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ABSTRACT: Total knee replacement designs claim characteristic kinematic performance that is rarely assessed in patients. In the
present study, in vivo kinematics of a new prosthesis design was measured during activities of daily living. This design is posterior
stabilized for which spine–cam interaction coordinates free axial rotation throughout the flexion–extension arc by means of a single
radius of curvature for the femoral condyles in the sagittal and frontal planes. Fifteen knees were implanted with this prosthesis,
and 3D video-fluoroscopic analysis was performed at 6-month follow-up for three motor tasks. The average range of flexion was
70.18 (range: 60.1–80.28) during stair-climbing, 74.78 (64.6–84.88) during chair-rising, and 64.18 (52.9–74.38) during step-up. The corre-
sponding average rotation on the tibial base-plate of the lines between the medial and lateral contact points was 9.48 (4.0–22.48), 11.48
(4.6–22.78), and 11.38 (5.1–18.08), respectively. The pivot point for these lines was found mostly in the central area of the base-plate.
Nearly physiological range of axial rotation can be achieved at the replaced knee during activities of daily living. � 2011 Orthopaedic
Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:1484–1490, 2011
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Total knee arthroplasty (TKA) continues to be an
efficient surgical treatment, as evidenced by its
excellent survivorship and long-term results.1 Despite
these data, patient satisfaction after TKA is still not
more than 70–75%.2,3 Patient functional abilities seem
particularly related to restoration of normal motion
at the replaced joint.4–16 This motion can be altered
considerably by the geometry of the prosthetic articular
surfaces, posterior condylar offset, cruciate ligament
retaining/sacrificing, soft tissue balancing, and final
lower limb alignment achieved at surgery.

In vivo gait analysis studies, based on kinematics,
kinetics, and electromyography of the lower limbs,
showed that overall function cannot be fully
restored in fixed bearing TKA.17 Fluoroscopy-based
analyses4,5,18–24 revealed that the non-physiological
kinematics patterns at the replaced joint in activities
of daily living are accounted for by paradoxical
anterior translation and reverse or insufficient
rotation of the tibio-femoral contact-line during
flexion, i.e., lateral pivoting. This rotation is usually
calculated on the tibial base-plate, for the line joining
the projection points of the two medial and lateral
prosthetic femoral condyles at minimum distances
from the base-plate.25 Bi-directional rotation of this
contact-line is usually interpreted as internal/external
(or axial) rotation, and the bi-dimensional location of
the single point at minimum distance from all these
lines over the entire flexion arc as the 2D pivot point.
Because of this association, for the analysis of
physiological kinematic restoration, the rotation of the
contact-line is supposed to be in the range of 15–

208,26,27 and the pivot point of the contact-lines to be
on the medial area of the base-plate.28 In the normal
knee, the femur rolls backwards and rotates externally
(internal knee joint rotation) during passive flexion,
particularly for high flexion angles.29

TKA designers are committed to obtaining more
physiological tibio-femoral axial rotation by enhancing
both the prosthesis design and the surgical technique.
As to the former, due to the necessary sacrifice of one
or two cruciate ligaments, tibio-femoral motion
has been constrained using modified geometry of the
femoral and tibial condyles, spine–cam mechanisms,
and polyethylene dishing. More recently, the guided-
motion TKA concept has been proposed14–16; a relevant
in vivo fluoroscopy-based kinematics assessment
during activities of daily living revealed that range
of motion of the replaced knee can be similar to that
of the normal knee.30,31 A novel rotationally uncon-
strained and fixed bearing posterior stabilized TKA
design (Fig. 1) claims to allow the femur to rotate
freely about the tibia in the transverse plane without
restricting tibio-femoral contact area, i.e., while main-
taining contact stresses below the yield strength of
polyethylene.32 This feature is achieved by a single
radius of curvature of the femoral condyles on the
frontal plane, by the constrained anteroposterior (A/P)
joint translation at the spine–cam interaction through-
out the flexion arc, and by a spherical arc in the
transverse plane of the insert articulating surface.
Lastly, a single radius of curvature of the condyles in
the sagittal plane is thought to provide a single fixed
axis of flexion and a constant tensioning of the medial
and lateral soft tissues for consistent collateral
ligament isometry and joint stability throughout the
range of motion.

The purpose of our study was to assess quantitat-
ively some of these design claims, in particular the

Correspondence to: Claudio Belvedere (T: þ39 051 6366570; F:
þ39 051 6366561; E-mail: belvedere@ior.it)

� 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

1484 JOURNAL OF ORTHOPAEDIC RESEARCH OCTOBER 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/53990088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


wider rotational freedom, in patients implanted with
this prosthesis. This assessment was performed by
assessing replaced knee kinematics during activities of
daily living by means of video-fluoroscopy, particularly
analyzing rotations and relevant pivot of the contact-
lines during motion. We hypothesized that in a knee
replaced with this design, a physiological range of
axial rotation can be achieved during activities of
daily living.

MATERIALS AND METHODS
Fifteen patients (Table 1) were operated on using a bi-cruci-
ate substituting, fixed-bearing, rotationally unconstrained,
and posteriorly stabilized TKA (Scorpio Non-Restrictive
Geometry Knee, Stryker1-Orthopedics, Mahwah, NJ). The
same patients were analyzed post-operatively at 6 months
follow-up by video-fluoroscopic analysis.22,27 Clinical assess-
ment was performed using the International Knee Society
(IKS) score33 pre-operatively and at follow-up. Primary
knee osteoarthritis was diagnosed in all patients, with a
mean varus-valgus deformity of 88.

The patients were all those operated with this prosthesis
in the period from January to December 2007, who provided
written informed consent as approved by the local
Ethics Committee. Neither infection nor severe knee instabil-
ity were found in any patient. For the best component
alignment,34 every implantation was performed using a
surgical knee navigation system (Stryker1-Leibinger, Frei-
burg im Breisgau, Germany). The anterior longitudinal
exposure and medial parapatellar arthrotomy were used. For
the alignment of the femoral component, the trans-epicondy-
lar axis was targeted in the transverse plane, the mechanical
axis in the frontal plane. The patella was always resurfaced
and all components were cemented.

All patients were analyzed by video-fluoroscopy during
stair-climbing, chair-rising, and step-up. For the former, a
staircase of three 21-cm high steps was used. For the latter,

only the first of these steps was climbed. The chair height
was set for each patient for him/her to start with the knee
at about 808 flexion. The data collection and analysis
procedures were discussed previously4,22,35 and performed by
means of a standard fluoroscope (digital remote-controlled
diagnostic Alpha90SX16, CAT Medical System, Rome, IT).
3D positions and orientations of the metal prosthesis com-
ponents were obtained from each fluoroscopic image by
an iterative procedure using a CAD-model-based shape
matching technique.35 Previous validation work showed that
these measurements have an accuracy of <0.5 mm and <18
in the sagittal plane.35

Joint flexion at the replaced knee was calculated using a
standard convention.36 Condylar contacts were assumed on
the medial and lateral compartments as the two pairs of
points at minimum distance between the femoral prosthetic
condyles and the tibial base-plate.4 The positions of these
contact points (CPs) were then expressed in the tibial base-
plate reference frame, in terms of percentage locations over
its A/P length, thus irrespective of the different sizes: 0% and
100% corresponded to the most posterior and most anterior
location, respectively. Patterns of A/P motion of the CPs were
therefore obtained independently for the medial and lateral
condyles. Also, the difference between A/P locations of the
CPs at maximum extension and flexion was considered the
posterior femoral roll-back (PFR). The contact-line rotation
was defined as the rotation of the line connecting the medial
and lateral CPs with respect to the medio-lateral axis on the
tibial base-plate (defined as the axial rotation of the joint).
For each kinematic variable over the samples analyzed,
data were resampled at 18 intervals, and reported over
predefined knee flexion angles, either at 18 or at 108
increments, starting from 08.

RESULTS
Clinical findings at the time of fluoroscopy assessment
(Table 1) revealed passive knee range of flexion of

Figure 1. Projection drawings of the articulating components of the prosthesis design; the femur (above) and the polyethylene
tibial insert (below) for a right TKA, in their frontal (left), transverse (central), and sagittal (right) views. Respectively, the single distal
femoral condyles arc, the so-called spherical arc, and the single radius of curvature of the posterior femoral condyles in the sagittal
plane are depicted with dashed circular lines.
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110.58 � 11.38 (range: 90–1408), IKS knee score of
89.9 � 5.6 (67–100), and IKS function score of 81.3 � 9.5
(50–100), demonstrating satisfactory outcomes.

The video-fluoroscopic analysis (Table 2) revealed
large knee joint flexion for most patients, the largest
in chair-rising as expected. The corresponding axial

rotation ranges were also large, about 108 on average,
with peaks as high as 228. This rotation, when seen
versus flexion (Fig. 2), revealed that about 58 internal
rotation is progressively achieved along the first 708
of flexion for all three tasks; for the following 108
flexion, an additional 58 rotation is experienced only in

Table 1. Demographic Data and General Clinical Information of the Patients

Parameter Mean � SD Max Min

Number of patients 15 — —
Age (years) 68.5 � 10.0 79 58
Gender: male/female 5/12 — —
Weight (Kg) 83 � 12.5 108 60
Height (cm) 163.4 � 7.3 175 152
BMI 31.1 � 5 38 25
Pre-operative X-ray mechanical axis (varus) 8.18 � 12.58 168 98
Pre-operative IKS score, knee 58.6.0 � 8.5 69 50
Pre-operative IKS score, function 55 � 7.4 70 50
Pre-operative range of motion (degree) 104.28 � 8.98 120 90
Post-operative IKS score, knee 89.9 � 5.6 100 67
Post-operative IKS score, function 81.3 � 9.5 100 50
Post-operative range of motion (degree) 110.58 � 11.38 140 90

The IKS score is reported for both the knee and function sections, pre-operatively and post-operatively.

Table 2. Results From the Fluoroscopy-Based Analysis

Stair climbing Chair rising Step-up

Flexion 70.18 [60.18 � 80.28] 74.78 [64.68 � 84.88] 64.18 [52.98 � 74.38]
Contacts, translation
A/P medial CP (mm) 3.1 [4.2 � 7.3] � 1.7 5.5 [4.9 � 10.4] � 1.8 3.6 [4.7 � 8.3] � 1.8
A/P lateral CP (mm) 4.8 [4.3 � 9.1] � 1.8 7.5 [5.7 � 13.2] � 1.5 5.2 [5.1 � 10.3] � 1.8
A/P medial CP (% Tib size,
posterior ¼ 0%)

37.3 [32.0 � 40.5] � 4.0 35.6 [25.5 � 39.0] � 4.1 35.5 [30.8 � 38.8] � 4.0

A/P lateral CP (% Tib size,
posterior ¼ 0%)

36.5 [27.7 � 40.5] � 4.1 33.1 [18.7 � 36.9] � 3.4 35.4 [26.1 � 37.9] � 4.1

A/P medial CP (% Tib size,
posterior ¼ 0%)
At max extension (8) 34.0 � 2.1 35.5 � 6.7 34.4 � 2.2
At max flexion (8) 34.0 � 1.9 26.3 � 1.2 33.8 � 4.5

A/P lateral CP (% Tib size,
posterior ¼ 0%)
At max extension (8) 36.1 � 4.6 35.7 � 3.6 34.6 � 3.0
At max flexion (8) 32.0 � 1.8 19.8 � 1.2 33.6 � 5.5

Medial PFR (mm) 0.5� 1.0 3.5 � 1.7 �2.1 � 1.5
Lateral PFR (mm) 1.4 � 1.8 6.7 � 1.3 0.6 � 1.2

Contacts, rotation
Contact-line rotation
(8; þ internal)

9.4 [4.0 � 22.4] � 4.6 11.4 [4.6 � 22.7] � 4.5 11.3 [5.1 � 18.0] � 4.0

Contact-line internal
rotation (8, þ internal)
At max extension (8) 1.5 � 3.9 1.5 � 3.2 �1.3 � 1.0
At max flexion (8) 1.0 � 4.2 6.5 � 1.4 1.0 � 3.2

A/P translation of the medial and lateral tibio-femoral CP on tibial base-plate, both in millimeters and in percentage of the A/P size of
the tibial plate (% Tib size; 0% and 100% being respectively the most posterior and the most anterior part), and contact-line rotations
are reported for the three motor tasks. The over all patients mean values �standard deviation, together with the entire range, in
square brackets, i.e., the minimum and maximum values, are reported. The PFR on the medial and lateral tibial compartments is also
reported. For the translations in percentage and the contact-line rotations, the values at 08 and at reached max flexion in all motor
tasks are reported.
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chair-rising. No evidence of condylar lift-off was obser-
ved in any of the motor tasks in any of the patients.

These large rotations were combined with A/P
translations of the CPs (Table 2), with peaks in chair-
rising of 10 mm on the medial and 13 mm on the lat-
eral compartments. The CPs moved consistently about
one third of the A/P length, over motor tasks, and
patients. However, CP displacements from maximum
extension to maximum flexion, i.e., PFRs, were small
for the three tasks (Table 2), implying that the natural
roll-back and screw-home mechanisms were limited in
these knees over the first 80–908 flexion. In all motor
tasks, medial and lateral CP displacements were
generally located posteriorly throughout the flexion
arc (between about 30% and 40% of the A/P tibial
length; Fig. 3), posterior translation of both occurred
at flexion angles >608, and a small anterior trans-
lation of the medial CP occurred in the initial 408
flexion.

Consistent with these findings, the pivot point
of the contact-lines (Fig. 4) was found mostly in
the central area of the base-plate; in percentage of
the medio-lateral width, the location was 1.3 � 22.8
lateral, 0.7 � 33.8 lateral, and 5.0 � 17.4 medial in
stair-climbing, chair-rising, and step-up, respectively.
This measure exhibited large inter-patient variability:
a medial, central, and lateral location was found
respectively in 33%, 40%, and 27% of the knees in
stair-climbing, 40%, 13%, and 47% in chair-rising, and
27%, 73%, and 0% in step-up.

DISCUSSION
In the human knee joint, kinematics is no longer
physiological after rupture or removal of one or both
cruciate ligaments. In TKA design, because of the
difficulty of preserving both these ligaments, the
functional approach has been exploited, designing
the articulating surfaces to cope with removal of the

anterior and, in many cases, also the posterior cruciate
ligament.37 Many such designs have been proposed
and implanted in the last two decades, but little has
been reported about their kinematics performance in
vivo. Our study was aimed at contributing to this
knowledge. To this end, three activities of daily living
were analyzed; though these are limited by experienc-
ing knee flexions >908, these represent frequent and
demanding exercises for TKA patients. For these
activities, the physiological pattern of axial rotation is
not established in the literature; therefore, conclusions
can be taken only about its range.

The introduction of the spine–cam mechanism was
meant to restore the rolling-back and screw-home
mechanisms throughout a comfortable flexion arc,
together with the necessity of limiting excessive A/P
relative translations between the tibial and femoral
components.38 The position and shape of the spine
and cam have been investigated thoroughly, together
with the associated dishing of the insert, to mimic as
much as possible natural tibio-femoral mobility and
laxity.26,39 The design features for this mechanism
include the flexion angle at which the relevant engage-
ment starts to occur, in combination with the posterior
slope of the tibial base-plate and/or of the polyethylene
insert.22 Despite these thoughtful design concepts,
non-physiological kinematics patterns have been
reported for these TKA designs even in vitro,40

particularly limited femur rollback and limited range
of axial rotation, which are known to affect critically
the maximum flexion angle. In fact, joint flexion must
be coupled to A/P sliding of the components and axial
rotation over flexion,28,29 i.e., a preferred combined
motion pattern exists as guided by the ligaments and
the articular surfaces.26 It is difficult to fully restore
the combination of flexion, A/P motion, and axial
rotation in TKA.

The design analyzed in our study claims an
improved function of the spine–cam to increase axial
rotation. Optimization of the extensor mechanism was
sought by the single radius of curvature of the femoral
condyles in the sagittal plane and by the A/P position
of the spine, which was meant to correspond to
the position of the natural flexion axis. A correct
tensioning of the collateral ligaments was thought to
be accomplished by this single radius of curvature in
the sagittal plane of the femoral component. Finally,
a physiological axial rotation was sought by the single
radius of curvature of the femoral condyles in the
frontal plane and by a corresponding dishing of
the polyethylene insert. Our results suggest that a
large range of axial rotation, here represented as the
rotation of the contact-line (Table 2), in fact can be
attained during activities of daily living at knees
replaced with the design analyzed in the present
study. This large range likely accounted for the
effective and unconstrained articulation between the
femur condyles and the polyethylene insert and for
the A/P constraint of the spine–cam mechanism. In

Figure 2. Means and standard deviations of the knee axial
rotation versus flexion for the three motor tasks; positive values
are for internal rotations.
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fact, though limited to about 908 flexion, our results
show that the locations of the tibio-femoral CPs in full
extension and full flexion are close, in both compart-
ments, at about one-third of the tibial A/P length
(Table 2). This posterior position together with the
small translations implies a fixed axis of joint rotation
and might result in constant tension of the collaterals
ligaments over the flexion arc. Therefore the observed
large range of axial rotation was not coupled to
equivalently large roll-back, most likely because of the
small flexion arc experienced during these activities
of daily living. The pivot point was central, but the
relatively high variability among patients suggests
that this position is determined, within the free axial
rotation, by the patient-specific balance between
internal and external forces. Physiological roll-back
and medial pivoting can occur when the exercise under
analysis requires knee angles >908.32

The axial rotation was generally found to be inter-
nal, about 9, 11, and 118 in stair-climbing, chair-rising,

and step-up, respectively. These data are similar to
those reported recently with the same TKA design as
used in our study, but during deep knee bending with
a flexion range of about 0–908.32 For the same flexion
range, a much smaller range of axial rotation was
reported,40 5.78 on average, likely accounted for by the
bi-condylar design analyzed.

In addition to axial rotation, we also report the
pivot point location on the base-plate about which this
rotation occurs; in the present design, axial rotation is
obtained with a central pivoting in all three motor
tasks. In another posteriorly stabilized bi-cruciate
substituting TKA, analyzed with the same video-fluo-
roscopy technique,30 an even larger range of axial
rotation and more physiological roll-back were found,
though less consistently over the patients. This design,
however, requires careful implantation so that
retained soft tissues are compatible with the highly
constraining articulating surfaces. In knees where this
compatibility is not fully achieved over tensioning for

Figure 3. A/P translation of the medial (left) and lateral (right) CP for the three motor tasks, reported as percentage of the A/P
length of the tibial base-plate for each 108 knee flexion step. In each plot, the boxes have lines at the lower, median, and upper quartile
values over the patients analyzed; the whisker lines extending from each end of the box show the extent of the rest of the data; outliers
are reported beyond the ends of the whiskers.
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the tissues, overstress of the polyethylene and pain
can be experienced.

The present video-fluoroscopic analysis enabled
measurements of the 3D kinematics of the replaced
knee joint in vivo. We showed that in the present
bi-cruciate substituting fixed-bearing TKA design
considerable range of axial rotation is exhibited during
activities of daily living. However, this rotation was
not coupled to other physiological kinematics patterns,
such as screw-home and roll-back mechanisms,
important for natural patellar tracking and maximal
knee flexion in TKA.
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