
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

118
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Securing Patient Data Access using Segmented Key Management Approach

Dr. M. Sughasiny

Assistant Professor, Department of Computer Science

SrimadAndavan Arts and Science College (Autonomous)

Trichy, Tamilnadu, India

sughasiny5.cs@gmail.com

C. Sengamalai

Research Scholar, Department of Computer Science

SrimadAndavan Arts and Science College (Autonomous)

Trichy, Tamilnadu, India

karthickkavian1968@gmail.com

Abstract—Cloud technology can be utilized to empower data sharing capacities, which can profit the client through more

noteworthy efficiency and profitability. Nonetheless, the Cloud is defenseless to numerous security vulnerabilities and privacy,

which thwarts the advance and wide scale reception of data sharing for the reasons for cooperation. Along these lines, there is a

solid interest for data owners to not just guarantee that their information is kept private and secure in the Cloud, however to

likewise have a level of control over their own particular data contents once they are imparted to data consumers. In particular, the

principle issues for data sharing in the Cloud incorporate security attacks, key management and data owner access control. As far

as key management, it is key that data should first be encrypted before storage in the Cloud, to prevent security breaches and

privacy. In this paper, a segmented key management is proposed.
Keywords-Key Management, RSA Encryption Public Key, Doubled Elgamal Private Key, AES Encryption,Heart Disease, Cloud Storage

Provider

__*****___

I. INTRODUCTION

Cloud technology can be utilized to empower data sharing
capacities, which can profit the client through more noteworthy
efficiency and profitability. Nonetheless, the Cloud is
defenseless to numerous security vulnerabilities and privacy,
which thwarts the advance and wide scale reception of data
sharing for the reasons for cooperation. Along these lines, there
is a solid interest for data owners to not just guarantee that their
information is kept private and secure in the Cloud, however to
likewise have a level of control over their own particular data
contents once they are imparted to data consumers. In
particular, the principle issues for data sharing in the Cloud
incorporate security attacks, key management and data owner
access control. As far as key management, it is key that data
should first be encrypted before storage in the Cloud, to prevent
security breaches and privacy. In this paper, a segmented key
management is proposed.

There is right now a solid need to propel the field of health
informatics [2]. As the total populace ages because of expanded
future, this spots weight on the government to store going
through related with the maturing populace, particularly as far
as health burning through. Thus, the interest for cutting the cost
of medicinal services has expanded, and there is presently a
developing requirement for the remote care of patients at home,
especially for the elderly and the physically handicapped. By
utilizing the ability of mobile technology and in addition Cloud
computing, one can then build up a health checking framework
where the patient can be evaluated by specialists in a remote
area, from the solace of their own home. There are a plentiful
number of mobile applications accessible today, for mobile
telecare [3].

Lately, there has likewise been a developing requirement
for the sharing of health information between social insurance
groups that incorporate specialists, medical attendants and
relatives. A few advantages of sharing health information
incorporate more secure and better health results for the patient,
as the health proficient gets a more entire medicinal history.
This is predominantly due to not repeating the therapeutic

history each time a health expert is counseled, and furthermore
not any more superfluous tests. Sharing health data is likewise
key to bringing down social insurance costs [4].
Notwithstanding, the principle issue with sharing health data is
the protection and security dangers related with it.

Expanding on advances in Cloud computing, we look to go
past the portable health applications, to empower the protected
sharing of telecare information in the Cloud. The Cloud, as an
empowering agent for mobile telecare, can give the successful
treatment and care of patients because of its advantages, for
example, on-demand gets to anyplace and whenever, high
elasticity and low expenses. Be that as it may, the Cloud is
defenseless to security attacks and privacy, a hefty portion of
which happen from inside the Cloud suppliers themselves [5],
as they have direct access to stored information.

II. RELATED WORKS

TABLE 1: Related Works on the Health Monitoring System using Cloud

Computing

Authors Name
and Application
Name

Paper Title Explanation

G. Fortino, M.
Pathan, and G. Di
Fatta [6]

Bodycloud:
Integration of cloud
computing and body
sensor networks

Presented the Body Cloud
design, which empowers the
management and observing of
body sensor information by
means of the Cloud. It gives
the usefulness to get and
oversee sensor information
consistently from a body
sensor Network (BSN)

F. Bellifemine, G.
Fortino, R.
Giannantonio, R.
Gravina, A.
Guerrieri, and
M. Sgroi [7]

Spine: a domain-
specific framework
for rapid prototyping
of wbsn applications

It have introduced the SPINE
system. This open-source
structure permits designers to
quickly model and oversee
BSN applications

G. Fortino, R.
Giannantonio, R.
Gravina, P.
Kuryloski, and R.
Jafari [8]

Enabling effective
programming and
exible management of
efficient body sensor
network applications

There are two principle
segments of the SPINE
system: the coordinator side,
which is executed on a PC or
cell phone, and the BSN hub
side. On the coordinator side,
SPINE furnishes application

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

119
IJRITCC | May 2017, Available @ http://www.ijritcc.org

engineers with an instinctive
interface to the BSN, while on
the hub side, SPINE gives
designers deliberations of
hardware resources, for
example, sensors, and an
engineering to tweak and
extend the structure to support
new physical stages and
management

S. Pandey, W.
Voorsluys, S. Niu,
A. Khandoker,
and R. Buyya [9]

An autonomic
cloud environment
for hosting ecg data
analysis services

Incorporates mobile and Cloud
technologies with
electrocardiogram (ECG)
sensors, to empower the
remote observing of patients
with heart related issues, for
example, cardiovascular
arrhythmias. The patient
interfaces the sensors to their
body and after that run an
application on a cell phone.
The application associates
with the sensors through
Bluetooth. The application
will then intermittently
transfer information to the
Cloud. The client can then
download charts from the
Cloud, which speak to the
client's health status. The plan
likewise actualizes
middleware in the Cloud

Alivecor
Application [10]

Alivecor (tm) mobile
ecg device for heart
rhythm monitoring
now available by
prescription

It is a remote application
based ECG checking
framework. The framework is
like our framework in that it
permits a patient to screen
their ECG on their iPhone and
furthermore share their ECG
information to whomever the
patient needs. It gives a heap
of valuable elements, for
example, recording, showing,
exchanging and storing great
ECG information.
Notwithstanding, the
framework was not created
because of security; in this
manner, it is conceivable that
an interloper will have the
capacity to take health
information with a specific
measure of exertion

Cardiocomm
solutions [11]

Cardiocomm
solutions, inc. reveals
a new remote mobile
ecg monitoring
solution at medica

CardioComm Solutions have
likewise exhibited their remote
patient ECG observing
management, Heart Check
Smart Monitoring. The
framework takes into account
quick get to and for doctors to
better audit the ECG
information so as to survey
how the patient ought to be
dealt with. Be that as it may, it
doesn't particularly
concentrate on security angles
and privacy, for example, the
classification of information as
it is being transmitted to the
Cloud or as it is put away
inside the Cloud

S. Gradl, P.
Kugler, C.
Lohmuller, and B.
Eskofier [12]

Real-time ecg
monitoring and
arrhythmia detection
using android-based
mobile devices.

It have likewise built up an
Android-based application that
takes into consideration the
ongoing checking of ECG
information, like our model,
and in addition mechanized
arrhythmia recognition. Be
that as it may, the application

additionally does not
concentrate on security and
privacy viewpoints

H. Xia, I. Asif,
and X. Zhao [13]

Cloud-ecg for real
time ecg monitoring
and analysis

It addresses the helpfulness of
ECG information gathered
from patients themselves
utilizing cell phones, and the
issues that this presents. They
don't concentrate on the
security angles related with
sending information to the
Cloud

Wherever Times is specified, Times Roman or Times New

Roman may be used. If neither is available on your word
processor, please use the font closest in appearance to Times.
Avoid using bit-mapped fonts if possible. True-Type 1 or Open
Type fonts are preferred. Please embed symbol fonts, as well,
for math, etc.

III. PROPOSED SEGMENTED KEY MANAGEMENT APPROACH

The primary thought is that the information is encrypted
utilizing any AES symmetric encryption algorithm. The
encrypted data is then stored to the Cloud. The symmetric key
used to encrypt the information is then encrypted utilizing the
RSA public key. Consequently, the best way to decrypt the
symmetric key is by utilizing the ElGamal private key.

Figure 1: Encrypted Data and Key

 The data is first encrypted with a symmetric key and
that symmetric key is then encrypted using the RSA public
key of the data owner. That is,

Ek(d) = C
Gpub(k) = K

where k is the symmetric key, E is the symmetric encryption
operation, C is the ciphertext, G is the RSA encryption
operation, pub is the RSA public key of the information owner
and K is the encrypted symmetric key.

Since the ElGamal algorithm speaks to its private keys and
public keys as huge numbers, this makes key partitioning
possible and subsequently, fractional decryption is additionally
conceivable. In this way, if we somehow happened to partition
the ElGamal private key C into two sections A and B with the
end goal that A + B = C, the symmetric key could be somewhat
decrypted utilizing A and the in part decrypted key can then be
completely decrypted utilizing B. Our joined symmetric and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

120
IJRITCC | May 2017, Available @ http://www.ijritcc.org

asymmetric encryption plan is highlighted in the following
diagram:

Figure 2: Proposed Segmented Key Management Approach

IV. HEALTH MONITORING SYSTEM USING PROPOSED

APPROACH

Since the Cloud is at the front line of numerous security
attacks and privacy, and numerous security attacks originate
from inside the Cloud Service Provider (CSP) itself, as insiders
ordinarily have direct access to information and may steal
information to pitch to third parties with a specific end goal to
pick up benefit, the whole database in the CSP should be
encrypted. This implies the information should be encrypted
before sending the information ―over-the-wire." This will keep
any noxious outsiders, and in addition the CSP itself, from
increasing any helpful information without the decrypting key.

Since our attention is on data sharing to specialists and
medical caretakers, basic encryption strategies are insufficient.
As talked about, on the off chance that we have many nurses
and doctors authorized to see the patient's information, and the
patient chooses to renounce a particular specialist's get to rights
to their information, the patient needs to re-encrypt their
information utilizing another key and send the new key to the
various specialists and attendants. This is computationally
wasteful and places a weight on the patient to re-encrypt and
distribute new keys, each time they renounce a specialist or
medical caretaker's get to rights. It additionally puts a weight
on the rest of the individuals from the gathering, as they always
need to refresh their key set so as to keep up-to-date with the
greater part of their patient's information. The primary
motivation behind why the patient would need to re-encrypt the
information with another key is that the renounced specialist
still holds the key can in any case hypothetically get to the
information, regardless of the possibility that he is not
permitted to. It can't be expected that the specialist or medical
attendant will never see the patient's information or that they
will dependably keep the key a mystery. For instance, in the
health area, there are standards, for example, HRIPA which is
followed in NSW, Australia [14] or HIPAA (Health Insurance
Portability and Accountability Act) which is followed in the US
[15]. These guidelines plan to secure and uphold the
classification of a patient's health related information and keep
the information secret from anybody unless authorized by the
patient. As it were, any element ought not get to a patient's
health data without the patient's consent. Thus, clinics and
health associations are hesitant to receive Cloud technology as

a security rupture can destroy, particularly as far as cost [16]. In
our work, we give an answer which uses the Cloud to help
guarantee health information is kept private and secure.

A. Data Model

Figure 3 depicts the eHealth monitoring framework, by
including a security layer that empowers secure and efficient
data sharing. The first web service now speaks to the Cloud
Data Service (CDS), and we include another web benefit called
the Data Sharing Service (DSS) that handles the data sharing
parts of the framework. We accept that the DSS is completely
trusted.

Figure 3: Data Sharing Model of Health Monitoring System

Notwithstanding, this makes it especially powerless against
attacks; thusly, the DSS itself should be ensured. Keeping in
mind the end goal to accomplish this, the DSS can be
demonstrated as a trusted private Cloud supplier that is secured
utilizing traditional mechanisms, for example, Internet
firewalls. There are likewise various proxy services to store key
pieces for individuals from the gathering, and a Key Service
(KS) to store the encrypted keys of the health information and
the keys of the data customers (DC).

To quickly condense how the model functions, we expect
that every client in the gathering, including the Data Owner
(DO), has a key that can decrypt the fitting keys in the Data
Key Database (DKDB). Be that as it may, their keys are
partitioned into n+ 1 part, where n parts are stored in every
proxy and the client keeps the additional part. Along these
lines, none of the clients know the full key required to decrypt
the keys in the Data Key database. At the point when the client
requires information get to, they call the DSS. The DSS then
decrypts the key in the DKDB utilizing the greater part of the
key pieces in the proxy database that compare to the calling
client. The key is then used to decrypt the information in the
Cloud. At the point when the data owner asks for that a client's
get to is disavowed, their key pieces in the proxies are just
expelled and the first information require not be re-encrypted,
nor there any re-distribution of keys to outstanding clients.
None of the other data customers will be influenced by the
renouncement, since their relating key pieces still stay in place
in the proxies and furthermore with themselves.

B. Protocol

We now talk about our data sharing protocol in detail. The

protocol has four stages: customer revocation, initialization,

authorized data access and customer authorization. It is

additionally essential to note that we expect the DSS to be

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

121
IJRITCC | May 2017, Available @ http://www.ijritcc.org

completely trusted, in that it will dependably sincerely take

after the protocol we make utilization of ElGamal encryption

in our work and expand upon the work of Tran et al. [17] to

give a more secure stage to data sharing. The following table

contains brief meanings of the truncations utilized as a part of

our protocol.

Table 2: List of abbreviations and Explanation
Definitions Abbreviations Explanation

Data

Owner

DO The owner decides who can access the

data and give permission to the data.

Data

Consumer

DC Any user who has permission to access

data given by the DO

Data

Sharing

Service

DSS In the protocol, the most functionality of

the data-sharing is carried out in this

trusted service.

Cloud Data

Service

CDS The call to be constructed to the Cloud

Storage is allowed by this service.

Key

Service

KS The administration that permits calls to

be made to the Cloud key service, to

acquire and store encryption keys

Cloud

Storage

Database

CSDB The database containing encrypted

information

Data Key

Database

DKDB The database that stores encryption keys

which are they encrypted.

User Key

Database

UKDB The database that stores all clients,

including DC and DO private keys.

1) Initialization

Step 1: Key Request DO->DSS (To upload data to the cloud,
first a request is send to the DSS by DO)
Step 2: Generate Key x DSS b=c

x
mod p (A random private

key is generated by DSS also its appropriate public key
{p,b,c} is also generated by RSA Encryption)
Step 3: DSS Generate x1+ x2+x3+ …+xn+xn+1 = x. Generate
uDO (The DSS then partitions x into n + 1 pieces. The DSS
also generates new user identification for the data owner)
Step 4: for (all proxy i) (stores each piece in each of the n
proxy servers)
 DSS -> proxy i { uDO , ui }
Step 5: DSS->DO { uDO , xn+1 , {p,b,c}} (The DSS then sends
the user identification, the remaining partitioned key piece,
and the public key, to the DO)
Step 6: DO Generate symmetric key k Ek(m), generate r; =
c

r
mod p (The DO then generates a random symmetric key k

and encrypts his data with it. The symmetric key is then
encrypted itself by the DO, using the public key {p,b,c}
generated by the DSS)
 E{p,b,c}(k) = (c

r
, c

rx
.k mod p)

Step 7: { uDO , Ek(m), E{p,b,c}(k) } (The DO then sends his user
identification, the encrypted data and the encrypted key, to the
DSS)
Step 8: Generate dm (The DSS generates a data identification
for the data)

Step 9: { uDO , dm, Ek(m) } (The DSS then sends the data
identification and the encrypted data to the CDS (9) for
storage.)

Step 10: { uDO , dm, E{p,b,c}(k) } (The DSS finally sends the
data identification and the encrypted key to the KS).

2) Consumer Authorization

Step 1: {access_request, dm} DC to DO (When a DC wishes to
access the DO's data m, he sends an access request to the DO
along with the data identification of the data he wishes to gain
access)
Step 2: addUser(uDO , dm, xn+1) DO to DSS (Assuming the DO
approves, he sends a request to the DSS and sends the request
along with his user identification, the data identification, and
key piece)
Step 3: Verify uDO, dm exists. If not, exit here. (The DSS then
verifies whether the data identification and data owner
identification exist, with a call to the CDS). If the CDS returns
false, then the DSS notifies the DO that the data does not exist
and exits the protocol.
Step 4: for (all proxy i) (If the CDS returns true, the DSS then
retrieves the DO's key pieces from the proxy)
 { uDO , key_piece_request)} DSS to proxy i
 xi proxy i to DSS
Step 5: Compute x1+x2+x3+…+xn+xn+1 = x (computes the
secret key x by adding all the key pieces together)
 Generate xu1+xu2+xu3+…+xum+xu(n+1) = x (The DSS
will then generate new key pieces for the new DC that, when
combined, are equivalent to the secret key x)
 Generate uDC(The DSS will also generate a random
user identification as well as a public/private key pair, using
ElGamal encryption for the DC)
 Generate {pDC, bDC, cDC}, xDC
Step 6: The DSS will then send the DC's user identification,
the public key and identifiers such as the DO user
identification and data identification, to the KS. The KS will
then store this in the UKDB
 { uDC, uDO, dm, { pDC, bDC, cDC } } DSS to KS then KS
to UKDB ()
Step 7: The newly generated key pieces corresponding to the
DC are then stored in each of the proxy servers
 for (all proxy i)
 { uDC, uDO, dm, xui} DSS to proxy i
Step 8: the remaining piece is sent to the DO along with the
private key of the DC. The DO finally sends this to the DC in
a secure manner.
 { uDC, uu(n+1), xDC} DSS to DO then DO to DC

3) Authorized Data Access
Step 1: When a DC wishes to access data, he sends his key
piece to the DSS along with identifiers to the data.
 { uDC , uDO , dm , xu(n+1) }
Step 2: The DSS obtains the encrypted key from the DKDB
via a call to the KS.
 getKey (uDO , dm)
Step 3: E{p,b,c}(K) = (c

r
, c

rx
.k mod p)

Step 4: The DSS then calls each proxy server to obtain the
corresponding key piece of the DC.
 getKeyPiece(uDC)
Step 5: xiu
Step 6: decrypts the encrypted key using each key piece.
 𝐷𝑥𝑖𝑢

(E{p,b,c}(K)) = (c
r
 , (c

r
))

-xiu
 . c

rx
.k mod p)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

122
IJRITCC | May 2017, Available @ http://www.ijritcc.org

 = (c
r
 , (c

r
)

x-xiu
 .k mod p)

Step 7: Repeat the step 4-6 for proxies 2..n

 Remaining ciphers: (c
r
 ,(𝑐)𝑟𝑥 −𝑥1𝑢−𝑥2𝑢−⋯.−𝑥𝑛𝑢

 .k mod
p)
Step 8: The DSS then uses the DC's key piece from step (1)
and decrypts the remaining encrypted key to reveal the full
key

𝐷𝑥𝑢+1
((𝑐𝑟 , (𝑐𝑟)𝑥−𝑥1𝑢−𝑥2𝑢−⋯−𝑥𝑛𝑢 . k mod p))

 (𝑐𝑟 , (𝑐𝑟)−𝑥𝑢 (𝑛+1) . (𝑐𝑟)𝑥−𝑥1𝑢−𝑥2𝑢−⋯−𝑥𝑛𝑢 . k mod p))

 (𝑐𝑟 , (𝑐𝑟)𝑥−𝑥1𝑢−𝑥2𝑢−⋯−𝑥𝑢 (𝑛+1) . k mod p)
 𝑐𝑟 , 𝑘 𝑚𝑜𝑑 𝑝 𝑠𝑖𝑛𝑐𝑒 x= 𝑥1 + 𝑥2 +
𝑥3 + ⋯ + 𝑥𝑛 + 𝑥𝑛+1
Step 9: The DSS then obtains the encrypted data from the
CSDB via calls to the CDS
 getData(𝑢𝐷𝑂 , 𝑑𝑚)
Step 10: 𝐸𝑘 𝑚
Step 11: The encrypted data is then decrypted with the full
key, to reveal the full plaintext. The DSS then generates
another arbitrary symmetric key and encrypts the data with
this key.

𝐷𝑘 𝐸𝑘 𝑚 = 𝑚

Generate k1
𝐸𝑘1 𝑚
Step 12: The DSS obtains the corresponding DC's public key
from the UKDB.
getUserKey(𝑢𝐷𝐶)
Step 13: { pDC, bDC, cDC }
Step 14: Encrypts the symmetric key using the public key
Generate 𝑟𝐷𝐶 , 𝛾𝐷𝐶 = 𝑐𝐷𝐶

𝑟𝐷𝐶 mod 𝑝𝐷𝐶

𝐸 pDC ,bDC ,cDC 𝑘1 = 𝑐𝐷𝐶
𝑟𝐷𝐶 , 𝑐𝐷𝐶

𝑟𝐷𝐶 𝑥𝐷𝐶 . k1 mod p

Step 15: The encrypted data and the encrypted key are sent to
the DC.
{𝐸 pDC ,bDC ,cDC 𝑘1 , 𝐸𝑘1(𝑚)}

Step 16: The DC can then decrypt the key using his earlier
distributed private key. Once the key is decrypted, the DC can
then decrypt the data itself, to reveal the full plaintext.
𝐷𝑥𝐷𝐶 (𝐸 pDC ,bDC ,cDC 𝑘1 , 𝐸𝑘1(𝑚))

= (𝑐𝐷𝐶
𝑟𝐷𝐶 , (𝑐𝐷𝐶

𝑟𝐷𝐶)−𝑥𝐷𝐶 𝑐𝐷𝐶
𝑟𝐷𝐶 𝑥𝐷𝐶 . k1 mod p

= (𝑐𝐷𝐶
𝑟𝐷𝐶 , 𝑘1 𝑚𝑜𝑑 𝑝)

𝐷𝑘1(𝐸𝑘1(𝑚)) = m

4) Consumer Revocation

Step 1: When the DO decides to revoke a user's access rights
to data, he simply calls the DSS to request the revocation of
the user's rights to the specified data.
removeUser(𝑢𝐷𝑂 , 𝑢𝐷𝐶 , 𝑑𝑚)
Step 2: The DSS will then remove the corresponding key
pieces of the user in each of the proxy databases. Note that the
data does not need to be re-encrypted and none of the other
users will be affected, since only the key pieces corresponding
to the user are removed. All other key pieces corresponding to
other users remain in the proxy database. Since the data does
not need to be re-encrypted, nor does there need to be any key
re-distribution, the model is efficient and has a runtime of
O(n), where n is the number of proxies.
For (all proxy i)
removeKeyPiece(𝑢𝐷𝑂 , 𝑢𝐷𝐶 , 𝑑𝑚)
proxy i Remove 𝑥𝑢𝐷𝐶𝑖

V. PERFORMANCE TEST AND DISCUSSIONS

We did various execution tests on our protocol, basically
the downloading and uploading of ECG information. The
motivation behind the execution test was to test whether such a
protocol will be attainable for use by regular individuals. Each
of the execution tests were done on 10 seconds of ECG
information, or 3,000 examples of ECG data points.

For the uploading tests, we measured to what extent it
would take for a patient to upload their ECG information to the
Cloud. We measured the time it took from the minute the
patient presses the upload button on their application, to the
storage of information in the database. We did 10 test cases and
for each experiment, we measured the time it took for the
patient demand to achieve the Cloud administration and after
that from the support of Cloud stockpiling. We likewise
completed the experiments utilizing the safe information
sharing convention and after that once more, without the
protected information sharing convention.

Figure 4: Uploading times with Security Protocol

Figure 5: Uploading times without security protocol

We did various execution tests on our framework, basically
the transferring and downloading of ECG information. The
motivation behind the execution test was to test whether such
a framework will be attainable for use by regular individuals.
Each of the execution tests were done on 10 seconds of ECG
information, or 3,000 examples of ECG information focuses.

For the transferring tests, we measured to what extent it
would take for a patient to transfer their ECG information to
the Cloud. We measured the time it took from the minute the
patient presses the transfer catch on their application, to the
capacity of information in the database. We did 10 test cases
and for each experiment, we measured the time it took for the
patient request to achieve the Cloud service and after that from
the support of Cloud storage. We likewise completed the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

123
IJRITCC | May 2017, Available @ http://www.ijritcc.org

experiments utilizing the safe data sharing protocol and after
that once more, without the secure data sharing protocol.

Figure 6: Downloading times with Security Protocol

Figure 7: Downloading times without security protocol

From our outcomes, we found that this time, it was
substantially quicker for the patient request to achieve the
Cloud service. In spite of the fact that the time taken to recover
information from Cloud storage and return it to the client was
marginally more, despite everything it gave back the outcomes
in under one moment.

The total downloading and uploading times are highlighted
in the accompanying figures. We measure the overhead
presented with the security protocol set up, contrasted with a
framework with no security measurement at all.

Figure 8: Uploading Overhead

Figure 9: Downloading Overhead

From our outcomes, the security protocol introduced

fundamentally more overhead contrasted and without the
security protocol. We likewise found that uploading times by
and large took a great deal longer, contrasted with download
times when the security protocol was set up. Without the
security protocol, the distinction was unimportant. The normal
time taken to upload information to the Cloud was 17.27
seconds, with a standard deviation of 7.40 seconds, with the
security protocol set up. Without the security protocol set up,
the normal time was 8.89 seconds, with a standard deviation of
8.92 seconds. With the security protocol set up, recovery times
took around 1-2 seconds. With the security protocol set up, the
normal download time was 1.00 second, with a standard
deviation of 0.21 seconds; without the security protocol, the
normal was 0.05 seconds, with a standard deviation of 0.01
seconds.

VI. CONCLUSION

We displayed a key-partitioning system that would permit
proficient key management. To quickly depict the key-
partitioning strategy, the encrypted information key is
partitioned into two (or potentially more) parts. The Cloud
provider keeps one segment and the data consumer keeps the
other. At the point when data consumer request information get
to, the Cloud provider halfway decrypts the information with
the key, and sends this to the information customer. The
information consumer then completely decrypts, utilizing the
remaining key partitioning. This guarantees neither the Cloud
provider nor the data consumer knows the completely
decrypted key. We introduced our thought through an
application situation including the observing of patients health
and furnishing them with criticism. In this situation, the
execution overhead to store and recovering health data through
our created models was significant and along these lines
achievable to use in a true situation.

REFERENCES

[1] Lorenz, Klara, et al. "Technology-based tools and services for people
with dementia and carers: Mapping technology onto the dementia care
pathway." Dementia (2017): 1471301217691617.

[2] Moghaddasi, Hamid, and Alireza Tabatabaei Tabrizi. "Applications of
Cloud Computing in Health Systems." Global Journal of Health
Science 9.6 (2016): 33.

[3] Lee, Ming-Huei, et al. "Multidisciplinary self-management telecare
system may improve quality o life in patients with interstitial
cystitis/bladder pain syndrome (IC/BPS)–A randomized controlled
study." Urological Science 27.2 (2016): S15.

[4] Susanto, Heru, and Chin Kang Chen. "Information and Communication
Emerging Technology: Making Sense of Healthcare
Innovation." Internet of Things and Big Data Technologies for Next

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 118 – 124

124
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Generation Healthcare. Springer International Publishing, 2017. 229-
250.

[5] Mohit, Prerna, et al. "A Standard Mutual Authentication Protocol for
Cloud Computing Based Health Care System." Journal of medical
systems 41.4 (2017): 50.

[6] G. Fortino, M. Pathan, and G. Di Fatta. Bodycloud: Integration of cloud
computing and body sensor networks. pages 851-856, Dec 2012.

[7] F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri,
and M. Sgroi. Spine: a domain-specific framework for rapid prototyping
of wbsn applications.Software: Practice and Experience, 41(3):237-265,
2011.

[8] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari.
Enabling effective programming and flexible management of efficient
body sensor network applications. IEEE Transactions on Human-
Machine Systems, 43(1):115-133, Jan 2013.

[9] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, and R. Buyya. An
autonomic cloud environment for hosting ecg data analysis services.
Future Generation Com- puter Systems, 28:147-154, 2012.

[10] BusinessWire. Alivecor(tm) mobile ecg device for heart rhythm
monitoring now available by prescription. Business Wire, 2013.

[11] BusinessWire. Cardiocomm solutions, inc. reveals a new remote mobile
ecg monitoring solution at medica 2011. Business Wire, 2011.

[12] S. Gradl, P. Kugler, C. Lohmuller, and B. Esko_er. Real-time ecg
monitoring and arrhythmia detection using android-based mobile
devices. pages 2452-2455, Aug 2012.

[13] H. Xia, I. Asif, and X. Zhao. Cloud-ecg for real time ecg monitoring and
analysis. Computer Methods and Programs in Biomedicine, 110:253-
259, 2013.

[14] H. Xia, I. Asif, and X. Zhao. Cloud-ecg for real time ecg monitoring and
analysis. Computer Methods and Programs in Biomedicine, 110:253-
259, 2013.

[15] U.S. Department of Health and Human Services. Hipaa privacy. U.S.
Department of Health and Human Services Website, 2012.

[16] J. Saarinen. Uk health trust fined for privacy breach. Itnews Technology
News, 2012.

[17] S. Geoghegan. The latest on data sharing & secure cloud computing.
Law & Order, pages 24-26, 2012.

http://www.ijritcc.org/

