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Abstract—The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-

source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the 

energy costs a considerable fraction of the data center's overall costs. Therefore minimizing the energy consumption when 

executing each MapReduce job is a critical concern for data centers. We propose a framework for improving the energy efficiency 

of MapReduce applications, while satisfying the service level agreement (SLA). We first model the problem of energy-aware 

scheduling of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called Energy-aware 

MapReduce Scheduling Algorithms (EMRSA-I and EMRSA-II), that find the assignments of map and reduce tasks to the machine 

slots in order to minimize the energy consumed when executing the application. We perform extensive experiments on a Hadoop 

cluster to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite 

including TeraSort, PageRank, and K-means Clustering, and then use this data in an extensive simulation study to analyze the 

performance of the proposed algorithms. The results show that EMRSA-I and EMRSA-II are able to find near optimal job 

schedules consuming approximately 40% less energy on average than the schedules obtained by a common practice scheduler that 

minimizes the makespan. 
Keywords-Big Data, Hadoop, MapReduce, Energy Aware Scheduling Algorihtms, Terasort, Page Rank, Machine Learning, Web Search, 

Micro Benchmarks 
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I. INTRODUCTION 

Several businesses and organizations are faced with an 
ever-growing need for analyzing the unprecedented amounts of 
available data. Such need challenges existing methods, and 
requires novel approaches and technologies in order to cope 
with the complexities of big data processing. One of the major 
challenges of processing data intensive applications is 
minimizing their energy costs. Electricity used in US data 
centers in 2010 accounted for about 2% of total electricity used 
nationwide [1]. In addition, the energy consumed by the data 
centers is growing at over 15% annually, and the energy costs 
make up about 42% of the data centers' operating costs [2]. 
Considering that server costs are consistently falling, it should 
be no surprise that in the near future a big percentage of the 
data centers' costs will be energy costs. Therefore, it is critical 
for the data centers to minimize their energy consumption when 
offering services to customers. 

 Big data applications run on large clusters within data 
centers, where their energy costs make energy efficiency of 
executing such applications a critical concern. MapReduce [3] 
and its open-source implementation, Hadoop [4], have emerged 
as the leading computing platforms for big data analytics. For 
scheduling multiple MapReduce jobs, Hadoop originally 
employed a FIFO scheduler. To overcome the issues with the 
waiting time in FIFO, Hadoop then employed the Fair 
Scheduler [5]. These two schedulers, however, do not consider 
improving the energy efficiency when executing MapReduce 
applications. Improving energy efficiency of MapReduce 
applications leads to a significant reduction of the overall cost 
of data centers. In this chapter, we design MapReduce 
scheduling algorithms that improve the energy efficiency of 
running each individual application, while satisfying the 
service level agreement (SLA). Our proposed scheduling 

algorithms can be easily incorporated and deployed within the 
existing Hadoop systems. 

 In most of the cases, processing big data involves 
running production jobs periodically. For example, Facebook 
processes terabytes of data for spam detection daily. Such 
production jobs allow data centers to use job profiling 
techniques in order to get information about the resource 
consumption for each job. Job profiling extracts critical 
performance characteristics of map and reduce tasks for each 
underlying application. Data centers can use the knowledge of 
extracted job profiles to pre-compute new estimates of jobs' 
map and reduce stage durations, and then construct an 
optimized schedule for future executions. Furthermore, the 
energy consumption of each task on a machine can be profiled 
using automatic power-meter tools such as PDU Power Strip 
[6], which is currently a standard practice in data centers. Many 
researchers studied different profiling techniques [7][8], and 
several MapReduce scheduling studies rely on such techniques 
[9][10]. Our proposed algorithms schedule MapReduce 
production jobs having as the primary objective the 
minimization of energy consumption. 

 Most of the existing research on MapReduce 
scheduling focused on improving the makespan (i.e., 
minimizing the time between the arrival and the completion 
time of an application) of the MapReduce job's execution (e.g., 
[11[12][13][14]). However, makespan minimization is not 
necessarily the best strategy for data centers. Data centers are 
obligated to deliver the services by their specified deadlines, 
and it is not in their best interests to execute the services as fast 
as they can in order to minimize the makespan. This strategy 
fails to incorporate significant optimization opportunities 
available for data centers to reduce their energy costs. The 
majority of production MapReduce workloads consists of a 
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large number of jobs that do not require fast execution. By 
taking into account the energy consumed by the map and 
reduce tasks when making scheduling decisions, the data 
centers can utilize their resources efficiently and reduce the 
energy consumption. Our proposed energy-aware scheduling 
algorithms capture such opportunities and significantly reduce 
the MapReduce energy costs, while satisfying the SLA. 

II. ENERGY AWARE SCHEDULING PROBLEM 

 A MapReduce job comprising a specific number of 
map and reduce tasks is executed on a cluster composed of 
multiple machines. The job's computation consists of a map 
phase followed by a reduce phase. In the map phase, each map 
task is allocated to a map slot on a machine, and processes a 
portion of the input data producing key-value pairs. In the 
reduce phase, the key-value pairs with the same key are then 
processed by a reduce task allocated to a reduce slot. As a 
result, the reduce phase of the job cannot begin until the map 
phase ends. At the end, the output of the reduce phase is 
written back to the distributed file system. In Hadoop, job 
scheduling is performed by a master node running a job 
tracker process, which distributes jobs to a number of worker 
nodes in the cluster. Each worker runs a task tracker process, 
and it is configured with a fixed number of map and reduce 
slots. The task tracker periodically sends heartbeats to the job 
tracker to report the number of free slots and the progress of 
the running tasks. 
 We consider a big data application consisting of a set 
of M map and R reduce tasks that needs to be completed by 
deadline D. Tasks in each set can be run in parallel, but no 
reduce task can be started until all map tasks for the 
application are completed. Let M and R be the set of map and 
reduce tasks of the application, and A and B the set of slots on 
heterogeneous machines available for executing the map and 
the reduce tasks, respectively. The number of slots for each 
machine is decided by the system administrators when the 
Hadoop cluster is setup and each slot can handle only one map 
or reduce task at a time. Since we consider a heterogeneous 
cluster, the execution speed of a task on different slots from 
different machines may not be the same. Also, the energy 
required to execute a task on different slots may not be the 
same. We denote by eij the difference between energy 
consumption of slot  𝑗 ∈  𝐴, 𝐵 Bg when executing task 
𝑖 ∈  𝑀, 𝑅  and its idle energy consumption. In addition, we 
denote by pij the processing times of task 𝑖 ∈  𝑀, 𝑅  when 
executed on slot 𝑗 ∈  𝐴, 𝐵 . We assume that the processing 
time of the tasks is known. In doing so, we use the knowledge 
of extracted job profiles to pre-compute the processing time of 
map and reduce tasks, along with their energy consumption. 
We define an indicator variable 𝛿𝑖𝑗 , ∀𝑡, 𝑖 ∈ 𝑀 ∪ 𝑅  
characterizing the dependencies of the map and reduce tasks as 
follows:  

𝛿𝑡𝑖 =   
1 𝐼𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑠𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑠𝑘 𝑡
0                                                             𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

  

  (5.1) 
We formulate the Energy-Aware MapReduce Scheduling 
problem as an Integer Problem (called EMRS-IP) as follows: 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑒𝑖𝑗𝑋𝑖𝑗 +    𝛿𝑡𝑖𝑒𝑖𝑗𝑌𝑖𝑗𝑡  ∈ℳ ∪ℛ𝑖 ∈ ℛ𝑗  ∈ℬ 𝑖∈ℳ𝑗∈𝒜  

  (5.2) 
Subject to 
 𝑋𝑖𝑗 =   1, ∀𝑖 ∈  ℳ𝑗  ∈𝐴      

   (5.3) 

  𝛿𝑡𝑖𝑡  ∈ℳ ∪ℛ𝑗∈ ℬ 𝑌𝑖𝑗  = 1, ∀𝑖 ∈  ℛ    

   (5.4) 
     𝑝𝑖𝑗𝑋𝑖𝑗 +𝑗  ∈ℳ

   𝛿𝑡𝑖𝑝𝑖𝑗 ′ ∈ℳ ∪ℛ𝑖∈ℛ 𝑌𝑖𝑗 ′  ≤ 𝐷 

∀𝑗 ∈  𝒜, ∀𝑗′ ∈ ℬ      
   (5.5) 
𝑋𝑖𝑗 =  0,1 , ∀ 𝑖 ∈ ℳ, 𝑗 ∈ 𝐴    

    (5.6) 
𝑌𝑖𝑗 =  0,1 , ∀ 𝑖 ∈  ℛ, 𝑗 ∈ ℬ    

     (5.7) 
where the decision variables are Xij and Yij are defined as 
follows: 

𝑋𝑖𝑗 =   
1     𝐼𝑓 𝑚𝑎𝑝 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑙𝑜𝑡 𝑗
0                                                   𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

   

  (5.8) 

𝑌𝑖𝑗 =   
1     𝐼𝑓 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑙𝑜𝑡 𝑗

0                                                   𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒 
   

 (5.9) 
 
 The objective function is to minimize the energy 
consumed when executing the MapReduce application 
considering the dependencies of reduce tasks on the map tasks. 
Constraints (5.3) ensure that each map task is assigned to a 
slot for execution. Constraints (5.4) ensure that each reduce 
task is assigned to a slot. Constraints (5.5) ensure that 
processing time of the application does not exceed its 
deadline. Constraints (5.6) and (5.7) represent the integrality 
requirements for the decision variables. The solution to 
EMRS-IP consists of X and 𝑌  where 

𝑌𝑖𝑗 =   𝛿𝑖𝑗𝑌𝑖𝑗 ,   𝑖 ∈𝑡  ∈ℳ ∪ℛ  ℛ,and j ∈  ℬ  

 Note that based on constraints (5.5), the scheduler can 
assign all reduce tasks after finishing all map tasks without 
exceeding the deadline. This is due to the fact that these 
constraints can be interpreted as 
𝑚𝑎𝑥∀ 𝑗  ∈𝒜  𝑝𝑖𝑗𝑋𝑖𝑗𝑖 ∈ℳ  + 𝑚𝑎𝑥∀𝑗′∈ℬ  𝑝𝑖𝑗 ′𝑌𝑖𝑗 ′ ≤ 𝐷𝑖∈ℛ  

As a result, all reduce tasks can be assigned after time 

𝑚𝑎𝑥∀ 𝑗  ∈𝒜  𝑝𝑖𝑗𝑋𝑖𝑗

𝑖  ∈ℳ

 

 In addition, the scheduler can assign multiple map 
tasks to a machine, as well as multiple reduce tasks. This is 
due to the fact that in big data applications the number of tasks 
is greater than the number of machines available in a cluster. 
The focus of this study is the detailed placement of map and 
reduce tasks of a job in order to reduce energy consumption. 
While it is important to consider data placement in an 
integrated framework for energy savings in data centers, data 
placement is beyond the scope of this study. 

 At the high level the problem we consider may appear 
as composed of two independent scheduling problems, one for 
the map tasks and one for the reduce tasks. This would be the 
case if the deadline for the map phase would be known. But 
since the deadline for map tasks is not known from the 
beginning, we cannot just simply divide the problem into two 
scheduling sub problems and solve them independently. Our 
proposed algorithms determine the map deadline as the tasks 
are allocated and schedule the map and reduce tasks to reduce 
the energy consumption of executing the job. 

III. ENERGY AWARE MAPREDUCE SCHEDULING 

ALGORITHM 

 We design two heuristic algorithms called EMRSA-I 
and EMRSA-II for solving the energy aware MapReduce 
scheduling problem. Our proposed algorithms, EMRSA-I and 
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EMRSAII, take the energy efficiency differences of different 
machines into account and determine a detailed task placement 
of a MapReduce job into slots while satisfying the user 
specified deadline. The two algorithms are presented as a 
single generic algorithm called EMRSA-X, in the following 
algorithm. 
 The design of these algorithms requires a metric that 
characterizes the energy consumption of each machine and 
induces an order relation among the machines. We define such 
a metric, called energy consumption rate of a slot j. EMRSA-I 
and EMRSA-II use different. Energy consumption rate metrics 
as follows: 
 1) EMRSA-I uses energy consumption rate metrics based on 
the minimum ratio of energy consumption and processing time 
of tasks when executed on slot j, as follows: 

𝑒𝑐𝑟𝑗
𝑚 =  min∀𝑖∈ℳ

𝑒𝑖𝑗

𝑝𝑖𝑗
 , ∀𝑗 ∈  𝒜  (5.10) 

𝑒𝑐𝑟𝑗
𝑟 =  min∀𝑖∈𝑅

𝑒𝑖𝑗

𝑝𝑖𝑗
 , ∀𝑗 ∈  ℬ  (5.11) 

where𝑒𝑐𝑟𝑗
𝑚  and 𝑒𝑐𝑟𝑗

𝑟  represent the energy consumption rate of 

map slot j and reduce slot j, respectively. 
 2) EMRSA-II uses energy consumption rate metrics 
based on the average ratio of energy consumption and 
processing time of tasks when executed on slot j, as follows: 

𝑒𝑐𝑟𝑗
𝑚 =  

 
𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈ℳ

𝑀
, ∀𝑗 ∈  𝒜  (5.12) 

𝑒𝑐𝑟𝑗
𝑟 =  

 
𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈𝑅

𝑅
 , ∀𝑗 ∈  ℬ  (5.13) 

The ordering induced by these metrics on the set of slots 
determines the order in which the slots are assigned to tasks, 
that is, a lower 𝑒𝑐𝑟𝑗

𝑚  means that slot j has a higher priority to 

have a map task assigned to it. Similarly, a lower  𝑒𝑐𝑟𝑗
𝑟   means 

that slot j has a higher priority to have a reduce task assigned 
to it. In addition, EMRSA-X uses the ratio of map and reduces 
processing times, denoted by f, in order to balance the 
assignment of map and reduce tasks. The ratio f is defined as 
follows: 

𝑓 =  
 𝑝𝑖𝑗

𝑚
∀𝑖∈ℳ

 𝑝𝑖𝑗
𝑟

∀𝑖∈𝑅

 

This ratio is used in the task assignment process in each 
iteration of EMRSA-X. As we already mentioned, we use job 
profiling of production jobs to estimate the processing time of 
map and reduce tasks. This information, extracted from job 
profiling (i.e., the values of pijm and pijr ) is used by EMRSA-
X to compute the ratio f.  
 A key challenge when designing the algorithms is 
that the user only species the deadline for the job and there is 
no information on the deadline for completing the map phase. 
However, since the reduce tasks are dependent on the map 
tasks, the algorithms have to determine a reasonable deadline 
for the map tasks with respect to the availability of the map 
slots in the cluster in order to utilize its resources efficiently. 
Our proposed algorithms find the assignments of map tasks to 
the map slots satisfying the determined map deadline, and then 
find the assignments of reduce tasks to the reduce slots 
satisfying the deadline D, where all the reduce tasks start after 
the map deadline. First, EMRSA-X determines the assignment 
of large tasks in terms of their processing time, and the map 
deadline according to such tasks. The reason that EMRSA-X 
gives priority to large tasks is due to the hard deadline 
constraint, and the fact that there may not be many choices for 
large task placement con gurations to avoid exceeding the 
deadline constraint. Then, EMRSA-X tries to close the 

optimality gap by filling with smaller tasks the leftover time of 
each slot based on the deadline. This leads to better utilization 
of each machine in the cluster. 
 EMRSA-X is given in Algorithm 1. EMRSA-X 
builds two priority queues Q

m
 and Q

r
 to keep the order of the 

map and reduce slots based on their energy consumption rates 
(lines 1-8). Then, it initializes the deadlines for map tasks, D

m
, 

and reduces tasks, D
r
, to infinity. In each iteration of the while 

loop, the algorithm chooses the slots with the lowest energy 
consumption rates (i.e., j

m
 and j

r
) from the priority queues, and 

finds the task placement on the selected slots. For these slots, 
the ratio of processing time of map tasks to that of the reduce 
tasks, denoted by f, is calculated (line 13). Then, EMRSA-X 
sorts the unassigned map and reduces tasks, if there is any, 
based on their processing time on the selected slots (lines 14-
15). Then, it determines the assignments of large tasks based 
on the metric f by calling ASSIGN-LARGE() (given in 
Algorithm 2). Then, it finds the assignments of small tasks by 
calling ASSIGN-SMALL() (given in Algorithm 3) if there is 
any unallocated processing time on a slot. EMRSA-X assigns 
a new task to a slot whenever the slot becomes available. At 
the end of the first iteration, the algorithm sets the map and 
reduces deadlines based on the allocated tasks (lines 19-21) 
Algorithm 1- EMRSA – X 
Step 1: Create an empty priority queue Q

m 

Step 2: Create an empty priority queue Q
r 

Step 3: for all 𝑗 ∈  𝒜 do 

Step 4: 𝑒𝑐𝑟𝑗
𝑚 =  min∀𝑖∈ℳ

𝑒𝑖𝑗

𝑝𝑖𝑗
 for EMRSA -1 or 

𝑒𝑐𝑟𝑗
𝑚 =  

 
𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈ℳ

𝑀
for EMRSA – 2 

Step 5: 𝑄𝑚 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑗, 𝑒𝑐𝑟𝑗
𝑚 ) 

Step 6: for all 𝑗 ∈  ℬ do 

Step 7: 𝑒𝑐𝑟𝑗
𝑟 =  min∀𝑖∈𝑅

𝑒𝑖𝑗

𝑝𝑖𝑗
 for EMRSA -1 or 

𝑒𝑐𝑟𝑗
𝑟 =  

 
𝑒𝑖𝑗

𝑝 𝑖𝑗
∀𝑖∈𝑅

𝑅
for EMRSA – 2 

Step 8: 𝑄𝑟 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑗, 𝑒𝑐𝑟𝑗
𝑟 ) 

Step 9: 𝐷𝑚 ←  ∞ ;  𝐷𝑟 ←  ∞  
Step 10: while 𝑄𝑚 is not empty  and𝑄𝑟  is not empty do 
Step 11: 𝑗𝑚 =  𝑄𝑚 . 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛()  
Step 12: 𝑗𝑟 =  𝑄𝑟 . 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛() 

Step 13: 𝑓 =  
 𝑝𝑖𝑗

𝑚
∀𝑖∈ℳ

 𝑝𝑖𝑗
𝑟

∀𝑖∈𝑅
 

Step 14: 𝒯𝑚 : sorted unassigned map tasks 𝑖 ∈  ℳ based on 𝑝𝑖𝑗
𝑚  

Step 15: 𝒯𝑟 : sorted unassigned reduce tasks 𝑖 ∈  𝑅 based on 

𝑝𝑖𝑗
𝑟  

Step 16: if 𝒯𝑚  = ∅ and 𝒯𝑟  = ∅  then break 
Step 17: ASSIGN-LARGE () 
Step 18: ASSIGN-SMALL () 
Step 19: if 𝐷𝑚  =  ∞ then 
Step 20: 𝐷𝑚  =   𝐷 − 𝑝𝑟   
Step 21: 𝐷𝑚  =  𝑝𝑟   
Step 22: if 𝒯𝑚  ≠  ∅ and 𝒯𝑟 ≠ ∅   then 
Step 23: no feasible schedule 
Step 24: Output: X,Y 
We now describe the two procedures, ASSIGN-LARGE() and 
ASSIGN-SMALL() into more details. ASSIGN-LARGE() is 
given in Algorithm 2. ASSIGN-LARGE() selects the longest 
map task im and reduce task ir from the sorted sets T m and T 
r, respectively (lines 1- 2). Then it checks the feasibility of 
allocating map task im to slot jm and reduce task ir to slot jrby 
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checking the total processing time of the tasks against the 
deadline D (line 4). 
Algorithm 2: ASSIGN-LARGE() 
Step 1: 𝑖𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈ 𝒯𝑚 𝑝𝑡𝑗

𝑚  

Step 2: 𝑖𝑟 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈ 𝒯𝑟𝑝𝑡𝑗
𝑟  

Step 3: 𝑝𝑚 = 0; 𝑝𝑟 = 0 
Step 4: if 𝑝𝑖

𝑚 𝑗𝑚  +  𝑝𝑖
𝑟 𝑗𝑟   ≤ 𝐷 𝑎𝑛𝑑 𝑝𝑖

𝑚 𝑗𝑚 ≤    𝐷𝑚  𝑎𝑛𝑑 𝑝𝑖
𝑟𝑗𝑟 ≤

   𝐷𝑟  then 
Step 5: 𝒯𝑚 =  𝒯𝑚  /  𝑖𝑚  
Step 6: 𝒯𝑟 =  𝒯𝑟  /  𝑖𝑟  
Step 7: 𝑝𝑚 =  𝑝𝑖

𝑚 𝑗𝑚  

Step 8: 𝑝𝑟 =  𝑝𝑖
𝑟 𝑗𝑟  

Step 9: 𝑋𝑖𝑚 𝑗𝑚 = 1 

Step 10: 𝑌𝑖𝑟 𝑗 𝑟 = 1 

Step 11: do 
Step 12: 𝑖𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝑇𝑚 𝑝𝑡𝑗

𝑚  

Step 13: 𝑖𝑟 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝑇𝑟𝑝𝑡𝑗
𝑟  

Step 14: if f> 1 then 

Step 15: while 
𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚

𝑝𝑟 < 𝑓 𝑎𝑛𝑑 𝑝𝑚 + 𝑝𝑟 +  𝑝𝑖
𝑚 𝑗𝑚  ≤ 𝐷  

and 𝑝𝑚+ 𝑝𝑖
𝑚 𝑗𝑚 ≤ 𝐷𝑚  𝑎𝑛𝑑 𝒯𝑚 ≠  ∅   do 

Step 16: 𝒯𝑚 =  𝒯𝑚  \ 𝑖𝑚   
Step 17: 𝑝𝑚 =  𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚  
Step 18: 𝑋𝑖𝑚 𝑗𝑚 = 1 

Step 19: 𝑖𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝒯 𝑚 𝑝𝑡𝑗
𝑚  

Step 20: Balance the assignment of reduce tasks (Repeat lines 
15-19 for reduce tasks) 
Step 21: else 
Step 22: The code for 𝑓 < 1 is similar to lines 15-20 and is 
not presented here.  
Step 23: while 𝑝𝑚 +  𝑝𝑟 +  𝑝𝑖

𝑚 𝑗𝑚    ≤ 𝐷 and 𝑝𝑚 +  𝑝𝑖
𝑚 𝑗𝑚    ≤

𝐷𝑚  and 𝑝𝑟 +  𝑝𝑖
𝑟 𝑗𝑟    ≤ 𝐷𝑟and  (𝒯𝑚 ≠  ∅ 𝑜𝑟 𝒯𝑟 ≠  ∅ ) 

If the assignment of map task im and reduce task ir is feasible, 
the algorithm continues to select tasks from T

m
 and T

r
, and 

updates the variables accordingly (lines 5-23). To keep the 
assignments of the tasks in alignment with the ratio of 
processing time f, the procedure balances the assignment. In 
doing so, if f > 1 (i.e., the load of processing time of map tasks 
is greater than that of reduce tasks) and the ratio of the current 
assignment is less than f, then the algorithm assigns more map 
tasks to balance the allocated processing time close to f (lines 
15-20). If the ratio of the current assignment is greater than f, 
the procedure assigns more reduce tasks to balance the 
allocated processing time (lines 22). 
Algorithm 3: ASSIGN-SMALL() 
Step 1: {Assign small map tasks} 
Step 2: 𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝒯 𝑝𝑡𝑗

𝑚  

Step 3: while 𝑝𝑚 +  𝑝𝑟 + 𝑝𝑖
𝑚 𝑗𝑚    ≤ 𝐷  and 𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚    ≤
𝐷𝑚  and 𝒯𝑚  ≠  ∅ do 
Step 4: 𝒯𝑚 =  𝒯𝑚 \ 𝑖  
Step 5: 𝑝𝑚 =  𝑝𝑚 + 𝑝𝑖

𝑚 𝑗𝑚  

Step 6: 𝑋𝑖𝑗𝑚  = 1 

Step 7: 𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝑅 𝑝𝑡𝑗
𝑟  

Step 8: 𝒯𝑟 =  𝒯𝑟\ 𝑖  
Step 9: 𝑝𝑟 =  𝑝𝑟 + 𝑝𝑖

𝑟𝑗𝑟  
Step 10: 𝑌𝑖𝑗 𝑟  = 1 

Step 11: :𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝒯𝑟𝑝𝑡𝑗
𝑟  

After allocating the map and reduce tasks with the largest 
processing time, EMRSAX assigns small map and reduce 
tasks while satisfying the deadline by calling 
ASSIGNSMALL() (given in Algorithm 3). ASSIGN-

SMALL() selects the smallest map task i, and based on the 
already assigned tasks and the remaining processing time of 
the slot, it decides if allocating task i is feasible or not (line 3). 
Then, it selects the smallest reduce task i, and checks the 
feasibility of its assignment (line 10). 
The time complexity of EMRSA-X is 
O(A(M+logA)+B(R+logB)+min(A;B)(M logM+ RlogR)), 
where A, B, M, and R are the number of map slots, the number 
of reduce slots, the number of map tasks, and the number of 
reduce tasks, respectively. The  first two terms correspond to 
the running time of the two for loops in lines 4-5 and 6-8, 
while the third term corresponds to the running time of the 
while loop in lines 10-21. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Experimental Setup 

We performed extensive experiments on a Hadoop cluster 
of 64 processors and measured the energy and execution time 
for several MapReduce HiBench benchmark workloads [64]. 
HiBench is a comprehensive benchmark suite for Hadoop 
provided by Intel to characterize the performance of 
MapReduce based data analysis running in data centers. 
HiBench contains ten workloads, classified into four 
categories: Micro Benchmarks, Web Search, Machine 
Learning, and Analytical Query. We select three workloads, 
TeraSort, Page Rank, and K-means Clustering, from different 
categories as shown in Table 1. The cluster is composed of four 
Intel nodes, with one node as a master. Two of the nodes have 
24GB memory, 16 2.4GHz Intel processors, and a 1TB Hard 
Drive. The other two nodes have 16GB memory, 16 2.4GHz 
Intel processors, and a 1TB Hard Drive. The cluster has a total 
of 80GB memory, 64 processors, 4TB of storage, and network 
speed of 1Gbps. We set one map slot and one reduce slot per 
processor. Energy measurements were taken using Wattsup? 
PRO ES.Net Power meter. The input voltage is 100-250 Volts 
at 60 HZ and the max wattage is 1800 Watts. The measurement 
accuracy is +/- 1.5% and the selected interval of time between 
records is one second. 

We run and profiled several TeraSort, Page Rank, and K-
means Clustering workloads from the HiBench benchmark set. 
Each workload contains both map and reduce tasks. For each 
workload, we collect its start time, finish time, the consumed 
power and other performance metrics. We used 240 workloads 
for job profiling. We run only one job at a time, and collect the 
energy measurements and execution times. Since the reduce 
tasks execute only after the execution of all map tasks is 
completed, we do not have overlaps between the map and 
reduce tasks. Based on the collected job profiles, we generated 
four small MapReduce jobs that we use in the small-scale 
experiments with the deadline of 250 seconds, and twenty four 
large MapReduce jobs, that we use in the large-scale 
experiments with the deadline of 1500 seconds. Since for 
production jobs the choice of the deadline is at the latitude of 
the users, we select the deadlines specifically to obtain feasible 
schedules. The execution time and the energy consumption of 
the map and reduce tasks composing these jobs were generated 
from uniform distributions having as the averages the average 
energy consumption and the average execution time of the map 
and reduce tasks extracted from the jobs profiled in our 
experiments. Fig. 6.1 shows the energy needs of map and 
reduce tasks for the actual and simulated architecture. The 
energy consumption range of each node is shown as a filled 
box, where the bottom and the top of the box represent the 
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minimum and the maximum energy consumption, respectively. 
For the simulated architecture, the energy consumption of each 
node is generated within a range whose boundaries are 
represented in the figure as horizontal lines. The simulation 
experiments are conducted on AMD 2.93GHz hexa-core dual-
processor systems with 90GB of RAM which are part of the 
Wayne State Grid System. 

 
Figure 1: Energy needs of tasks for the actual and simulated architectures 

B. Result Analysis and Discussions 

We analyze the performance of EMRSA-I, EMRSA-II, 

OPT, and MSPAN for four small MapReduce TeraSort jobs 

with 10,737,418 records, where the number of map tasks and 

reduce tasks are presented in Table 1. For example, the 

smallest job represented by (48M; 48R) has 48 map tasks and 

48 reduce tasks. Figure 2 presents the energy consumption of 

the jobs scheduled by the four algorithms we consider. The 

results show that EMRSA-I and EMRSA-II obtain the 

assignments of map and reduce tasks with energy consumption 

close to the optimal solution, obtained by OPT. OPT, 

EMRSA-I, and EMRSA-II are able to schedule the tasks with 

an average of 41.0%, 38.9%, and 39.2% less energy 

consumption than that of MSPAN, respectively. For example, 

the total energy consumptions for workload (48M; 48R) 

obtained by EMRSA-I, EMRSA-II, OPT, and MSPAN are 

5356, 5396, 5233, and 8687 J, respectively. While it is 

desirable to use OPT as a scheduler to reduce cost, the slow 

execution of OPT makes it prohibitive to use in practice. In 

addition, it is practically impossible to use OPT when it comes 

to scheduling big data jobs due to its prohibitive runtime. 

EMRSA-I and EMRSA-II are very fast and practical 

alternatives for scheduling big data jobs, leading to 39% 

reduction in energy consumption. However, the energy 

consumption obtained by MSPAN is far from the optimal 

solution, making it not suitable for scheduling MapReduce 

jobs with the goal of minimizing the energy consumption. 
Table 1: Terasort Workloads for the small scale experiments 

Workload Map Tasks Reduce Tasks 

(48M, 48R) 48 48 

(48M, 64R) 48 64 

(64M, 48R) 64 48 

(64M, 64R) 64 64 

 

 
Figure 2: EMRSA-I and EMRSA-II performance on TeraSort: Energy 

consumption 

 

 
Figure 3: EMRSA-I and EMRSA-II performance on TeraSort: Execution 

time 

 

 
Figure 4: TeraSort energy consumption (small-scale experiments): Map 

tasks 

 

 
Figure 5: TeraSort energy consumption (small-scale experiments): 

Reduce tasks 

 

Figure 3 presents the execution time of the algorithms. The 
results show that EMRSA-I and EMRSA-II find the 
assignments in significantly less amount of time than OPT and 
MSPAN. As shown in this figure, EMRSA-I and EMRSA-II 
obtain the solution in a time that is six orders of magnitude 
less than that of OPT. For example, the execution times of 
EMRSA-I, EMRSA-II, OPT, and MSPAN for the workload 
(48M; 48R) are 0.001, 0.001, 673.7, and 839.3 seconds, 
respectively. 

In Figure 4 and Figure 5, we present the energy 
consumption of map and reduce tasks in more details. When 
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the number of reduce tasks is greater than the number of map 
tasks (e.g., workload (48M; 64R)), EMRSA-I and EMRSA-II 
capture more optimization opportunities for energy saving 
available for reduce tasks. In more detail, the energy 
consumptions of map tasks for workload (48M; 64R) obtained 
by EMRSA-I, EMRSAII, OPT, and MSPAN are 3130, 3090, 
2897, and 4751 J, respectively, while the energy consumptions 
of reduce tasks for workload (48M; 64R) are 3547, 3527, 
3448, and 5972 J, respectively. However, when the workload 
has more map tasks than reduce tasks (e.g., workload (64M; 
48R)), EMRSA-I and EMRSA-II save more energy for map 
tasks. The energy consumption for the map tasks of workload 
(64M; 48R) obtained by employing EMRSA-X (shown in 
Figure 4) is closer to the optimal than the energy consumption 
for the reduce tasks (shown in Figure 5) for the same 
workload. This is due to the fact that for this workload, the 
load of the map tasks is greater than that of the reduce tasks, 
that is f > 1. For workload (48M; 64R), where f < 1, EMRSA-
X leads to an energy consumption closer to the optimal for the 
reduce tasks. This shows the effect of ratio f on the energy 
consumption. 

V. CONCLUSION 

Although cloud computing has gained a great deal of 
attention, there are still some key impediments to large scale 
enterprise adoption. The ever-growing demand for cloud 
resources from businesses and individuals places the cloud 
resource management at the heart of the cloud providers' 
decision-making process. One of the major challenges faced by 
the cloud providers is cloud resource management. Cloud 
providers and cloud users, pursue different goals. Cloud 
providers aim to maximize revenue while achieving high 
resource utilization. On the other hand, users want to minimize 
their expenses while meeting their performance requirements. 
However, the challenge is how to allocate and price resources 
in a mutually optimal way despite the lack of information 
sharing among users and cloud providers. In addition, the cloud 
environment is highly variable and unpredictable. Cloud 
providers may oversubscribe users to a shared infrastructure to 
increase their resource utilization, while oversubscription will 
results in resource contention and interference. In addition, 
there are other factors that contribute to unpredictability of the 
environment such as heterogeneity of the VMs. These factors 
make these multi-criteria optimization problems very complex. 

One of the main concerns for a cloud service provider is 
minimizing the operational cost, especially the cost of power 
consumption. It is possible to reduce power consumption of the 
hardware by means of deploying more Virtual Machines (VMs) 
onto fewer hosts. This mechanism will provide the cloud 

providers the flexibility of dynamically determining the price 
of their resources and their cost share. The cloud providers will 
be free from building complex pricing models or generating 
user statistics for prediction of system usage. In addition, the 
cloud providers can use our proposed energy-aware schedulers 
in their data centers to lower their energy costs leading to lower 
service prices offered to their users. On the other hand, 
different types of users will be able to select their desired usage 
of cloud services. 
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