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Abstract: In this paper the problem of reconstruction of video frames is addressed, when there are missing pixels in each video frame or is 

corrupted with noise and also the locations of corrupted pixels are not known. The modified data can be corrected using Forward Error 

Correcting Codes. Forward Error correcting codes detect and correct errors with the help of complex decoders. This work proposes a new 

approach called Selective encoding for reconstruction of Video Frames from Error. This algorithm combines the Bezier curves over Galois Field 

GF (p^m) and the Low Density Parity Check Codes for performing encoding and decoding. The proposed decoder is capable of detecting and 

correcting errors in each video frame, where only selected pixel values are encoded and decoded.  This reduces the decoding time significantly. 

Further, when binary representation of the Galois Field is used, the speed of the decoder is enhanced as there is no carry generation and carry 

propagation when any modular arithmetic operation is carried out. Further time complexity is improvised by using parallel processing. The 

coding of the algorithm is carried out using MATLAB.  

Keyword:  Selective Encoding, Error Recovery, LDPC codes, Bezier curve, Galois field.  
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I. Literature Survey 

The work of Daniel Costello J et al. in “Applications of 

Error-Control Coding” mainly discusses the various error 

control methods in mobile communication, like the different 

FEC codes like Hamming code, Reed Solomon Code, Golay 

code, Low Density Parity Check codes (LDPC) and Turbo 

coding for GSM and CDMA along with the different data 

rates[1].  

M H Azmi in his PhD Thesis on  “Design of low-density 

parity-check codes in relay channels “ ,  discusses about the 

capacity of LDPC which is the subject of intense interest in 

research[2]. 

Sheryl L. Howard in his work on “Error control coding in 

wireless sensor networks “  mainly discusses about the 

specific error control coding like Checksum, Reed Solomon, 

Cyclic Redundancy Check and Convolution codes  in 

WSN‟s. The authors have implemented several decoders 

like Reed Solomon, Hard decision Viterbi, Soft Decision 

Viterbi, LDPC codes, for the data in different 

environments[3].  

The works of sanjeev kumar et al.  mainly discusses the 

methods of improving the total BER which is obtained 

through the  combination of  RS codes for  correcting burst 

errors and  convolution codes which are  good for correcting 

random errors, that are caused due to a noisy channel.  

LDPC codes are known to perform well in the presence of 

Additive White Gaussian Noise (AWGN) but for very large 

block lengths[5].  

The authors of “Performance study of non-binary LDPC 

codes over Galois field”, V S Ganepola et al.  Have 

proposed to define the codes over higher order Galois fields 

to overcome the limitations of having a large block 

length[6].  

The authors of” Review paper on the decoding of LDPC 

codes using Advanced Gallagers algorithm” Padmini U 

Wasule et al.  mainly discusses on the decoding of Low 

Density Parity Check Codes using Advanced Gallagers 

algorithm, which has a fully parallel implementation to 

reduce the Bit Error Rate and lower the hardware 

complexity at the cost of  increase in area  to achieve 

maximum throughput[7].  

Alin Sindhu has proposed “A Galois field based very fast 

and compact error correcting technique” which discusses on 

Euclidean Geometry based LDPC where serial one step 

majority logic decoder is used. The received vector is 

cyclically shifted and then fed to the shift register circuit to 

perform the error correction. However, as the number of bits 

increases, the decoding time increases. Also the hardware 

complexity enhances, if the information to be encoded 

increases, as the proposed method uses p-input XOR gates, 

depending on the size of the parity matrix[8].  

M. P. C. Fossorier et al. In their work on “ Reduced 

complexity iterative decoding of low density parity check 

nodes based on belief propagation”, discusses on Fast 

decoding algorithms based on Fast Fourier Transform to 

reduce the computation complexity of the belief propagation 

algorithm using higher order Galois field but for moderate 

code lengths. The algorithm reduces the computational 

complexity by simplifying the check node computation. But 

the algorithm is unable to improve the decoding 

performance of the LDPC codes[9].  

J.P chen et al. Have discussed on “Density evolution for two 

improved BP-based decoding algorithm for LDPC codes”, 

which have an improvement in the decoding performance, 

but decoding performance suffers from degradation when 

output is near to zero[10]. 

The work of Meng Xu et al. is on Modified Offset min-sum 

algorithm (MOMS), which has an improvement in the 

decoding performance and requires P + 2 more addition 

operations compared, to OMS algorithm[11].  
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From the Literature Survey, it is observed that a better 

performance in decoding is required. The proposed 

algorithm is on Selective Encoding. Here the complexity of 

the hardware can be simplified and a better performance of 

the decoder can be achieved even when output is zero. 

Further the improvement achieved in the proposed work, is 

reduction in the area as the Hardware used is XOR gates. 

Further, there is No performance degradation seen when 

output is zero. Also, K-P modulo-additions are required for 

decoding, where K is the length of the information digits 

and P is the number of non zero digits of the Parity matrix. 

It has been observed that a better improvement in the 

decoder performance is achieved using Selective Encoding 

in Galois Field GF (2
m
). 

 

II. INTRODUCTION 

The proposed work is based on Bezier curves over Galois 

field GF (p^m), combined with the Low Density Parity 

check (LDPC) codes for the purpose of encoding and 

decoding the data. The construction of the Generator matrix 

G for encoding and the parity check matrix H for decoding 

is based on  Bezier curves over Galois field GF(2^m). The 

proposed decoder can detect and correct any random errors 

up to 150 digits in a word of 256 digits. Low Density Parity 

Check codes, Bezier curve and Galois field are discussed.  

 

2.1 Low Density Parity Check Codes 

 Low density parity check codes are very widely used for 

error detection and correction purposes [12]. Low Density 

Parity Check Codes is a class of codes, which have a small 

number of 1‟s compared to zeros.  LDPC are defined by a 

randomly generated parity matrix which can be of type 

regular or irregular. The Regular parity matrix P is 

constructed to have a uniform column weight and row 

weight [12][13].  Such algebraic construction methods 

ensure that each row has exactly the same number of 

elements and each column has exactly the same number of 

elements.  These conditions ensure that the parity matrix P 

has uniform row and column weights forming a Regular 

LDPC code [14]. The Parity matrix P that does not adhere to 

the property of having uniform row and column weight 

forms an Irregular Parity matrix. 

 In the proposed work the parity matrix P is of type regular, 

constructed using  Bezier curve elements over Galois Field 

GF (p^m).  

 

2.2 Bezier curve 

 

Bezier curves were widely publicized in 1962 by the French 

engineer Pierre Bezier. The Bezier curve is a parametric 

curve. Bernstein polynomial functionally defines the Bezier 

curve[16]. Bezier curves are a method of designing 

polynomial curve segments, where in the shape of curves 

can be controlled using the control points. The Bezier curves 

have control points from P0 to Pn, where n is the order of 

the Bezier curve. Based on the value of „n‟, the following 

are the different classes of Bezier curves.   

 

(i) Linear Bezier curves 

Figure 1 shows the plot of the Linear Bezier curve B (t) 

Versus t, which is equivalent to linear interpolation between 

two points. 

The equation for linear Bezier curve is given by 

]1,0[,)1()( 10  ttPPttB Where P0 and P1 are the 

control points. 

 

  
Figure : 1 Linear Bezier Curve 

 

(ii) Quadratic Bezier curve 

Figure 2 shows the plot of the Quadratic Bezier curve[16] B 

(t) versus t, which can be interpreted as the linear interpolate 

of corresponding points on the linear Bezier curves from P0 

to P1 and from P1 to P2 respectively. 

A quadratic Bezier curve [11] is defined by the function 

B(t), with P0, P1, and P2 as control points. The curve 

equation is  

]1,0[,)1(2)1()( 2

2

10

2  tPtPttPttB

  

 
Figure : 2 Quadratic Bezier Curve 

 

(iii) Cubic Bezier curves 

Figure 3 shows the plot of the Cubic Bezier curve[16] B (t) 

versus t. 

Four control points P0, P1, P2 and P3 defines a cubic Bezier 

curve  for n=3.  

The explicit form of the cubic Bezier curve is given by  

)1,0(;)1(3)1(3)1()( 3

3

2

2

1

2

0

3  tPtPttPttPttB
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The first and the last points are on the curve, while the 

middle two points are not on the curve. The change in the 

control points, changes the shape of the curve. Connecting 

the control points by the line segments form a control 

polygon. The curve is tangent to the control polygon.  

 

 
Figure 3 : Cubic Bezier Curve 

 

(iv) Quartic Bezier curves 

Figure 4 shows the plot of the Quartic Bezier curve B (t) 

versus t.  

Five points P0, P1, P2, P3and P4 define a Quartic Bezier 

curve [16] given n=4. The explicit form of the Quartic 

Bezier curve is given by 

4

4

3

3

2

22

1

3

0

4 )1(4)1(6)1(4)1( PtPttPttPttPt  Where 

)1,0(t
 

 

Figure 4 : Quartic Bezier Curve 

 

2.3 Galois Field 

 

Galois field Algebra is named after its inventor Evariste 

Galois. In Galois field GF (2^m), there are finite number of 

elements. These finite fields are extensively used in coding 

theory like BCH Codes, Reed Solomon codes [17]. The 

order of a finite field is always a prime or power of a prime. 

Coding theory focuses on finite fields. For any prime integer 

p and any integer m greater than or equal to 1, there is a 

unique field with p
m
 elements denoted as GF (p

m
).In case m 

is equal to 1, the field is just the integers mod p. In coding 

theory, and in cryptography, normal practice is to almost 

always take the value of p to be 2, which is called as binary 

extension and represented as GF (2
m
). Let α €GF (2

m
) be the 

root of a primitive polynomial of degree m over GF (p). The 

elements of GF (2
m
) are {0, 1, α α

2
, α

3
… α

m-2
}. Each 

element in GF (2
m
) can be represented using m-bits. 

Arithmetic operations can be performed for the elements of 

GF (2
m
), which is useful in coding theory. 

The following section shows the arithmetic operations 

performed on GF (2
m
) 

 

(i) Elements in GF (2
m
) 

 

In GF (2
m
), modular arithmetic operations are simpler. The 

need for hardware also reduces since there is no concept of 

carry generation and carry propagation.  

The elements of Galois field GF (2
4
) is constructed using the 

primitive polynomial P(x) = x
4
 + x + 1 and is shown in 

Table 1 

 

Element Polynomial 

representation 

Binary 

representation 

0 0 (0000) 

α
0
 1 (1000) 

α
1 

X (0100) 

α
 2 

X
2 

(0010) 

α
3 

X
3
 (0001) 

α
4 

X+1 (1100) 

α
5 

X
2
+X (0110) 

α
6 

X
2
+ X

3
 (0011) 

α
7 

1+X+ X
3
 (1101) 

α
8 

1+X
2
 (1010) 

α
9 

X+ X
3
 (0101) 

α
10

 1+X+X
2
 (1110) 

α
11

 X+X
2
+ X

3
 (0111) 

α
12

 1+X+X
2
+ X

3
 (1111) 

α
13

 1+X
2
+X

3
 (1011) 

α
14

 1+ X
3
 (1001) 

 

Table 1: Elements of GF (2
4
) 

  

(ii) Addition in GF (2
m
) 

Illustrating the Galois field addition with an example: The 

Galois Field GF (2
4
) has  

P(x) = x
4
 + x + 1 as the primitive polynomial.  Table 1 show 

that each element in GF (2
4
) can be represented using 4-bits 

in binary. Bitwise XOR is used while adding the elements of 

GF (2
4
). For example:  

α
5
 + α

5
 = (0110) + (0110) = (0000) = 0= α

0
  

α
 2
 + α

5
= (0010) + (0110) = (0100) = 1= α

1
 

The addition table for GF (2
4
) is as shown in Table2 
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+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 

6 6 7 4 5 2 3 0 1 14 15 12 13 10 110 8 9 

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

Table 2: Addition in GF (2
4
) 

 

(iii) Multiplication in GF (2
m
) 

In most algorithms the modular product is computed using 

the polynomial multiplication succeeded by the modular 

reduction. Let A(x), B(x) be the polynomial represented 

elements of GF (2
m
) and P(x) be the irreducible field 

generator polynomial. 

Example: If P(x) =X
4
+X+1, A(x) = X

2
+1, B(x) = X

2
+X  

Then A(x)* B(x) = (X
2
+1)* (X

2
+X)   = ( X

4
+ X

3
+ X

2
+X) 

Modular reduction 

( X
4
+ X

3
+ X

2
+X) mod(X

4
+X+1) =1+X

2
+X

3
 

Using the Galois Field GF (2
4
) which is based on P(x) 

=x
4
+x+1, the multiplication table for  

GF ( 2
4
)[10] is  as shown in Table 3 

 

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13 

3 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2 

4 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9 

5 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6 

6 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4 

7 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11 

8 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1 

9 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14 

10 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12 

11 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3 

12 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8 

13 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7 

14 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5 

15 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10 

 

Table 3: Multiplication in GF (2
4
) 

 

Multiplication takes place on the 4-bit binary values and 

then the modular reduction is performed on the binary 

product. 

The Binary representation of P(x) = (X
4
+X+1) = (1101). 

The modular multiplication in binary can be performed as 

illustrated in Table 3.  

For example: If A=9 and B=9, then  

AXB= 9 × 9 = (1001) × (1001) = (1010001) 

(1010001) mod (1101) = (1011) = 13 

 

Exponential operation performed using GF (2
m
) is shown 

below 

 

5
7
= (5 x 5 x 5 x 5 x 5 x5 x 5) GF (2

4
) 

    = (2 x 2 x 2 x 5) GF (2
4
) 

    = (4 x 10) GF (2
4
) 

    =14 

Section 2 discusses briefly describes the proposed 

algorithm. Section 3 discusses the results obtained and 

Section 4 is the conclusion arrived about the proposed work. 
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III. PROPOSED RECONSTRUCTION OF VIDEO 

FRAMES 

The proposed approach consists of the following five broad 

steps: (1) Construction of Parity matrix P, to obtain the 

Generator matrix G for the purpose of encoding at the 

sender‟s end(2) Reading the YUV Video (3) Selecting the 

pixels for Encoding (4) Decoding (5) Parallelization for 

reducing computational complexity.  

Each of these are discussed in the following sections 

 

3.1 CONSTRUCTION OF PARITY MATRIX 

Construction of LDPC codes are based on Cubic Bezier 

curve over Galois fields GF (2
m
). The systematic generator 

matrix G is defined as [P IK] that is used for the purpose of 

encoding. While the parity check matrix H defined as [IN-K 

P
T
] is used for the purpose of decoding.  

The coefficients of the Bezier curve over GF (2
m
) are used 

for the construction of Parity matrix. The first row of the 

Parity matrix is the coefficients of the Cubic Bezier curve 

over GF (2
m
). The Remaining rows are obtained by shifting 

the coefficients of the Bezier curve to the left using shift 

register. The Parity matrix so obtained is of size 2
m
 X2

m
. 

 The parity matrix P has the following important properties.  

  Any i
th

 row or j
th

 column is the transpose of the 

other.   

 Also (P.P
T
) over GF (2

m
) = I2^m; where P

T
 is the 

transpose of P. 

The systematic generator matrix G is obtained by appending 

I2
m
 which is 2

m
X2

m
 Identity matrix, to the Parity matrix P, 

thereby making the generator matrix of size 2
m
X2

m+1
.   

  

  

3.2 SELECTIVE ENCODING 

 

Let MXN be the size of the Video Frame to be encoded and 

MXN1 be the encoded Video Frame. In selective encoding, 

the encoded data is generated by multiplying the selected 

digits of the message and the generator matrix G over Galois 

field GF (2
m
).  

 This encoded data   is obtained by performing modular 

multiplication of the selected N digits of data and the 

constructed generator matrix G over Galois field GF (2
m
). 

The code word C is given by C= [D][G]  

These N1 digits of code vector C is of the form C= [C1 C2 

C3 …………… C512] where the first 2
m
 digits of codeword 

C are the checksum produced and the remaining 2
m

 digits is 

the information. 

Figure 5 shows the flow chart used in Selective encoding. 

An uncompressed raw video is accepted as an input and is 

converted to .mpg format using the FFMPEG line command 

tool. The number of video Frames, of this .mpg video is 

determined. Further, the size of each video Frame is 

determined. Processing on each Video Frame is performed 

parallely. In every i
th

 row of the Video Frame, if two 

consecutive data digits data(i) and data(i+1) are the  same, 

then the first digit data(i) is replaced with a zero. This 

process continues till all the 2
m
 digits of data have been 

checked for repetition with its adjacent value. This selected 

data denoted as Ds has zeros when adjacent values are the 

same. This selected data Ds is encoded, by performing 

modular multiplication of Ds and the Generator matrix G.   

 

 

 
 

 

Figure 5: Selective Encoding in Video frames 

 

In Selective encoding, the repeated data is replaced by zero. 

The following example illustrates the methodology used in 

selective encoding. Let   D be the data that needs to be 

encoded and the pixel values form 200-215 that needs to be 

encoded is chosen from one of the rows of a Video Frame.   

D= [200, 201, 201, 201, 201, 201, 205, 206, 208, 209, 210, 

210, 210, 210, 211, 215]. After selecting the data to be 

encoded, the repeating pixel values are replaced by zeros 

leading to Ds= 

[200,0,0,0,0,201,205,206,208,209,0,0,0,210,211,215].  

Ds, when multiplied with G over GF (2
m
), give the 

codeword C. It is seen that in selective encoding, replacing 

the repetitive pixel values by zero, reduces the number of 

multiplication operation leading to increase in speed of 

encoding.  

 

3.3 PROPOSED DECODING 

 

The decoder has to recover the original data from the 

received code vector sent by the transmitter, without 

requesting for re-transmission. To recover the original data 

without re-transmission being performed, the FEC Codes 

are applied. In LDPC, each row of the encoded Video Frame 

has 2
m+1

 digits of data that is given as input to the decoder 

which consist of 2
m
 digits of checksum and 2

m
 digits of 
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information. The Received vector R has 2
m
 digits of 

checksum and 2
m
 digits of information.  

The decoder calculates the syndrome after obtaining this 

received vector. This syndrome S is calculated using 

S=R.H
T 

by performing modular multiplication over GF (2
8
), 

where R is the received vector and H is the parity check 

matrix. The syndrome is 2
m
 digits denoted as S= [S1 S2 S3 

S4… S2
m
] where S € GF (2

m
). 

If the Syndrome S is Zero, then the received vector is error 

free else, the decoder determines the location of the error. 

The error location is determined by referring to the Parity 

Check matrix H.  

To illustrate this with an example, if the Syndrome S1 is 

Zero and the syndrome digits [S2...S256] is Non-zero, then 

according to the Parity Check matrix H, the received data 

has errors in the position 107 to 256.  These P digits of 

errors can be corrected using the checksum equation 

C256=2RI2+ 6RI3+ 7RI4+10RI5+15RI6+17RI7+ 21RI8+ 

23RI9+ 31RI10 + 32RI11 + 36RI12 +…. 252RI105 + 

255RI106.  

The following Table 4 illustrates some of the Zero 

Syndrome value and the possible error location, which is 

determined using the parity check matrix.  

 

Zero Syndrome  Error in position 

S1  (RI107- RI256) 

S8  (RI100-RI249) 

S16  (RI92-RI241) 

S32 (RI76-RI225) 

S64 (RI64-RI193) 

S128 (RI1-RI129) &(RI236-RI256) 

S255 (RI1-RI2)&(RI109-RI256) 

Table 4: Syndrome values 

 

. 

These erroneous digits can be corrected by determining the 

first zero syndrome digit. The checksum corresponding to 

the identified zero syndrome digit is used to correct errors.  

After correcting the errors, the consecutive zeros will be 

replaced by the right most non zero pixel value. The 

following example illustrates the removal of consecutive 

zeros after the error correction is performed by the decoder. 

  If the corrected vector Vc is obtained as 

[200,0,0,0,0,201,205,206,208,209,0,0,0,210,211,215] , then 

by replacing all zeros with the right most non zero value the 

final decoded vector V would be,  V=[200, 201, 201, 201, 

201, 201, 205, 206, 208, 209, 210, 210, 210, 210, 211, 215].  

Mean Square Error can be calculated between the Data D 

that was encoded selectively before transmission and the 

decoded data V at the receiver, to check for equality.  

The speed of error correction is increased, as the repeating 

consecutive pixel values are replaced by zero.   

Figure 6 shows the flowchart of the proposed decoding. 

Each Video Frame is processed Parallely. The syndrome is 

calculated for every i
th 

row of every received Video Frame. 

If the Syndrome S is Zero, then the received vector is error 

free else, the decoder determines the location of the error, by 

determining the first zero syndrome digit. The checksum 

equation corresponding to the zero syndrome digit is used to 

correct the errors. This corrected data is denoted as V. Thus 

each  received video frame is made error free.  

   

 
 

Figure 6: Proposed Decoding 

 

The figure 7 shows the pseudo code for correcting errors in 

M video frames when any of the Syndrome digits between 

S4 to S106=0 

parfor ie=1:M /* using parallel for loop for M video frames 

for i=1:103-ki+k2 

    tempz2(i+1)= atable(tempz2(i)+1,tempz1(i)+1); 

end 

 if((s(inew,3+ki)==0)&(tempz2(104-

ki+k2))~=cv{ie}(inew,3+ki-k2))    

for i=1:103-ki+k2 

    tempz4(i+1)=atable(tempz4(i)+1,tempz3(i)+1); 

end 

tempz5=atable(tempz4(104-ki+k2)+1,r(inew,3+ki-k2)+1); 

tempz6=1; 

tempz7=1; 

while(tempz7~=0)  

    tempz8=ptable(255,tempz6); 

    tempz7=atable(tempz5+1,tempz8+1); 

    tempz6=tempz6+1; 

  if(tempz6==256) 

    tempz6=1; 

  break; 

  else 

  continue; 

  end 
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  end 

r(inew,360-ki+k2)=tempz6-1; 

else 

r(inew,360-ki+k2)=r(inew,360-ki+k2); 

   end 

end 

 

/*All the additions and multiplications are over Galois field 

GF(2
8
)*/ 

 

Figure 7: Pseudo code  

 

The proposed algorithm for encoding and decoding is 

verified for a Video Frame by taking different cases and is 

discussed in the following section.  

If the Video Frame to be transmitted is denoted as V, then 

the encoded Video Frame denoted as CV is obtained by 

performing matrix multiplication of the selected pixel values 

of every Video Frame and the Generator matrix G, over GF 

(2
8
). The encoded Video Frame is transmitted by the sender. 

The receiver calculates the syndrome to know whether the 

received Video Frame is modified. If the Syndrome is zero, 

then the Video Frame received is error free else the Video 

Frame has to be recovered from the erroneous Video Frame.  

The Mean Square Error is calculated between the Original 

Video Frame and the decoded Video Frame. The Mean 

Square Error (MSE) measures the difference between the 

Original Video Frame and the estimated Video Frame. 

The MSE is given 
2

1

)(
1

XiXi
n

n

i






 where 


Xi  are the 

pixel values of the estimated Video Frame and Xi are the 

pixel values of the Original Video Frame.  

 

The coding for the proposed algorithm is done in MATLAB. 

BER is considered to draw conclusions about the algorithm.  

The Bit Error Rate (BER) is the number of bit errors divided 

by the total number of transferred bits during a time interval.  

 

3.4 PARALLELIZATION 

 

Handling video files is computationally much more 

intensive as compared to images. When a large dataset is 

used, the implementation and the experimentations involve 

considering the time complexity. Parallel computing is a 

solution to this problem.  

In MATLAB parallel processing tool box, the basic 

parallelization approach uses the parfor construct to execute 

independent passes through a loop [18]. Each variable in the 

parfor loop are classified as shown in Fig. 8. In the code 

snippet shown in Fig. 8, the loop variable represents the 

loop index. Sliced variables are arrays whose segments are 

operated on in different iterations of the loop. Broadcast 

variables are defined before the loop begins, and are 

required within the loop, but never assigned values inside 

the loop. 

Reduction variables are those which accumulate values 

across multiple iterations of the loop, regardless of iteration 

order. Temporary variables are created inside the loop, and 

never accessed outside the loop. 

 
Figure 8: Classification of variables 

 

To improve the time complexity of the proposed method, 

the MATLAB parfor construct is used, as discussed above, 

in our test videos, so that multiple Video frames are handled 

by multiple workers in parallel. 

 

The coding for the proposed algorithm is done in MATLAB. 

The video considered for experimental purpose is 

foreman.yuv. This .yuv video is converted to .mpg using 

line Command tool FFMPEG. This .mpg video has a 

sequence of 152 frames, with each frame being a JPG image 

of size 352X288. BER is considered to draw conclusions 

about the algorithm. The Bit Error Rate (BER) is the number 

of bit errors divided by the total number of transferred bits 

during a time interval.  

 

Case 1: Selective encoding 

Here for the purpose of experimentation, noise has been 

introduced randomly. The BER is a parameter used to derive 

conclusion about the performance of the algorithm. 1
st
 and 

8
th

 Video frame has been randomly chosen experimental 

purpose. The BER is taken as 612/1289 in the case of 1
st
 

Video Frame and 663/1408 in the case of 8
th

 Video Frame.  

Figure 9a, b, c, d shows the 1
st
 Video Frame, 1

st
 Encoded 

Video Frame, 1
st
 modified Video Frame  and the 1

st
 

Recovered Video Frame. Non repeating pixel values of the 

original Video Frame is encoded and transmitted. The 

encoded Video Frame is obtained by performing modular 

multiplication of the selected pixel values of the Video 

Frame with the generator matrix over GF (2
8
). Error has 

been introduced randomly. At the receiver‟s end, a modified 

Video Frame due to the introduced error has been obtained. 

Now the decoder identifies the error by calculation of the 

syndrome values. Based on these values, errors are corrected 

to retrieve the original Video Frame.   
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Figure 9a: 1
st
 video frame; Figure 9b: Selectively encoded 

1
st
 Video frame 

 

 
 

Figure 9c: Received 1st
 
video frame; Figure 9d: Corrected 

1st Video frame 

Figure 9b shows the encoded Video Frame that needs to be 

transmitted. The dots in the encoded Video Frame indicate 

the repeating pixel values that have been replaced by zeros. 

Figure 9c, shows the modified Video Frame (the darkened 

portion of the Video Frame) has non zero syndrome values 

from S108 to S168 and S228 to S240 and has been 

eliminated using the decoding algorithm. 48,132, missing 

pixel values are corrected using the proposed algorithm.  

 

Figure 10a, b, c, d shows the 8
th

  Video Frame, 8
th

  Encoded 

Video Frame, 8
th

  modified Video Frame  and the 8
th

  

Recovered Video Frame. 

 

 

 
 

Figure 10a: 8
th

 video frame; Figure 10b Encoded 8
th

 Video 

Frame 

 

 
Figure 10c: Received 1

st
 Video Frame; Figure 10d: 

Corrected 1st Video Frame 
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Case2: With Selective Encoding 

Here for the purpose of experimentation, White Gaussian 

Noise with value of mean=0.3 and variance=0.1 has been 

introduced. The BER is a parameter used to derive 

conclusion about the performance of the algorithm and is 

taken as 1000/2048 in this case.  

The proposed algorithm is tested for various values of mean 

µ and variance σ
2
. 

141
st
 Video frame has been randomly chosen experimental 

purpose. 

Figure 11a, b, c, d shows the 141
st
 Video Frame, 141

st
 

Encoded Video Frame, 141
st
 modified Video Frame  and the 

141
st
 Recovered Video Frame. The original Video Frame is 

selectively encoded and transmitted. The encoded Video 

Frame is obtained by performing modular multiplication of 

the non repeating pixel values of the Video Frame with the 

generator matrix over GF (2
8
). Error has been introduced by 

white Gaussian noise. At the receiver‟s end, a modified 

Video Frame due to the introduced error has been obtained. 

Now the decoder identifies the error by calculation of the 

syndrome values. Based on these values, errors are corrected 

to retrieve the original Video Frame. 

   

 
 

Figure 11a: 141
st
 Video Frame; Figure 11b: 141

st
 selectively 

encoded Video frame 

 
Figure 11c: Received 141

st
 Video Frame; Figure 11d: 

Reconstructed 141
st
 Video frame 

 

Figure 11a, shows the 141
st
 video frame. Figure 11b shows 

the selectively encoded Video Frame. Figure 11c, shows the 

141
st
 video frame that is received and has 49,500 missing 

pixel values and has been corrected using the decoding 

algorithm. This reconstructed 141
st
 Video Frame is shown in 

Figure 11d.   

 

A mean square error of zero is obtained between the original 

video frame and the encoded video frame that implies the 

corrected video frame to be same as the original video 

frame. Figure 12 shows the mean square error between the 

original 141
st
 video frame and the encoded 141

st
 video 

frame, as well as the mean square error between the original 

video frame and the corrected video frame.  
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Figure 12: Mean Square Error of Original Video Frame and 

Corrected Video frame. 

From figure 12, the Mean Square Error between the original 

video frame and the encoded video frame is close to 125, 

which implies many of the repeating consecutive pixel 

values are replaced by zeros. The Mean Square Error 

between the original video frame and the Corrected video 

frame is 0, indicating both the video frames to be the same, 

after performing selective encoding and selective decoding. 

In Selective encoding, the repeating consecutive values are 

replaced by zeros. 

 

IV. RESULTS 

 

Figure 13 shows a plot of the execution times for different 

values of BER with using selective encoding and without 

using selective encoding.  When Selective encoding is used, 

the repeating consecutive pixel values are replaced by zeros. 

The number of modular arithmetic operations gets 

significantly reduced. Thus the decoding time for selective 

encoding is lesser compared to the method which does not 

use selective encoding.  

 

 

 
 

Figure 13: Comparison between Selective Encoding and 

without selective encoding. 

 

Table 5 shows the significance of using parallelization to 

improve the time complexity of the decoder.  

Data Selective 

Encoding Without 

parallelization 

Selective Encoding 

With Parallelization 

using Workers in 

MATLAB 

Video1 

with 60 

frames 

220.8333mSec 3.680mSec 

Video2 

with 100 

frames 

368.0555mSec 5.52mSec 

Video3 

with 152 

frames 

568.992mSec 7.48mSec 

 

Table 5: Comparative execution times (msec) for selective 

encoding of video frames with Parallelization and without 

Parallelization 

From Table 5, it can be inferred that the proposed 

parallelization approach has helped to improve the time 

complexity while reconstructing the video frames.  

Figure 15 shows the graph of the execution time with and 

without parallelization.  

 

 
 

Figure 15: Comparative execution times, with and without 

parallelization 

 

It can be inferred that using Parallelization, selectively 

encoding the Video Frames reduces the execution time 

significantly. 

 

 

V. CONCLUSION 

 

This paper, establishes the working of Selective Encoding 

using LDPC with cubic Bezier curve over Galois field GF 

(2
8
). Bezier curves are used for the construction of the 

generator matrix G and parity check matrix H. The 

generator matrix is used for encoding while the Parity check 

matrix is used for decoding.  

The proposed decoder is able to detect and correct errors in 

Video frames. These video frames of size 352X288 can be 

reconstructed from modified Video frames, which have 

52,800 missing pixel values. 

 The proposed algorithm uses Selective Encoding, where in 

the repeating consecutive pixel values of the video frame are 

replaced by zeros. Using this approach, it is possible to 

encode a few non zero pixel values. The Encoding involves 

modular arithmetic operations.   At the receiver, decoding a 

few pixel values still preserves the concept of Error 

detection and correction.  

Selective encoding speeds up the encoding and decoding 

process as the repeating consecutive pixel values are 

replaced by zeros, thus enhancing the speed of 

communication. 

It is found that this method is more convenient as the 

encoding and the error correction involves modular addition 

over Galois field and also reduces the hardware complexity. 
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Parallelization reduces the time complexity due to the usage 

of parfor loop construct in MATLAB. 

 

 

REFERENCES 

 
[1] Costello Daniel  J, J., Imai H,  Wicker S.B,” Applications 

of Error-Control Coding”, IEEE Transactions on 

Information Theory, Vol. 44, No. 6, October 1998 . 

[2] Ph.D thesis onby Azmi, M.H, UNSW  “Design of low-

density parity-check codes in relay channels” Electrical 

Engineering & Telecommunications, 2012, Faculty of 

Engineering . 

[3] Sheryl L. Howard , C.S.a.K.I, “Error control coding in 

wireless sensor networks” EURASIP Journal onWireless 

Communications and Networking, DOI 

10.1155/WCN/2006/74812, Volume 2006, Article ID 

74812, Pages 1-14. 

[4] I. S. Reed and G. Solomon, "Polynomial Codes over 

Certain Finite Fields," SI AM Journal of Applied 

Mathematics,  1960, Volume 8, (pp. 300-304 ). 

[5] Sanjeev kumar, R.G., “ Performance Comparison of 

Different Forward Error Correction Coding Techniques for 

Wireless Communication Systems “  (I S S N : 2 2 2 9 - 4 3 

3 3 ( P r i n t )  | I S S N : 0 9 7 6 - 8 4 9 1 (On l i n e )) . 

[6] V.S.Ganepola et.al “Performance study of non-binary 

LDPC codes over Galois field” CSNDSP08, IEEE, 2008 

[7] Padmini U Wasule, Shubhagini Ugale,” Review paper on 

decoding of LDPC codes using Advanced Gallagers 

algorithm”, IJAICT Volume 1, Issue 7, November 2014. 

[8] AlinSindhu A “ Galois field based very fast and compact 

error correcting technique” Int. Journal of Engineering 

Research and Applications www.ijera.com ISSN : 2248-

9622, Vol. 4, Issue 1( Version 4), January 2014, pp.94-97. 

[9] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, "Reduced 

complexity iterative decoding of low density parity check 

nodes based on belief propagation," IEEE Trans. on 

Communication., vol. 47, no. 5, pp. 673- 680, May 1999. 

[10] J P chen and M P C Fossorier” Density evolution for two 

improved BP-based decoding algorithm for LDPC codes” , 

IEEE Communication letters, vol 6, no.5, pp 208-210, May 

2002 

[11] Meng Xu, Jianhui Wu, Meng Zhang, “A modified offset 

Min-sum decoding algorithm for LDPC codes”,  3rd  IEEE 

International Conference on computer science and 

information technology, (ICCSIT), vol 3, 2010. 

[12] Jaehong Kim, Aditya Ramamoorthy, “The Design of 

Efficiently Encodable Rate- Compatible LDPC 

Codes”IEEE transactions on communications, vol.57, no. 

2, February 2009. 

[13] L. Barnault and D. Declercq, "Fast   Decoding Algorithm 

for LDPC over GF (2^q),” The Proc.  2003 Inform. Theory 

Workshop, pp. 70–73, 2003       

[14] Robert Gallager, “Low Density Parity Check  Codes ”,[On-

line] http://www.rle.mit.edu/rgallager/documents/ldpc.pdf 

[15] Shu Lin, D.L.C., "Error Control coding fundamentals and 

application", 2nd Edition, Editor, Prentice Hall series in 

computer application in Electrical Engineering. 

[16] Weisstein, Eric W, “Bézier Curve”, From MathWorld--A 

Wolfram Web 

Resource. http://mathworld.wolfram.com/BezierCurve.htm

l 

[17] The Encyclopedia of design theory: Galois fields by Peter 

J.Cameron, May 30, 2003. 

[18] World wide web:  

http://in.mathworks.com/help/distcomp/parfor.html  

 

 

http://www.ijritcc.org/
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/BezierCurve.html
http://mathworld.wolfram.com/BezierCurve.html
http://mathworld.wolfram.com/BezierCurve.html

