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Review Article

Knee osteoarthritis ‑ a pathological basis for use of 
newer drug therapies

Mukundraj S. Keny*, Sushama A. Bhounsule, Padmanabh V. Rataboli

INTRODUCTION

In a young and healthy knee joint, the protective 
mechanisms (good muscle action, adequate nervous system 
control, strong ligaments, adequate joint lubrication, and 
bone support) cause physiological distribution of weight 
during movements. A pathological cycle of events in the 
joint may be initiated by damage due to injury, chronic 
overuse, mechanical strain on the joints secondary to 
muscle weakness or age related degeneration. Knee 
osteoarthritis (OA) is a disease of the “whole joint,” which 
involves a series of molecular changes in the cartilage and 
subchondral bone, which are complicated by an imbalance 
between the tissues (synovium, ligaments, and muscles) that 
make up the joint.1 The interaction between inflammatory, 
hypoxic and mechanical pathways makes the joint prone 
to OA.2

OA ‑ an inflammatory response

Inflammation which was earlier considered a secondary 
event has also shown to be a primary event in OA cartilage.3,4 

Magnetic resonance imaging has demonstrated synovitis in 
early OA, even in the absence of clinical synovitis.5 The 
synovial tissue from patients with early OA on staining 
shows mononuclear cell infiltration, and the production of 
proinflammatory cytokines and mediators of joint damage.4

OA ‑ an autoimmune response

Risk factors induced initial injury to the cartilage results in 
the release of several cartilage specific auto‑antigens. The 
joint tissues are later infiltrated by T‑cells, B–cells, and 
macrophages.6 Anti‑bodies have been detected in patients 
with early‑stage knee OA indicating an autoimmune 
response, but not in those with late‑stage knee OA.7 
Circulating systemic markers of inflammation, such as 
C‑reactive protein (CRP), may be elevated in serum of OA 
patients compared with their controls.8 Elevated levels of 
CRP have been correlated with the degree of synovial fluid 
infiltration9 as well as symptoms of pain and stiffness.10

A search of literature was done using Google, PubMed, 
Cochrane databases, and Science Direct for the last 
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7 years (2005‑2012). Key words such as OA, pathogenesis, 
newer drugs, and pathological targets were used.

PATHOLOGICAL CHANGES IN CARTILAGE

The two main constituents of the cartilaginous extracellular 
matrix  (ECM) are a Type  II collagen‑rich collagenous 
network, which provides tensile strength, and a proteoglycan 
called aggrecan, which allows cartilage to resist a 
compressive load. The ECM is constantly remodeled through 
degradation followed by synthesis to maintain the cartilage 
structure. In OA, the degeneration of the ECM is much 
more than its synthesis. Hence, the ECM of cartilage wears 
away, exposing articular cartilage and later on, the bone.11 
The various factors that are responsible for pathological 
changes in the joint are cytokines  (interleukins  [ILs], 
tumor necrosis factors  [TNFs], insulin‑like growth 
factors  [IGFs], transforming growth factors  [TGFs]), 
metalloproteinases  (MMPs), prostaglandins  (PGs), 
subchondral bone changes, angiogenesis, and oxidative 
stress and transcription factors.

Cytokines

Cytokines are polypeptide products produced mainly during 
immune and inflammatory processes that are released from 
one cell type and modulate the function of other cell types. 
Cytokines and growth factors involved in OA are released 
from chondrocytes, synovial cells, or osteocytes.12,13

Cytokines involved in cartilage metabolism are divided into 
three categories:12

•	 Catabolic cytokines (IL‑1β, TNFα, IL‑17, and IL‑18),
•	� Inhibitory cytokines  (IL‑4, IL‑10, IL‑11, IL‑13, IL‑1 

receptor antagonist, and interferon‑γ) and,
•	� Anabolic cytokines (IGF‑1, TGF‑β1, TGF‑β2, TGF‑β3, 

fibroblast growth factors [FGF‑2, FGF‑4, FGF‑8], bone 
morphogenetic proteins  [BMP‑2, BMP‑4, BMP‑6, 
BMP‑7, BMP‑9, and BMP‑13]).

IL‑1 and TNFα

IL‑1 and TNFα are the most well studied cytokines in OA. 
TNFα and IL‑1 can inhibit the synthesis of proteoglycans 
and Type II collagen.14,15 They can significantly up‑regulate 
MMP gene expression.16,17 IL‑1 induces the synthesis of 
prostaglandin E2  (PGE2) and the production of nitric 
oxide  (NO) through inducible NO synthetase  (iNOS, or 
NOS2). IL‑1β also induces IL‑6, leukemia inhibitory factor, 
IL‑17, and IL‑18 and chemokines.18

IGFs

IGF‑1  (a structural and functional analog of insulin) 
promotes chondrocyte proliferation and differentiation 
but inhibits apoptosis.19 Insulin‑like growth factor binding 
proteins (IGFBPs) are a group of secreted proteins, which 

bind to IGF‑I and modulate its biological actions. The 
articular cartilage and synovial fluid from patients with OA 
revealed increased IGFBP levels. IGFs‑independent signals 
for chondrocyte survival are delivered by over‑expression 
of IGFBPs.20

TGF‑β

TGF‑β regulates cellular proliferation, differentiation, 
and ECM function.21 Its isoforms signal through a pair of 
transmembrane serine/threonine kinases. The deregulation 
of its signaling has been implicated in OA.22,23 TGF‑β 
stimulates collagen and proteoglycan synthesis and reduces 
the activity of IL‑1β stimulated MMPs.22 BMP‑2 produced 
by macrophages promotes osteophyte formation by 
enhancing chondrogenesis and osteogenesis.24 In articular 
chondrocytes, isolated from knee joints from patients 
with OA pre‑treatment with IL‑1β was shown to reduce 
TGF‑β‑induced activity.25

Cytokine induced cartilage degradation is mediated 
by MMPs, including a disintegrin and MMP with 
thrombospondin motifs (ADAMTS).26,28

MMPs

MMPs belong to a huge family of enzymes that degrade 
different components of collagen and proteoglycans. 
MMPs are divided into five groups namely collagenase, 
stromelysin, gelatinase, membrane type MMPs, and others. 
MMP‑1, MMP‑3, MMP‑2, and MMP‑9, MMP‑8, MMP‑13, 
and aggrecanase have been well‑studied experimentally.28 
Tissue inhibitors of MMPs  (TIMP‑1, TIMP‑2, TIMP‑3 
and TIMP‑4) regulate MMP activity by inhibiting them.29 
If TIMPs do not inhibit MMPs, they will degrade both 
the endogenous and newly synthesized ECM proteins.30 
MMP‑1 and MMP‑13 are rate limiting in the process of 
collagen degradation. MMP‑13 degrades both collagen and 
aggrecan.31 Aggrecanases  (ADAMTS‑4/‑5) specifically 
cleave the aggrecan molecule in a particular region thereby 
destroying its activity.32

PGs

PGs influence the sensitivity of spinal cord neurons and 
thereby contribute to pain hypersensitivity.33 PGE2 can 
also inhibit growth plate chondrocyte differentiation by 
gene down‑regulation.34 Low concentrations of this PG are 
capable of increasing chondrocyte proliferation.35 PGE2 
overproduction can enhance NO‑induced cell death of OA 
chondrocytes.36

Subchondral bone changes

Bone remodeling and attrition occur relatively early in 
the disease process.37 Use of fractal signature analysis 
showed that bone loss occurred in patients with knee 
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OA and that changes were associated with an increase 
in the number and size of the remodeling units.38 The 
subchondral bone contributes to OA due to a defect in its 
role as a shock absorber; abnormal osteocyte function or 
increased production of bone‑derived products, cytokines, 
and MMPs.18,39 Bone marrow lesions have been found to be 
more common in persons with painful knees compared with 
persons with no knee pain and are related to pain severity.40

Angiogenesis

Angiogenesis and inflammation are closely integrated 
processes in OA. Angiogenesis may promote chondrocyte 
hypertrophy and endochondral ossification. Along with 
inflammation, it may sensitize nerves and thus increase 
pain. Innervation may follow vascularization of the 
articular cartilage and these nerves can in turn be stimulated 
by compressive forces and hypoxia.41 The endogenous 
angiogenesis inhibitors and matrix constituents, as well as 
growth factors produced by chondrocytes, subchondral bone 
and synovium regulate the blood vessel growth in cartilage.42 
Blood vessels from the subchondral bone invade the articular 
cartilage facilitating the progression of OA and forming 
osteophytes in the process.43 Synovial neovascularization 
takes place secondary to synovitis as macrophages can 
themselves secrete angiogenic factors such as vascular 
endothelial growth factor (VEGF), and can stimulate other 
cells to secrete angiogenic factors.41 Anti‑angiogenic factors 
like Angiopoietin (Ang)‑2 which cause vascular regression 
are also up‑regulated during synovitis. Ang‑2 also facilitates 
inflammation.44 Vascular immaturity and redistribution of 
blood vessels away from the synovial surface may deprive 
the articular cartilage of its nutrition.45

Hypoxia also plays a role in angiogenesis. Up‑regulation of 
hypoxia inducible factor‑1α in the osteoarthritic synovium 
is also associated with increased microvascular density and 
expression of angiogenic factors.46 VEGF may facilitate the 
production of MMPs, especially under hypoxic conditions.47

Oxidative stress

Articular cartilage is an avascular tissue, and hence oxygen 
supply is reduced. Chondrocytes are oxygen sensitive. 
Besides the influence of oxygen itself, reactive oxygen 
species (ROS) including hydroxyl radical, superoxide anion 
and hypochlorite ion, as well as O2‑derived non‑radical 
species, such as hydrogen peroxide play a crucial role 
in the regulation of a chondrocyte activities such as cell 
activation, proliferation and matrix remodeling. When ROS 
production exceeds the antioxidant capacities of the cell, 
oxidative stress produced will lead to cartilage damage.48 
ROS are responsible for matrix and cartilage degeneration 
and apoptosis of chondrocytes.49,50 The serum of the OA 
patients has a low concentration of antioxidant activity 
markers and higher antioxidant concentration could mean 
better the cartilage metabolism.49

Transcription factors

Down‑regulation of transcription factors like SOX9 in the 
hypertrophic zone of the normal growth plate is essential 
for allowing vascular invasion, bone marrow formation and 
endochondral ossification.51

All the above‑mentioned pathological changes are together 
responsible for OA symptoms and progression. Hence, 
all the newer drug therapies for OA are directed toward 
modifying these pathological targets in the hope to prevent 
progression of OA.

DRUG THERAPIES

The pharmacological treatment includes two major groups:
a.	� Fast‑acting agents: analgesics, non‑steroidal 

anti‑inflammatory drugs and corticosteroids
b.	 Slow‑acting drugs

•	 Cartilage matrix precursors: glucosamine, 
chondroitin sulfate, hyaluronic acid  (HA) and 
vitamins/minerals

•	 Modulators of cytokines: diacerein, MMP 
inhibitors, etc.

Other supplements like sulfur/methionine containing 
molecules, avocado/soybean unsaponifiables  (ASU), 
omega‑3 polyunsaturated fatty acids (PUFAs), vitamins and 
minerals are also being routinely used.

Slow‑acting drugs have a slower onset, lesser side‑effects 
and their effects last for months after treatment 
discontinuation. They are prescribed as drugs in 
European countries and sold as nutraceuticals in USA. 
Even though, the fast acting agents are the mainstay of 
the OA management, the slow acting agents are being 
increasingly looked as disease modifying agents. The 
various pathological modifications produced by these 
drugs are as described:

Glucosamine sulfate

•	 Increases HA production in human synovium.52

•	� I n h i b i t s  a g g r e c a n a s e  b y  s u p p r e s s i o n  o f 
glycosylphosphatidylinositol‑linked proteins.53

•	 Inhibits the expression and activity of ADAMTS‑5.54

•	� Prevents activation of human chondrocytes by IL‑1ß 
and thereby inhibits the release of cyclooxygenase 
2 (COX‑2), IL‑6, and NO.55

•	� Reduces the NO‑induced cell death of chondrocytes by 
an antioxidant action thereby reducing iNOS expression 
and activity.56

•	� Increases the osteoprotegerin/receptor activator of 
nuclear factor kappa‑B  (NF‑κB) ligand ratio and 
reduces bone resorption. This effect increases when 
glucosamine is used in combination with chondroitin 
sulfate.57



Keny MS et al. Int J Basic Clin Pharmacol. 2014 Jun;3(3):424-430

� International Journal of Basic & Clinical Pharmacology | May-June 2014 | Vol 3 | Issue 3  Page 427

Chondroitin sulfate

•	� Increases the hyaluronan production by human synovial 
cells.58

•	� Inhibits the enzymes leukocyte collagenase, elastase 
and hyaluronidase and inhibits collagen breakdown in 
chondrocytes.59

•	� Reduces the formation of IL‑1β and TNF‑alpha and 
COX‑2 and NOS‑2.60

•	� Exhibits an antioxidant action by reducing the 
NO‑induced cell death of chondrocytes.60

It has both anabolic effects  (promotes proteoglycan 
production) and anti‑catabolic (inhibits collagen breakdown 
in chondrocytes) effects on cartilage metabolism. It has also 
been proposed that the sulfate moiety of both chondroitin 
sulfate and glucosamine sulfate may contribute significantly 
to their in vivo activity.61

HA

•	� Inhibits PGE2 synthesis in human OA synovial cells, 
and limits leukocyte adherence, proliferation, migration, 
and phagocytosis.62

•	� Traps endogenous pain substances and decreases 
activation of joint pain fibers secondary to coating of 
their receptor endings with viscous HA.62

•	� Stimulates the production of TIMP‑1 by chondrocytes, 
inhibits neutrophil‑mediated cartilage degradation 
and attenuates IL‑1 induced matrix degeneration and 
chondrocyte cytotoxicity.62

HA has a mild anti‑inflammatory and anti‑apoptotic effect.63

Diacerein

•	� Metabolized to rhein, an agent that has anti‑inflammatory 
and analgesic properties. Diacerein is shown as an 
inhibitor of production and activity of IL‑1 (both in vivo 
and in vitro).64

•	� Inhibits the release of inflammatory and cartilage 
degrading factors, by inhibiting the activation of 
NF‑κB,65 and stimulates the production of cartilage 
growth factors and cartilage components, even in the 
presence of IL‑1b66,67

•	� Inhibits superoxide production, neutrophil chemotaxis 
and phagocytosis and macrophage migration and 
phagocytosis. Diacerein reduces the IL‑1β‑induced 
MMP‑13 production in OA subchondral bone.68,69

•	� Reduces the synthesis of resorptive factors and 
osteoclast formation.69

Tetracyclines

Tetracyclines are anti‑biotics with an anti‑inflammatory 
effect mediated by inactivation of cartilage MMPs.70

Sulfur

Sulfur, in the form of sulfate, is needed to maintain 
the integrity and function of articular cartilage. The 
cartilage matrix is created by sulfating monomers 
along the chondroitin sulfate chain thereby serving 
as an effective cushion during weight bearing. The 
three commonly used sulfur/methionine containing 
molecules are S‑adenosylmethionine  (SAMe), dimethyl 
sulfoxide  (DMSO), and methylsulfonylmethane  (MSM, 
sometimes called dimethyl sulfone DMSO2).71

a.	� SAMe: it improves proteoglycan metabolism72 and has 
a direct anti‑inflammatory activity.73

b.	� DMSO and MSM: they reduce peripheral pain and 
might inhibit the degenerative changes occurring in 
OA. They reduce inflammation by stabilizing cell 
membranes, slowing or stopping leakage from injured 
cells and scavenging hydroxyl free radicals which 
trigger inflammation.74

ASU

ASU is a mixture of avocado and soybean unsaponifiable 
fractions produced after hydrolysis  (saponification) of 
avocado and soybean oils. The phytosterols such as 
beta‑sitosterol, campesterol, and stigmasterol in the ASU 
have anti‑inflammatory and antioxidant activities.75,76

Omega‑3 PUFAs

Omega‑3 PUFAs like linolenic acid and eicosapentaenoic 
acid (EPA) are present mainly in walnut, flaxseed, and fish 
oils.77 They are found to increase collagen synthesis and 
decrease the inflammation mediated by PGE2 in in‑vitro 
studies.78 On oxygenation, EPA forms a bioactive product 
that reduces inflammatory processes by inhibiting the NF‑κB 
pathway that is responsible for many of these processes.79 They 
decrease IL‑1‑induced aggrecanase and collagenase activity.80

Vitamins

Some micronutrients protect against tissue injury by their 
antioxidant effect. Their high dietary intake could be 
protective against OA. The concentration of vitamin E and 
vitamin C is significantly decreased in OA patients along 
with an increased oxidative stress.81 Vitamin C stimulates 
collagen and aggrecan synthesis.82 Vitamin E protects against 
ROS, and enhancement of chondrocyte growth.82 Vitamin D 
is required for normal bone metabolism and its low levels 
can impair the ability of bone to respond to OA changes and 
thereby favor progression.83

Selenium, zinc, and copper

When low selenium diet was fed to rats, sulfotransferase 
enzyme activity was found to be decreased. This enzyme is 
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required for glycosaminoglycan synthesis.84 Zinc increases 
bone formation and mineralization, decreases bone 
resorption and stimulates collagen production.85 Manganese 
is required for enzymes involved in the glycosaminoglycan 
synthesis and the cross‑linking of collagen fibrils.86 Copper is 
also required for enzymes like lysyl oxidase, involved in the 
cross‑linking of collagen and elastin in cartilage and bone.87

Silicon and boron

Silicon promotes bone formation and inhibits osteoclast 
mediated bone resorption. It stimulates DNA synthesis in 
osteoclast like bone forming cells. It also increases the 
synthesis of collagen.88 Boron appears to participate in 
hydroxylation reactions, which play a role in the synthesis of 
steroid hormones and vitamin D.59 Low boron intake results 
in impaired bone health and immune response.90,91

CONCLUSION

This review tries to provide an overview of the pathological 
targets for newer therapies in OA. Studies on the mechanism 
of action of these drugs are based on animal and in vitro studies 
and hence it is difficult to actually predict their action in human 
cartilage. These drugs are being favored in clinical practice 
in various combinations because of their novel mechanisms 
of action and better tolerability profile. Even though these 
drugs appear to be disease modifying in their action, they 
have not been recommended by latest OA management 
guidelines. Long‑term clinical studies are required to confirm 
its promising status as disease modifying agents in OA.
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