
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 109 – 114

109
IJRITCC | April 2017, Available @ http://www.ijritcc.org

A New Approach For Regression Test Case Prioritization Using Branch

Coverage, Decision Coverage And Criticality Coverage Techniques

Sulaxna Solanki

M.Tech. Scholar, Department of Computer Engineering,

 Govt. Mahila Engineering College

Ajmer, Rajasthan, India

sulaxnasolanki19@gmail.com

Amritpal Singh Yadav

Assistant Professor, Department of Computer Science and

Engineering, Govt. Mahila Engineering College

Ajmer, Rajasthan, India

palamrit83@gmail.com

Abstract—Regression Testing is the process of retesting the modified parts of the software and checking that no new faults have been created

into already existing code. When new features are added to an existing software system, then regression testing is necessary to test the new

features as well as the existing features to ensure that their behaviors are not affected by the modifications. Test cases are used to determine

whether an application or software system is working correctly or not. It is difficult to re-execute every test case for a program if changes occur.

Testers will prioritize the test cases to reduce the cost of regression testing. The main purpose of test case prioritization is to increase the rate of

fault detection. In this paper a new hybrid approach for regression test case prioritization is proposed. Excremental results ensure that the new

proposed algorithm for test case prioritization improves the rate of fault detection.

Keywords-Software testing, Regression Testing, Test case Prioritization

__*****___

I. INTRODUCTION

Regression testing is a type of software testing that intends

to ensure that changes to the software have not affected it. It

may include in the functional testing. Regression testing may

define as “it is the testing process that is done to find the

regression in the system after doing any changes in the product

or it is used to check whether the new changes occurs the errors

in the software or not”. For example, before applying any

change on program it must be tested, then again retested the

program in the selected areas after a change is applied, to detect

whether the change created new bugs or issues, or it may

achieve its intended purpose after the actual change is made.

Thus, regression testing is essential for large organization. It

can be performed during any level of testing. Research in

regression testing is a wide range of topics. A test case is a

single step, or occasionally a sequence of steps, to test the

correct functionalities, features of an application. Earlier work

in this area investigated different environments that can assist

regression testing. Whenever the software is modified/changed,

then regression testing is performed to check whether the new

modification on the software can introduce any new errors or

not, on the existing software. It is Impractical to re-execute

every test case for program if change occurs. It takes lot of

time, cost and resources to re-execute all test cases. There are

various techniques are commonly used to reduce complexity of

regression testing. Automation testing mainly used in

regression testing and apart from regression testing, it is also

used to test the application from load performance and stress

point of view. Automation testing increases the test coverage;

improve accuracy, saves time as well as money in comparison

to manual testing. Retest all, Test case minimization, test case

selection, test case prioritization are the important techniques to

improve the effectiveness of regression testing.

A. Retest All- In this method, the test cases that no longer

apply to modified version of program are discarded and all the

remaining set of test cases are used to test the modified

program.

 B. Test Case Minimization- It is a process that seeks to

identify and then eliminate the redundant test cases from the

test suite.

C. Test Case Selection - Test case selection deals with the

problem of selecting a subset of test cases that will used to test

the changed parts of the software.

D. Test Case prioritization - Test case prioritization

concerns about perfect ordering of test cases. The prioritization

of test cases depending on business impact, and frequently used

functionalities. In this method, selection of test cases based on

priority will greatly reduce the regression test suite. There are

number of matrix available to calculate the fault detection rate

using test case prioritization technique. The main goal of the

test case prioritization schedule test cases in order to increase

their ability to meet some performance goal: Rate of fault

detection, Rate of code coverage and rate of increase of

confidence in reliability. The rate of fault detection which is a

measure of how quickly the fault is detected so that during

testing faster feedback can provide about system under testing

and allow the software tester to correct the software at earlier

phase as possible.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 109 – 114

110
IJRITCC | April 2017, Available @ http://www.ijritcc.org

II. LITERATURE SURVEY

Kaur A. & Bhatt (2011) [1] presents a combined analytic

view of evolutionary computation techniques namely Genetic

Algorithm and Particle Swarm Optimization. The PSO is an

optimization technique, where global solution is constructed by

analysis of the local optimal solution. Li K.& Zhang Z. et al

proposes (2010) [2] a new method to breeding software test

data called GPSMA for structure data test generation,

introducing a new strategy to replace the mutation operation in

traditional genetic algorithm, and using the “excellent rate of

production” to implement the interaction between sub-

populations. Kire K. & Malhotra [3] (2014) has worked on

Optimization algorithms based on swarm intelligence can have

some distinct advantages over traditional methods. It has been

found that most SI-based algorithms use mutation and selection

to achieve exploration and exploitation. Rini D. &Siti et al

(2011) [4] have made review of the different methods of PSO

algorithm. The process of PSO algorithm in finding optimal

values follows the work of an animal society which has no

leader. Particle swarm consists of a swarm of particles, where

the particle represents a potential solution. Particle will move

through a multidimensional search space to find the best

position. Sharma C. &Sabharwal (2013) [5] has worked on

applications of GA in different types of software testing are

discussed. The GA is also used with fuzzy as well as in the

neural networks in different types of testing. It is found that by

using GA, the results and the performance of testing can be

improved. Tandon A. &malik (2012) [8] has worked on the

preliminary results from a genetic algorithm based approach to

software test case breeding. The guiding fitness function can

provide a focused search that produces a large number of

localized test cases, or be loosened up for more random-like

behaviors, depending on the testing scenario. High volume or

long sequence testing involves the repeated execution of a

substantial number of test cases. Windisch A. & Joachim et al

(2007) [9] has reported on the application of particle swarm

optimization to structural software testing. Both particle swarm

optimization and genetic algorithms were used to automatically

generate test cases for the same set of test objects. Yang X.

(2014) [10] has worked on this ABC technique is used for the

generation of the test data. The parallel behavior of the bees

makes generation of test cases faster and efficient. Here,

independent test path coverage criterion is used as objective

criteria to achieve the all test coverage with less number of test

runs.

III. PROPOSED WORK

In this work we have taken following criteria’s for test case

prioritization.

Statement Coverage

Branch Coverage

Criticality Coverage

The details are as follows:

Statement Coverage Weight SCW- The number of

statements a test case cover is calculated. Statement Coverage

Weight is equal to the number of statements of the source code

are covered by a test case. To calculate the Statement Coverage

Weight, annotations are used in the source code written in java

programming language.

Branch Coverage Weight BCW - The number of branches

or conditions a test case cover is calculated. Branch Coverage

Weight is equal to the number of branches of the source code

are covered by a test case. To calculate the Branch Coverage

Weight, annotations are used in the source code written in java

programming language.

Criticality Coverage Weight CCW- The number of critical

features (The features which are most important for user point

of view. These features are taken as input from the user at the

time of requirement analysis and should be mentioned in

Software Requirement Specification SRS) Criticality Coverage

Weight is equal to the number of critical features of the SRS

are covered in source code. To calculate the Criticality

Coverage Weight, annotations are used in the source code

written in java programming language.

Prioritized Weight PW - To find the order of a test case in

prioritized test suite, a prioritized weight is calculated. This

prioritized weight is the average of all the three weights i.e.

Statement Coverage Weight SCW, Branch Coverage Weight

BCW and Criticality Coverage Weight CCW.

In this paper a new algorithm to prioritize regression test

suite is proposed. The algorithm calculate three types of weight

i.e. statement coverage weight, Branch Coverage Weight and

Criticality Coverage Weight and then combine these three

types of weights to find Prioritized Weight. All the test cases in

the test suite are sorted in descending order of the prioritized

weight to find the prioritize regression test suite. The proposed

algorithm to prioritize regression test suite is given in

Algorithm-1. The algorithm take un-prioritized regression test

suite as input and return a prioritized regression test suite.

Algorithm-1 : Hybrid Algorithm using Statement

Coverage, Branch Coverage and Criticality Coverage

Input : Un-prioritized Regression Test Suite (URTS)

Output : Prioritized Regression Test Suite (PRTS)

Step-1 :Execute all test cases in Un-prioritized Regression

Test Suite (URTS) and calculate the value of Statement

Coverage Weight SCW, Branch Coverage Weight BCW and

Criticality Coverage Weight CCW.

Step-2:Add the value of SCW, BCW and CCW and find the

average of the three weight to get Prioritized Weight PW.

Step-3:Sort all the test case in decreasing value of

Prioritized Weight PW to get Prioritized regression test Suite

(PRTS).

The Algorithm-1 has been implemented in JAVA for a

given un-prioritized regression test suite and the effectiveness

of the algorithm is checked using well known metric Average

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 109 – 114

111
IJRITCC | April 2017, Available @ http://www.ijritcc.org

percentage of fault detection APFD. APFD metrics is used to

calculate the level of effectiveness which is as follows.

Average percentage of fault detection (APFD) metric-

The goal of increasing a subset of test suite’s rate of fault

detection, we use a metric called APFD that measures the rate

of fault detection per percentage of test suite execution. The

APFD is calculated by taking the weighted average of the

number of fault detected during the run of the test suite. APFD

can be calculated as follows:

APFD = 1- ((tf1+tf2+…………+tfm)/n*m +1/2*n)

n is the number of test cases

m is the number of faults

(tf1+tf2+………..+tfm) are the position of first test T that

exposes the fault.

This formula represents that we can calculate APFD only

when we have prior knowledge of faults contained in the

program.

IV. RESULT ANALYSIS

In this work an un-prioritized regression test suite is

generated (for a given sample problem and program). The test

suite is having 20 test cases. The value of APFD metric for Un-

prioritized Regression Test Suite (URTS) is 70.83 After

prioritizing the test suite using Algorithm-1 the value of APFD

metric for Prioritized Regression Test Suite (PRTS) is

calculated and it is found 94.16 which is 23.33% better than the

URTS. Figure-1 is showing a snapshot of the calculation of

APFD for URTS which comes out 70.83. Figure-2 is showing a

snapshot of APFD for PRTS which comes out 94.16. Figure-3

shows a bar chart for comparing the value of APFD for URTS

and PRTS. It shows that APFD for PRTS is better than URTS.

CONCLUSION AND FUTURE SCOPE

This paper describes a new approach for regression test case

prioritization using branch coverage, decision coverage and

criticality coverage techniques. It uses statement coverage,

branch coverage and criticality coverage criteria’s to prioritize

regression test suite. Statement and branch coverage ensures

that the test cases which covers maximum part of the source

code must be tested first. Criticality coverage ensures that the

test case which are testing most critical

component/functionality of the source code must be executed

first. The knowledge about the critical components of the

software is collected at the time of requirement analysis and

should mentioned in the SRS. The Algorithm is implemented

and tested using JAVA on a test suite of 20 test cases. In

future the performance of the proposed algorithm can be tested

on a larger test suite having thousands of test cases. Also the

Algorithm can be tested on a source code having thousands of

line of code. In future some other criteria’s such as sample of

successful test cases sample of failure test cases can also be

combined and the performance can be tested.

ACKNOWLEDGMENT

The This is opportunity to express my heartfelt words for

the people who were part of this thesis in numerous ways,

people who gave me unending support right from beginning of

the thesis.First and foremost I extend my thanks and gratitude

to my thesis guide, Mr. Amritpal Singh Yadav (Asst. Professor

Department of Computer Science and Engineering) Govt.

Mahila Engineering College, Ajmer whose guidance, teaching

and certain suggestion provided me the timely valuable input

which enhanced my knowledge and thus helped in the

development of this Dissertation part-II.I would like to give

sincere thanks to the Principal, Dr. Ajay Singh Jethoo for his

valuable support. I also extend my thanks to Mrs. PayalAwwal

Head of the Department (Computer Science Engineering) for

the cooperation and guidance.

REFERENCES

[1] Kaur Dr. Arvinder, Divya Bhatt”Hybrid Particle Swarm

Optimization for Regression Testing” IJCSE, Vol. 3

No. 5(2011).

[2] Li Kewen, Zilu Zhang, Jisong Kou”Breeding Software

Test Data with Genetic- Particle Swarm Mixed

Algorithm “Journal Of Computers, VOL. 5, NO.

2(2010).

[3] Kire Kevilienuo, Neha Malhotra “Software Testing

using Intelligent Technique “IJCA, (2014).

[4] Rini Dian palupi, siti mariyam shamsuddin et

al”Particle Swarm Optimization: Technique, System

and Challenges” IJCA, Volume 14, (2011)

[5] Sharma Chayanika, Sangeeta Sabharwal et al “A

Survey on Software Testing Techniques using Genetic

Algorithm “IJCSI, (2013).

[6] Singh Abhishek, Naveen Garg et al” A Hybrid

Approach of Genetic Algorithm and Particle Swarm

Technique to Software Test Case Generation”IJIET,

(2014).

[7] Singh Naveen, Mrs. Kavita Agarwal ”Software Testing

using Evolutionary Approach”, IJSR2013

[8] Tandon Anisha, Poonam Malik “Breeding Software test

cases with genetic algorithm” IJAET, (2012).

[9] Windisch Andreas, Stefan Wappler et al (2007)”

Applying Particle Swarm Optimization to Software

Testing “ACM.

[10] Yang Xin-She (2014)” Swarm Intelligence Based

Algorithms: A Critical Analysis”.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 109 – 114

112
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Figure 1. A snapshot of APFD for Un-prioritized Regression Test Suite (URTS)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 109 – 114

113
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Figure 2. Asnapshot of APFD for Prioritized Regression Test Suite (PRTS)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 109 – 114

114
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Figure 3. Comparison of APFD for Un-prioritized Regression Test Suite (URTS) and Prioritized Regression Test Suite (PRTS)

