSA-II), that find the assignments of map and reduce tasks to the machine

slots in order to minimize the energy consumed when executing the application. We perform extensive experiments on a Hadoop

cluster to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite

including TeraSort, PageRank, and K-means Clustering, and then use this data in an extensive simulation study to analyze the

performance of the proposed algorithms. The results show that EMRSA-I and EMRSA-II are able to find near optimal job

schedules consuming approximately 40% less energy on average than the schedules obtained by a common practice scheduler that

minimizes the makespan.
Keywords-Big Data, Hadoop, MapReduce, Energy Aware Scheduling Algorihtms, Terasort, Page Rank, Machine Learning, Web Search,

Micro Benchmarks

__*****___

I. INTRODUCTION

Several businesses and organizations are faced with an
ever-growing need for analyzing the unprecedented amounts of
available data. Such need challenges existing methods, and
requires novel approaches and technologies in order to cope
with the complexities of big data processing. One of the major
challenges of processing data intensive applications is
minimizing their energy costs. Electricity used in US data
centers in 2010 accounted for about 2% of total electricity used
nationwide [1]. In addition, the energy consumed by the data
centers is growing at over 15% annually, and the energy costs
make up about 42% of the data centers' operating costs [2].
Considering that server costs are consistently falling, it should
be no surprise that in the near future a big percentage of the
data centers' costs will be energy costs. Therefore, it is critical
for the data centers to minimize their energy consumption when
offering services to customers.

 Big data applications run on large clusters within data
centers, where their energy costs make energy efficiency of
executing such applications a critical concern. MapReduce [3]
and its open-source implementation, Hadoop [4], have emerged
as the leading computing platforms for big data analytics. For
scheduling multiple MapReduce jobs, Hadoop originally
employed a FIFO scheduler. To overcome the issues with the
waiting time in FIFO, Hadoop then employed the Fair
Scheduler [5]. These two schedulers, however, do not consider
improving the energy efficiency when executing MapReduce
applications. Improving energy efficiency of MapReduce
applications leads to a significant reduction of the overall cost
of data centers. In this chapter, we design MapReduce
scheduling algorithms that improve the energy efficiency of
running each individual application, while satisfying the
service level agreement (SLA). Our proposed scheduling

algorithms can be easily incorporated and deployed within the
existing Hadoop systems.

 In most of the cases, processing big data involves
running production jobs periodically. For example, Facebook
processes terabytes of data for spam detection daily. Such
production jobs allow data centers to use job profiling
techniques in order to get information about the resource
consumption for each job. Job profiling extracts critical
performance characteristics of map and reduce tasks for each
underlying application. Data centers can use the knowledge of
extracted job profiles to pre-compute new estimates of jobs'
map and reduce stage durations, and then construct an
optimized schedule for future executions. Furthermore, the
energy consumption of each task on a machine can be profiled
using automatic power-meter tools such as PDU Power Strip
[6], which is currently a standard practice in data centers. Many
researchers studied different profiling techniques [7][8], and
several MapReduce scheduling studies rely on such techniques
[9][10]. Our proposed algorithms schedule MapReduce
production jobs having as the primary objective the
minimization of energy consumption.

 Most of the existing research on MapReduce
scheduling focused on improving the makespan (i.e.,
minimizing the time between the arrival and the completion
time of an application) of the MapReduce job's execution (e.g.,
[11[12][13][14]). However, makespan minimization is not
necessarily the best strategy for data centers. Data centers are
obligated to deliver the services by their specified deadlines,
and it is not in their best interests to execute the services as fast
as they can in order to minimize the makespan. This strategy
fails to incorporate significant optimization opportunities
available for data centers to reduce their energy costs. The
majority of production MapReduce workloads consists of a

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 145 – 150

146
IJRITCC | May 2017, Available @ http://www.ijritcc.org

large number of jobs that do not require fast execution. By
taking into account the energy consumed by the map and
reduce tasks when making scheduling decisions, the data
centers can utilize their resources efficiently and reduce the
energy consumption. Our proposed energy-aware scheduling
algorithms capture such opportunities and significantly reduce
the MapReduce energy costs, while satisfying the SLA.

II. ENERGY AWARE SCHEDULING PROBLEM

 A MapReduce job comprising a specific number of
map and reduce tasks is executed on a cluster composed of
multiple machines. The job's computation consists of a map
phase followed by a reduce phase. In the map phase, each map
task is allocated to a map slot on a machine, and processes a
portion of the input data producing key-value pairs. In the
reduce phase, the key-value pairs with the same key are then
processed by a reduce task allocated to a reduce slot. As a
result, the reduce phase of the job cannot begin until the map
phase ends. At the end, the output of the reduce phase is
written back to the distributed file system. In Hadoop, job
scheduling is performed by a master node running a job
tracker process, which distributes jobs to a number of worker
nodes in the cluster. Each worker runs a task tracker process,
and it is configured with a fixed number of map and reduce
slots. The task tracker periodically sends heartbeats to the job
tracker to report the number of free slots and the progress of
the running tasks.
 We consider a big data application consisting of a set
of M map and R reduce tasks that needs to be completed by
deadline D. Tasks in each set can be run in parallel, but no
reduce task can be started until all map tasks for the
application are completed. Let M and R be the set of map and
reduce tasks of the application, and A and B the set of slots on
heterogeneous machines available for executing the map and
the reduce tasks, respectively. The number of slots for each
machine is decided by the system administrators when the
Hadoop cluster is setup and each slot can handle only one map
or reduce task at a time. Since we consider a heterogeneous
cluster, the execution speed of a task on different slots from
different machines may not be the same. Also, the energy
required to execute a task on different slots may not be the
same. We denote by eij the difference between energy
consumption of slot 𝑗 ∈ 𝐴, 𝐵 Bg when executing task
𝑖 ∈ 𝑀, 𝑅 and its idle energy consumption. In addition, we
denote by pij the processing times of task 𝑖 ∈ 𝑀, 𝑅 when
executed on slot 𝑗 ∈ 𝐴, 𝐵 . We assume that the processing
time of the tasks is known. In doing so, we use the knowledge
of extracted job profiles to pre-compute the processing time of
map and reduce tasks, along with their energy consumption.
We define an indicator variable 𝛿𝑖𝑗 , ∀𝑡, 𝑖 ∈ 𝑀 ∪ 𝑅
characterizing the dependencies of the map and reduce tasks as
follows:

𝛿𝑡𝑖 =
1 𝐼𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑠𝑕𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑠𝑘 𝑡
0 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1)
We formulate the Energy-Aware MapReduce Scheduling
problem as an Integer Problem (called EMRS-IP) as follows:
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒𝑖𝑗𝑋𝑖𝑗 + 𝛿𝑡𝑖𝑒𝑖𝑗𝑌𝑖𝑗𝑡 ∈ℳ ∪ℛ𝑖 ∈ ℛ𝑗 ∈ℬ 𝑖∈ℳ𝑗∈𝒜

 (5.2)
Subject to
 𝑋𝑖𝑗 = 1, ∀𝑖 ∈ ℳ𝑗 ∈𝐴

 (5.3)

 𝛿𝑡𝑖𝑡 ∈ℳ ∪ℛ𝑗∈ ℬ 𝑌𝑖𝑗 = 1, ∀𝑖 ∈ ℛ

 (5.4)
 𝑝𝑖𝑗𝑋𝑖𝑗 +𝑗 ∈ℳ

 𝛿𝑡𝑖𝑝𝑖𝑗 ′ ∈ℳ ∪ℛ𝑖∈ℛ 𝑌𝑖𝑗 ′ ≤ 𝐷

∀𝑗 ∈ 𝒜, ∀𝑗′ ∈ ℬ
 (5.5)
𝑋𝑖𝑗 = 0,1 , ∀ 𝑖 ∈ ℳ, 𝑗 ∈ 𝐴

 (5.6)
𝑌𝑖𝑗 = 0,1 , ∀ 𝑖 ∈ ℛ, 𝑗 ∈ ℬ

 (5.7)
where the decision variables are Xij and Yij are defined as
follows:

𝑋𝑖𝑗 =
1 𝐼𝑓 𝑚𝑎𝑝 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑙𝑜𝑡 𝑗
0 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (5.8)

𝑌𝑖𝑗 =
1 𝐼𝑓 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑙𝑜𝑡 𝑗

0 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (5.9)

 The objective function is to minimize the energy
consumed when executing the MapReduce application
considering the dependencies of reduce tasks on the map tasks.
Constraints (5.3) ensure that each map task is assigned to a
slot for execution. Constraints (5.4) ensure that each reduce
task is assigned to a slot. Constraints (5.5) ensure that
processing time of the application does not exceed its
deadline. Constraints (5.6) and (5.7) represent the integrality
requirements for the decision variables. The solution to
EMRS-IP consists of X and 𝑌 where

𝑌𝑖𝑗 = 𝛿𝑖𝑗𝑌𝑖𝑗 , 𝑖 ∈𝑡 ∈ℳ ∪ℛ ℛ,and j ∈ ℬ

 Note that based on constraints (5.5), the scheduler can
assign all reduce tasks after finishing all map tasks without
exceeding the deadline. This is due to the fact that these
constraints can be interpreted as
𝑚𝑎𝑥∀ 𝑗 ∈𝒜 𝑝𝑖𝑗𝑋𝑖𝑗𝑖 ∈ℳ + 𝑚𝑎𝑥∀𝑗′∈ℬ 𝑝𝑖𝑗 ′𝑌𝑖𝑗 ′ ≤ 𝐷𝑖∈ℛ

As a result, all reduce tasks can be assigned after time

𝑚𝑎𝑥∀ 𝑗 ∈𝒜 𝑝𝑖𝑗𝑋𝑖𝑗

𝑖 ∈ℳ

 In addition, the scheduler can assign multiple map
tasks to a machine, as well as multiple reduce tasks. This is
due to the fact that in big data applications the number of tasks
is greater than the number of machines available in a cluster.
The focus of this study is the detailed placement of map and
reduce tasks of a job in order to reduce energy consumption.
While it is important to consider data placement in an
integrated framework for energy savings in data centers, data
placement is beyond the scope of this study.

 At the high level the problem we consider may appear
as composed of two independent scheduling problems, one for
the map tasks and one for the reduce tasks. This would be the
case if the deadline for the map phase would be known. But
since the deadline for map tasks is not known from the
beginning, we cannot just simply divide the problem into two
scheduling sub problems and solve them independently. Our
proposed algorithms determine the map deadline as the tasks
are allocated and schedule the map and reduce tasks to reduce
the energy consumption of executing the job.

III. ENERGY AWARE MAPREDUCE SCHEDULING

ALGORITHM

 We design two heuristic algorithms called EMRSA-I
and EMRSA-II for solving the energy aware MapReduce
scheduling problem. Our proposed algorithms, EMRSA-I and

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 145 – 150

147
IJRITCC | May 2017, Available @ http://www.ijritcc.org

EMRSAII, take the energy efficiency differences of different
machines into account and determine a detailed task placement
of a MapReduce job into slots while satisfying the user
specified deadline. The two algorithms are presented as a
single generic algorithm called EMRSA-X, in the following
algorithm.
 The design of these algorithms requires a metric that
characterizes the energy consumption of each machine and
induces an order relation among the machines. We define such
a metric, called energy consumption rate of a slot j. EMRSA-I
and EMRSA-II use different. Energy consumption rate metrics
as follows:
 1) EMRSA-I uses energy consumption rate metrics based on
the minimum ratio of energy consumption and processing time
of tasks when executed on slot j, as follows:

𝑒𝑐𝑟𝑗
𝑚 = min∀𝑖∈ℳ

𝑒𝑖𝑗

𝑝𝑖𝑗
 , ∀𝑗 ∈ 𝒜 (5.10)

𝑒𝑐𝑟𝑗
𝑟 = min∀𝑖∈𝑅

𝑒𝑖𝑗

𝑝𝑖𝑗
 , ∀𝑗 ∈ ℬ (5.11)

where𝑒𝑐𝑟𝑗
𝑚 and 𝑒𝑐𝑟𝑗

𝑟 represent the energy consumption rate of

map slot j and reduce slot j, respectively.
 2) EMRSA-II uses energy consumption rate metrics
based on the average ratio of energy consumption and
processing time of tasks when executed on slot j, as follows:

𝑒𝑐𝑟𝑗
𝑚 =

𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈ℳ

𝑀
, ∀𝑗 ∈ 𝒜 (5.12)

𝑒𝑐𝑟𝑗
𝑟 =

𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈𝑅

𝑅
 , ∀𝑗 ∈ ℬ (5.13)

The ordering induced by these metrics on the set of slots
determines the order in which the slots are assigned to tasks,
that is, a lower 𝑒𝑐𝑟𝑗

𝑚 means that slot j has a higher priority to

have a map task assigned to it. Similarly, a lower 𝑒𝑐𝑟𝑗
𝑟 means

that slot j has a higher priority to have a reduce task assigned
to it. In addition, EMRSA-X uses the ratio of map and reduces
processing times, denoted by f, in order to balance the
assignment of map and reduce tasks. The ratio f is defined as
follows:

𝑓 =
 𝑝𝑖𝑗

𝑚
∀𝑖∈ℳ

 𝑝𝑖𝑗
𝑟

∀𝑖∈𝑅

This ratio is used in the task assignment process in each
iteration of EMRSA-X. As we already mentioned, we use job
profiling of production jobs to estimate the processing time of
map and reduce tasks. This information, extracted from job
profiling (i.e., the values of pijm and pijr) is used by EMRSA-
X to compute the ratio f.
 A key challenge when designing the algorithms is
that the user only species the deadline for the job and there is
no information on the deadline for completing the map phase.
However, since the reduce tasks are dependent on the map
tasks, the algorithms have to determine a reasonable deadline
for the map tasks with respect to the availability of the map
slots in the cluster in order to utilize its resources efficiently.
Our proposed algorithms find the assignments of map tasks to
the map slots satisfying the determined map deadline, and then
find the assignments of reduce tasks to the reduce slots
satisfying the deadline D, where all the reduce tasks start after
the map deadline. First, EMRSA-X determines the assignment
of large tasks in terms of their processing time, and the map
deadline according to such tasks. The reason that EMRSA-X
gives priority to large tasks is due to the hard deadline
constraint, and the fact that there may not be many choices for
large task placement con gurations to avoid exceeding the
deadline constraint. Then, EMRSA-X tries to close the

optimality gap by filling with smaller tasks the leftover time of
each slot based on the deadline. This leads to better utilization
of each machine in the cluster.
 EMRSA-X is given in Algorithm 1. EMRSA-X
builds two priority queues Q

m
 and Q

r
 to keep the order of the

map and reduce slots based on their energy consumption rates
(lines 1-8). Then, it initializes the deadlines for map tasks, D

m
,

and reduces tasks, D
r
, to infinity. In each iteration of the while

loop, the algorithm chooses the slots with the lowest energy
consumption rates (i.e., j

m
 and j

r
) from the priority queues, and

finds the task placement on the selected slots. For these slots,
the ratio of processing time of map tasks to that of the reduce
tasks, denoted by f, is calculated (line 13). Then, EMRSA-X
sorts the unassigned map and reduces tasks, if there is any,
based on their processing time on the selected slots (lines 14-
15). Then, it determines the assignments of large tasks based
on the metric f by calling ASSIGN-LARGE() (given in
Algorithm 2). Then, it finds the assignments of small tasks by
calling ASSIGN-SMALL() (given in Algorithm 3) if there is
any unallocated processing time on a slot. EMRSA-X assigns
a new task to a slot whenever the slot becomes available. At
the end of the first iteration, the algorithm sets the map and
reduces deadlines based on the allocated tasks (lines 19-21)
Algorithm 1- EMRSA – X
Step 1: Create an empty priority queue Q

m

Step 2: Create an empty priority queue Q
r

Step 3: for all 𝑗 ∈ 𝒜 do

Step 4: 𝑒𝑐𝑟𝑗
𝑚 = min∀𝑖∈ℳ

𝑒𝑖𝑗

𝑝𝑖𝑗
 for EMRSA -1 or

𝑒𝑐𝑟𝑗
𝑚 =

𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈ℳ

𝑀
for EMRSA – 2

Step 5: 𝑄𝑚 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑗, 𝑒𝑐𝑟𝑗
𝑚)

Step 6: for all 𝑗 ∈ ℬ do

Step 7: 𝑒𝑐𝑟𝑗
𝑟 = min∀𝑖∈𝑅

𝑒𝑖𝑗

𝑝𝑖𝑗
 for EMRSA -1 or

𝑒𝑐𝑟𝑗
𝑟 =

𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈𝑅

𝑅
for EMRSA – 2

Step 8: 𝑄𝑟 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑗, 𝑒𝑐𝑟𝑗
𝑟)

Step 9: 𝐷𝑚 ← ∞ ; 𝐷𝑟 ← ∞
Step 10: while 𝑄𝑚 is not empty and𝑄𝑟 is not empty do
Step 11: 𝑗𝑚 = 𝑄𝑚 . 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛()
Step 12: 𝑗𝑟 = 𝑄𝑟 . 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛()

Step 13: 𝑓 =
 𝑝𝑖𝑗

𝑚
∀𝑖∈ℳ

 𝑝𝑖𝑗
𝑟

∀𝑖∈𝑅

Step 14: 𝒯𝑚 : sorted unassigned map tasks 𝑖 ∈ ℳ based on 𝑝𝑖𝑗
𝑚

Step 15: 𝒯𝑟 : sorted unassigned reduce tasks 𝑖 ∈ 𝑅 based on

𝑝𝑖𝑗
𝑟

Step 16: if 𝒯𝑚 = ∅ and 𝒯𝑟 = ∅ then break
Step 17: ASSIGN-LARGE ()
Step 18: ASSIGN-SMALL ()
Step 19: if 𝐷𝑚 = ∞ then
Step 20: 𝐷𝑚 = 𝐷 − 𝑝𝑟
Step 21: 𝐷𝑚 = 𝑝𝑟
Step 22: if 𝒯𝑚 ≠ ∅ and 𝒯𝑟 ≠ ∅ then
Step 23: no feasible schedule
Step 24: Output: X,Y
We now describe the two procedures, ASSIGN-LARGE() and
ASSIGN-SMALL() into more details. ASSIGN-LARGE() is
given in Algorithm 2. ASSIGN-LARGE() selects the longest
map task im and reduce task ir from the sorted sets T m and T
r, respectively (lines 1- 2). Then it checks the feasibility of
allocating map task im to slot jm and reduce task ir to slot jrby

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 145 – 150

148
IJRITCC | May 2017, Available @ http://www.ijritcc.org

checking the total processing time of the tasks against the
deadline D (line 4).
Algorithm 2: ASSIGN-LARGE()
Step 1: 𝑖𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈ 𝒯𝑚 𝑝𝑡𝑗

𝑚

Step 2: 𝑖𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈ 𝒯𝑟𝑝𝑡𝑗
𝑟

Step 3: 𝑝𝑚 = 0; 𝑝𝑟 = 0
Step 4: if 𝑝𝑖

𝑚 𝑗𝑚 + 𝑝𝑖
𝑟 𝑗𝑟 ≤ 𝐷 𝑎𝑛𝑑 𝑝𝑖

𝑚 𝑗𝑚 ≤ 𝐷𝑚 𝑎𝑛𝑑 𝑝𝑖
𝑟𝑗𝑟 ≤

 𝐷𝑟 then
Step 5: 𝒯𝑚 = 𝒯𝑚 / 𝑖𝑚
Step 6: 𝒯𝑟 = 𝒯𝑟 / 𝑖𝑟
Step 7: 𝑝𝑚 = 𝑝𝑖

𝑚 𝑗𝑚

Step 8: 𝑝𝑟 = 𝑝𝑖
𝑟 𝑗𝑟

Step 9: 𝑋𝑖𝑚 𝑗𝑚 = 1

Step 10: 𝑌𝑖𝑟 𝑗 𝑟 = 1

Step 11: do
Step 12: 𝑖𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝑇𝑚 𝑝𝑡𝑗

𝑚

Step 13: 𝑖𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝑇𝑟𝑝𝑡𝑗
𝑟

Step 14: if f> 1 then

Step 15: while
𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚

𝑝𝑟 < 𝑓 𝑎𝑛𝑑 𝑝𝑚 + 𝑝𝑟 + 𝑝𝑖
𝑚 𝑗𝑚 ≤ 𝐷

and 𝑝𝑚+ 𝑝𝑖
𝑚 𝑗𝑚 ≤ 𝐷𝑚 𝑎𝑛𝑑 𝒯𝑚 ≠ ∅ do

Step 16: 𝒯𝑚 = 𝒯𝑚 \ 𝑖𝑚
Step 17: 𝑝𝑚 = 𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚
Step 18: 𝑋𝑖𝑚 𝑗𝑚 = 1

Step 19: 𝑖𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝒯 𝑚 𝑝𝑡𝑗
𝑚

Step 20: Balance the assignment of reduce tasks (Repeat lines
15-19 for reduce tasks)
Step 21: else
Step 22: The code for 𝑓 < 1 is similar to lines 15-20 and is
not presented here.
Step 23: while 𝑝𝑚 + 𝑝𝑟 + 𝑝𝑖

𝑚 𝑗𝑚 ≤ 𝐷 and 𝑝𝑚 + 𝑝𝑖
𝑚 𝑗𝑚 ≤

𝐷𝑚 and 𝑝𝑟 + 𝑝𝑖
𝑟 𝑗𝑟 ≤ 𝐷𝑟and (𝒯𝑚 ≠ ∅ 𝑜𝑟 𝒯𝑟 ≠ ∅)

If the assignment of map task im and reduce task ir is feasible,
the algorithm continues to select tasks from T

m
 and T

r
, and

updates the variables accordingly (lines 5-23). To keep the
assignments of the tasks in alignment with the ratio of
processing time f, the procedure balances the assignment. In
doing so, if f > 1 (i.e., the load of processing time of map tasks
is greater than that of reduce tasks) and the ratio of the current
assignment is less than f, then the algorithm assigns more map
tasks to balance the allocated processing time close to f (lines
15-20). If the ratio of the current assignment is greater than f,
the procedure assigns more reduce tasks to balance the
allocated processing time (lines 22).
Algorithm 3: ASSIGN-SMALL()
Step 1: {Assign small map tasks}
Step 2: 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝒯 𝑝𝑡𝑗

𝑚

Step 3: while 𝑝𝑚 + 𝑝𝑟 + 𝑝𝑖
𝑚 𝑗𝑚 ≤ 𝐷 and 𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚 ≤
𝐷𝑚 and 𝒯𝑚 ≠ ∅ do
Step 4: 𝒯𝑚 = 𝒯𝑚 \ 𝑖
Step 5: 𝑝𝑚 = 𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚

Step 6: 𝑋𝑖𝑗𝑚 = 1

Step 7: 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝑅 𝑝𝑡𝑗
𝑟

Step 8: 𝒯𝑟 = 𝒯𝑟\ 𝑖
Step 9: 𝑝𝑟 = 𝑝𝑟 + 𝑝𝑖

𝑟𝑗𝑟
Step 10: 𝑌𝑖𝑗 𝑟 = 1

Step 11: :𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝒯𝑟𝑝𝑡𝑗
𝑟

After allocating the map and reduce tasks with the largest
processing time, EMRSAX assigns small map and reduce
tasks while satisfying the deadline by calling
ASSIGNSMALL() (given in Algorithm 3). ASSIGN-

SMALL() selects the smallest map task i, and based on the
already assigned tasks and the remaining processing time of
the slot, it decides if allocating task i is feasible or not (line 3).
Then, it selects the smallest reduce task i, and checks the
feasibility of its assignment (line 10).
The time complexity of EMRSA-X is
O(A(M+logA)+B(R+logB)+min(A;B)(M logM+ RlogR)),
where A, B, M, and R are the number of map slots, the number
of reduce slots, the number of map tasks, and the number of
reduce tasks, respectively. The first two terms correspond to
the running time of the two for loops in lines 4-5 and 6-8,
while the third term corresponds to the running time of the
while loop in lines 10-21.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

We performed extensive experiments on a Hadoop cluster
of 64 processors and measured the energy and execution time
for several MapReduce HiBench benchmark workloads [64].
HiBench is a comprehensive benchmark suite for Hadoop
provided by Intel to characterize the performance of
MapReduce based data analysis running in data centers.
HiBench contains ten workloads, classified into four
categories: Micro Benchmarks, Web Search, Machine
Learning, and Analytical Query. We select three workloads,
TeraSort, Page Rank, and K-means Clustering, from different
categories as shown in Table 1. The cluster is composed of four
Intel nodes, with one node as a master. Two of the nodes have
24GB memory, 16 2.4GHz Intel processors, and a 1TB Hard
Drive. The other two nodes have 16GB memory, 16 2.4GHz
Intel processors, and a 1TB Hard Drive. The cluster has a total
of 80GB memory, 64 processors, 4TB of storage, and network
speed of 1Gbps. We set one map slot and one reduce slot per
processor. Energy measurements were taken using Wattsup?
PRO ES.Net Power meter. The input voltage is 100-250 Volts
at 60 HZ and the max wattage is 1800 Watts. The measurement
accuracy is +/- 1.5% and the selected interval of time between
records is one second.

We run and profiled several TeraSort, Page Rank, and K-
means Clustering workloads from the HiBench benchmark set.
Each workload contains both map and reduce tasks. For each
workload, we collect its start time, finish time, the consumed
power and other performance metrics. We used 240 workloads
for job profiling. We run only one job at a time, and collect the
energy measurements and execution times. Since the reduce
tasks execute only after the execution of all map tasks is
completed, we do not have overlaps between the map and
reduce tasks. Based on the collected job profiles, we generated
four small MapReduce jobs that we use in the small-scale
experiments with the deadline of 250 seconds, and twenty four
large MapReduce jobs, that we use in the large-scale
experiments with the deadline of 1500 seconds. Since for
production jobs the choice of the deadline is at the latitude of
the users, we select the deadlines specifically to obtain feasible
schedules. The execution time and the energy consumption of
the map and reduce tasks composing these jobs were generated
from uniform distributions having as the averages the average
energy consumption and the average execution time of the map
and reduce tasks extracted from the jobs profiled in our
experiments. Fig. 6.1 shows the energy needs of map and
reduce tasks for the actual and simulated architecture. The
energy consumption range of each node is shown as a filled
box, where the bottom and the top of the box represent the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 145 – 150

149
IJRITCC | May 2017, Available @ http://www.ijritcc.org

minimum and the maximum energy consumption, respectively.
For the simulated architecture, the energy consumption of each
node is generated within a range whose boundaries are
represented in the figure as horizontal lines. The simulation
experiments are conducted on AMD 2.93GHz hexa-core dual-
processor systems with 90GB of RAM which are part of the
Wayne State Grid System.

Figure 1: Energy needs of tasks for the actual and simulated architectures

B. Result Analysis and Discussions

We analyze the performance of EMRSA-I, EMRSA-II,

OPT, and MSPAN for four small MapReduce TeraSort jobs

with 10,737,418 records, where the number of map tasks and

reduce tasks are presented in Table 1. For example, the

smallest job represented by (48M; 48R) has 48 map tasks and

48 reduce tasks. Figure 2 presents the energy consumption of

the jobs scheduled by the four algorithms we consider. The

results show that EMRSA-I and EMRSA-II obtain the

assignments of map and reduce tasks with energy consumption

close to the optimal solution, obtained by OPT. OPT,

EMRSA-I, and EMRSA-II are able to schedule the tasks with

an average of 41.0%, 38.9%, and 39.2% less energy

consumption than that of MSPAN, respectively. For example,

the total energy consumptions for workload (48M; 48R)

obtained by EMRSA-I, EMRSA-II, OPT, and MSPAN are

5356, 5396, 5233, and 8687 J, respectively. While it is

desirable to use OPT as a scheduler to reduce cost, the slow

execution of OPT makes it prohibitive to use in practice. In

addition, it is practically impossible to use OPT when it comes

to scheduling big data jobs due to its prohibitive runtime.

EMRSA-I and EMRSA-II are very fast and practical

alternatives for scheduling big data jobs, leading to 39%

reduction in energy consumption. However, the energy

consumption obtained by MSPAN is far from the optimal

solution, making it not suitable for scheduling MapReduce

jobs with the goal of minimizing the energy consumption.
Table 1: Terasort Workloads for the small scale experiments

Workload Map Tasks Reduce Tasks

(48M, 48R) 48 48

(48M, 64R) 48 64

(64M, 48R) 64 48

(64M, 64R) 64 64

Figure 2: EMRSA-I and EMRSA-II performance on TeraSort: Energy

consumption

Figure 3: EMRSA-I and EMRSA-II performance on TeraSort: Execution

time

Figure 4: TeraSort energy consumption (small-scale experiments): Map

tasks

Figure 5: TeraSort energy consumption (small-scale experiments):

Reduce tasks

Figure 3 presents the execution time of the algorithms. The
results show that EMRSA-I and EMRSA-II find the
assignments in significantly less amount of time than OPT and
MSPAN. As shown in this figure, EMRSA-I and EMRSA-II
obtain the solution in a time that is six orders of magnitude
less than that of OPT. For example, the execution times of
EMRSA-I, EMRSA-II, OPT, and MSPAN for the workload
(48M; 48R) are 0.001, 0.001, 673.7, and 839.3 seconds,
respectively.

In Figure 4 and Figure 5, we present the energy
consumption of map and reduce tasks in more details. When

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 145 – 150

150
IJRITCC | May 2017, Available @ http://www.ijritcc.org

the number of reduce tasks is greater than the number of map
tasks (e.g., workload (48M; 64R)), EMRSA-I and EMRSA-II
capture more optimization opportunities for energy saving
available for reduce tasks. In more detail, the energy
consumptions of map tasks for workload (48M; 64R) obtained
by EMRSA-I, EMRSAII, OPT, and MSPAN are 3130, 3090,
2897, and 4751 J, respectively, while the energy consumptions
of reduce tasks for workload (48M; 64R) are 3547, 3527,
3448, and 5972 J, respectively. However, when the workload
has more map tasks than reduce tasks (e.g., workload (64M;
48R)), EMRSA-I and EMRSA-II save more energy for map
tasks. The energy consumption for the map tasks of workload
(64M; 48R) obtained by employing EMRSA-X (shown in
Figure 4) is closer to the optimal than the energy consumption
for the reduce tasks (shown in Figure 5) for the same
workload. This is due to the fact that for this workload, the
load of the map tasks is greater than that of the reduce tasks,
that is f > 1. For workload (48M; 64R), where f < 1, EMRSA-
X leads to an energy consumption closer to the optimal for the
reduce tasks. This shows the effect of ratio f on the energy
consumption.

V. CONCLUSION

Although cloud computing has gained a great deal of
attention, there are still some key impediments to large scale
enterprise adoption. The ever-growing demand for cloud
resources from businesses and individuals places the cloud
resource management at the heart of the cloud providers'
decision-making process. One of the major challenges faced by
the cloud providers is cloud resource management. Cloud
providers and cloud users, pursue different goals. Cloud
providers aim to maximize revenue while achieving high
resource utilization. On the other hand, users want to minimize
their expenses while meeting their performance requirements.
However, the challenge is how to allocate and price resources
in a mutually optimal way despite the lack of information
sharing among users and cloud providers. In addition, the cloud
environment is highly variable and unpredictable. Cloud
providers may oversubscribe users to a shared infrastructure to
increase their resource utilization, while oversubscription will
results in resource contention and interference. In addition,
there are other factors that contribute to unpredictability of the
environment such as heterogeneity of the VMs. These factors
make these multi-criteria optimization problems very complex.

One of the main concerns for a cloud service provider is
minimizing the operational cost, especially the cost of power
consumption. It is possible to reduce power consumption of the
hardware by means of deploying more Virtual Machines (VMs)
onto fewer hosts. This mechanism will provide the cloud

providers the flexibility of dynamically determining the price
of their resources and their cost share. The cloud providers will
be free from building complex pricing models or generating
user statistics for prediction of system usage. In addition, the
cloud providers can use our proposed energy-aware schedulers
in their data centers to lower their energy costs leading to lower
service prices offered to their users. On the other hand,
different types of users will be able to select their desired usage
of cloud services.

REFERENCES

[1] J. Koomey. Growth in data center electricity use 2005 to 2010. Oakland,

CA: Ana-lytics Press. August, 1, 2011.

[2] J. Hamilton. Cooperative expendable micro-slice servers (cems): low
cost, low power servers for internet-scale services. In Proc. of the Conf.
on Innovative Data Systems Research, 2009.

[3] J. Dean and S. Ghemawat. Mapreduce: Simpli ed data processing on
large clusters. In Proc. of the 6th USENIX Symp. on Operating System
Design and Implementation, pages 137-150, 2004.

[4] Hadoop. [Online]. Available: http://hadoop.apache.org/.

[5] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica. Job scheduling for multi-user mapreduce clusters. Technical
Report UCB/EECS-2009-55, UC Berkeley, April 2009.

[6] APC. [Online]. Available: http://www.apc.com/.

[7] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder, J.
Torres, and E. Ayguade. Resource-aware adaptive scheduling for
mapreduce clusters. In Proc. of the 12th ACM/IFIP/USENIX Intl.
Middleware Conf., pages 187-207, 2011.

[8] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: automatic resource
inference and allocation for mapreduce environments. In Proc. 8th ACM
Int'l Conf. on Auto-nomic Comp., pages 235-244, 2011.

[9] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus: locality-aware
resource alloca-tion for mapreduce in a cloud. In Proc. Conf. High
Performance Comp., Networking, Storage and Analysis, 2011.

[10] A. Verma, L. Cherkasova, and R. H. Campbell. Two sides of a coin:
Optimizing the schedule of mapreduce jobs to minimize their makespan
and improve cluster performance. In Proc. 20th IEEE Int'l Symp.
Modeling, Analysis and Simulation of Computer and Telecom. Syst.,
pages 11-18, 2012.

[11] H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee,
and S. Mukher-jee. Scheduling in mapreduce-like systems for fast
completion time. In Proc. of the 30th IEEE Intl. Conf. on Computer
Communications, pages 3074-3082, 2011.

[12] F. Chen, M. S. Kodialam, and T. V. Lakshman. Joint scheduling of
processing and shu e phases in mapreduce systems. In Proc. of the IEEE
INFOCOM, pages 1143- 1151, 2012.

[13] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos. On scheduling in
map-reduce and ow-shops. In Proc. 23rd Annual ACM Symp. on
Parallelism in Algorithms and Architectures, pages 289-298, 2011.

[14] Y. Zheng, N. B. Shro , and P. Sinha. A new analytical technique for
designing provably efficient mapreduce schedulers. In Proc. of the IEEE
INFOCOM, pages 1600-1608, 2013.

http://hadoop.apache.org/
http://www.apc.com/

