
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 45 – 48

45
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Using Custom Mininet Topology Configuring

L2-Switch in Opendaylight

Guruprasad E

Assistant Professor

Department of Computer Science and Engineering

Siddaganga Institute of Technology, Tumakuru

guruyathi@gmail.com

Sindhu G

M. Tech Student

Computer Networks Engineering

Siddaganga Institute of Technology, Tumakuru

Sindhugowdar22@gmail.com

Abstract: Software Defined Networking is a new way of making traditional hardware based network management into software based

controlling. To do this, require a emulator like Mininet, a freely available open source network simulator software for creating custom topologies

of our wish in virtual environment and it also permits to create OpenFlow switches, hosts and an SDN controller in a virtual network all with a

simple command on a Linux Kernal.and It is a better approach to start practicing about SDN and Open-Flow as well as test SDN controllers like

OpenDaylight. In this paper, by creating custom topology in python script and use of OpenDaylight controller environment for controlling flows

in openflow enabled switches and then configuring L2-Switch features and observe the out comes.

Index terms— Software Defined Networking(SDN), Mininet, OpenFlow, OpenDaylight, L2-Switch.

__*****___

I. INTRODUCTION

Software Defined Networking (SDN) is estimated as the

forthcoming backbone for all kinds of computer networks.

Though the idea is yet in earliest stages and the greater part

of its improvements are going on at Research and

Development labs. It is pointing that such a network comprises

of an extensive number of switches and controllers and the

network among them. The topologies of these extensive scale

network is of extraordinary significance for SDN study.

Although there does not occur an identical and

automatic device for creating such topologies. Due to large-

scale topologies, it is not to execute SDNs for all intents and

purposes for testing. Therefore researchers choose the

utilization of a product testbed (emulator) like Mininet to

concentrate the same. SDN programming emulators

acknowledge topologies from client input and the whole

topology must be determined physically It is not practical to

input large scale topologies manually as there are chances of

human error.

A. SDN OVERVIEW:

SDN is a way to deal with utilizing open proocols, for

example, OpenFlow, to apply universally known

programming control at the edges of the network to get

switches and routers that ordinarily would utilize locked and

proprietary firmware.

SDN is another networking concept which summaries the

reasonable portion of computer networks to an central

controller. The thought originated from the work initially done

at Stanford University. It isolates the control plane which

chooses where and how activity is sent from the basic gadgets

(data plane) which essentially direct data flows, and offers

programmable interfaces to regulate network traffic. Isolating

the control plane from the data plane is the most describing

properties of SDN. This isolation improves network

management configuration since there is a necessity for

administrators to state hardware parameters in a low level.

Programmability is one of the critical element of SDN: the

difficult control logic can be characterized by software

programs, which is considerably easier to execute and keep up.

The control plane is expelled from network devices and they

turn into simple data forwarding components and Control

functionality is put on a devoted element called SDN

controller.

Forwarding choices are flow based. A flow could be

characterized as a bundle stream between a source and

destination that get a similar forwarding service. The network

is programmable through programming applications running

on the highest point of controller

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 45 – 48

46
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Figure1: Layered SDN Architecture

Figure shows the SDN architecture, which is being defined by

the Open Networking Foundation (ONF). It basically consists

of three layers:

 Device layer, which consists of the OpenFlow-

enabled network elements, such as layer 2 switches

and along with end devices like sensors and pc’s etc.

 Control layer, which lets active provisioning of

network services by means of an SDN controller.

 Application layer, which lets implement of

network-aware applications on top of an SDN

controller.

Northbound API presents a system reflection interface

between applications that sit on the highest point of SDN

stack and SDN controller.

Southbound APIs encourage productive system control and

empower SDN controller to progressively roll out

improvements in sending plane continuously. For instance,

SDN controller can include or evacuate a section in sending

table through southbound interface. OpenFlow is the most

widely recognized southbound interface

B. OPENDAYLIGHT OVERVIEW:

OpenDaylight, an java-based open source platform for

Software Defined Networking (SDN) that utilize open

protocols to give unified, automatic control and manages

network devices. In the same way as other SDN controllers,

OpenDaylight provisions OpenFlow and other southbound

APIs, (for example, Cisco OpFlex) and introduces network

solutions as a major aspect of its platform. Much as your

operating system gives an interface to the gadgets that contain

your PC, OpenDaylight gives an interface that enables you to

associate network gadgets rapidly and cleverly for optimal

network performance.

Setting up your networking environment with OpenDaylight is

not a solitary software installation. While your first sequential

step is to install OpenDaylight, you install extra useful bundles

as Karaf components to suit your particular needs.

The technologies have been using for OpenDaylight

controller, with its inner core modules are MD-SAL and

config subsystem then for Model-driven technologies are

YANG, NETCONF and RESTCONF then for Project

management tooling is Maven and Run-time environment are

OSGi and Karaf finally Java environment are JMX, JConsole,

etc

ODL supports for a extensive and rising collection of network

protocols beyond OpenFlow, as well as SNMP, NETCONF,

OVSDB, BGP, PCEP, LISP, etc and it Provision for creating

new functionality consist of additional networking protocols

and services.

C. MININET OVERVIEW:

Mininet a Linux kernel based network emulator which tracks

pool of end-hosts, switches, routers and links, where these

switches have to support OpenFlow protocol so as to test or

implement SDN concepts. These virtualmininet’s hosts,

switches, links and controllers are created using software

instead of real hardware devices. Mininet permits the user to

simply design, modify, share and check SDN networks.

Mininet will replicate SDN networks, will manage a controller

for experiments. Mininet’s VM comprise of some SDN

controllers to imitate real world scenarios.

By a group of professors at Stanford University mininet was

created and utilized as an apparatus for research work and for

learning network technologies. Recently, Mininet is intended

to make virtual software defined networks including an Open-

Flow controller, multiple switches in a network which are

Open-Flow enabled and various hosts associated with those

switches. It has in-built functions that provisioning

provisioning distinctive sorts of controllers and switches.

Using Mininet’s command line interface , can create SDN

switches, hosts, controllers and links either by typing

commands or by designing own custom topologies. SDN

architecture divides the network control from forwarding

functions by allowing the network control to become straightly

programmable and the primary infrastructure to be isolated for

applications and network services. The Open-Flow protocol is

an initial element for developing SDN solutions and it is a

standard protocol, used to convey a communication between

controller, control plane and data plane respectively.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 45 – 48

47
IJRITCC | May 2017, Available @ http://www.ijritcc.org

II. MININET CUSTOM TOPOLOGY

 Mininet distributes a Python API to generate custom

experiments, topologies, and node types: switch, controller,

host, or other. A couple lines of Python are adequate to

characterize a custom regression test that makes a network,

executes commands on different nodes and showcases the

outcomes. An example script:

Figure2: A Custom Topology python script with two switches

and four hosts.

Creates a small network (4 hosts, 2 switches, 5 links) and

pings one host from another when we invoke this script called

mytopo present in the custom folder of mininet.

To make this network, Mininet simulates links, hosts,

switches, and controllers. Mininet employs the lightweight

virtualization procedure joined with the Linux OS.

The current Mininet distribution includes several example

applications, including text-based scripts and graphical

applications The hope is that the Mininet API will prove

useful for system-level testing and experimentation, test

network management, instructional materials, and applications

that will surprise the authors.

III. CONFIGURING L2-SWITCH FEATURE IN

OPENDAYLIGHT

The L2Switch development offers Layer2 switch

functionality and it allows user to configure those features as

per their requirements.

A. Components of the L2-Switch Project

Packet Handler: Decrypts the packets going to the controller

and dispatches decoded packet notice, based on listed

decoders.

 Loop Remover: Loops present in network will be expels and

updates the comparing STP Status of network ports present in

operational stock data store.

 Arp Handler: Handles the decrypted ARP packets, based on

the configuration either by set up proactive flood flows or by

transmitting packets back to network.

 Address Tracker: Find out the Addresses (MAC and IP) of

devices in the network and follows them in operational

inventory data store.

 Host Tracker: Follows the locations of hosts in the network

and informs operational default topology tree in data store.

 L2Switch Main: Based on network traffic and address learned

by address tracker, set up flows on each switch.

B. Configuring steps

Step1: Download the base distribution configuration files

located in:

distribution/base/target/distributions-l2switch-base-0.1.0-

SNAPSHOT osgipackage/opendaylight/configuration/initial

Step2: Find the Karaf distribution configuration files located

in: distribution/karaf/target/assembly/etc/opendaylight/karaf

Here we are taken only Loop Remover (52-loopremover.xml)

and in that showing outcome for changes did in graph refresh-

delay.

A graph of the network is kept up, and gets refreshed as

system components go up/down (that is to state, links go

up/down and switches go up/down). After a network

component going up/down, it holds up graph-refresh-delay

seconds before re-processing the graph.

 A higher value has the benefit of doing less graph

updates, at the possible cost of dropping some

packets since the graph didn't update immediately.

 A lower value has the benefit of managing network

topology changes faster, at the cost of doing more

computation.

C. Observation

1. Graph-Refresh-Delay High

If we change install-lldp-flow to false then no flow will be

installed on switches to send all lldp packets to the

controller but our focus is on graph-refresh-delay so here

we made this delay value high i,e. 1000000 ms thus it wll

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 5 45 – 48

48
IJRITCC | May 2017, Available @ http://www.ijritcc.org

update graph after this much of time if any changes made

between this duration can not able to update fast.

Figure3: Graph made high value in xml file(52-

loopremover.xml)

By pinging the host h1 and h2 and seeing the icmp echo reply

time taken around 2ms at first ping and then time taking to

ping will decrease.

Figure4: pinging h1 to h2 in mininet_vm for checking

icmp echo reply time taken to ping hosts if graph refresh

delay made high.

2. Graph-Refresh-Delay Low

Here we made this delay value low i,e. 10 ms thus it wll

update graph faster after this much of small time. if any

changes made between this duration can able to update

faster.

Figure5: Graph made low value in xml file(52-

loopremover.xml)

By pinging the host h1 and h2 and seeing the icmp echo reply

time taken around 0.5ms at first ping and then time taking to

ping will decrease and by this we can come to conclusion that

if any changes made with graph refresh delay low value no

much time require for communication between devices.

Figure6: pinging h1 to h2 in mininet_vm for checking icmp

echo reply time taken to ping hosts if graph refresh delay made

low.

IV. CONCLUSION

In this paper, we showed how to configure L2-Switch

features of OpenDaylight in a xml file by creating Mininet

custom topology and observed the out come of the same. By

this we can came to conclusion that many things can be

configure in OpenDaylight controller platform using Mininet

so as to implement our own requirements easily.

The future work will be concentrating on all other

remaining features of L2-Switch and extending this to

OpenDaylight YangUi and developing own feature for L2-

Switch.

REFERENCES

[1] Casimer DeCusatis, Aparicio Carranza and Jean Delgado-

Caceres "Modeling Software Defined Networks using

Mininet", ICCIST, 2016.

[2] Sunit Kumar Nandi "Topology generators for Software

Defined Network

 testing", International Conference on Electrical,

Electronics, and Optimization Techniques – 2016.

[3] Chaitra N. Shivayogimath and N.V. Uma Reddy

"Modification of L3 Learning Switch Code for Firewall

Functionality in POX Controller" International Journal of

Research in Engineering and Technology, june 2015.

[4] Karamjeet Kaur, Japinder Singh and Navtej Singh

Ghumman "Mininet as Software Defined Networking

Testing Platform", International Conference on

Communication, Computing & Systems, 2014.

[5] Kuldeep K. Sharma and Manu Sood "Mininet as a

Container Based Emulator for Software Defined

Networks", International Journal of Advanced Research in

Computer Science and Software Engineering, 2014.

[6] Pooja and Manu Sood "SDN and Mininet: Some Basic

Concepts", International Journal in Advanced Networking

and Applications, 2015.

[7] Faris Keti and Shavan Askar "Emulation of Software

Defined Networks Using Mininet in Different Simulation

Environments", International Conference on Intelligent

Systems, Modelling and Simulation, 2015 IEEE.

http://www.ijritcc.org/

