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INTRODUCTION 

According to the National Cancer Registry Programme 

Report 2020 (NCRP) which was published by Indian 

Council of Medical Research (ICMR) and National Centre 

for Disease Informatics and Research (NCDIR) about 13.9 

lakhs of cancer cases was estimated and which would 

likely to increase to about 15.7 lakhs by 2025.1 The various 
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ABSTRACT 

In globally, cancer is a second leading disease next to cardiovascular diseases in non-communicable diseases, which 

affect the all ages, sex, social status, ethnicity and primary cause of illness related death. Traditionally, systemic delivery 

drug systems like chemotherapy via oral capsule, injections of nanoparticles/micro particles, immunotherapy and others, 

which can inhibit or halt the progression of tumors. The short half-life of drugs which cannot achieve the targeted dose 

level to the tumor site and not able to target desired cell and commonly produces the organ toxicity. Recently, 

researchers have been attempting to direct delivery agents for cancer therapy. One of the best methods is a local therapy 

system, which deliver the drug directly via implantable procedure and it’s achieved the maximum concentration of the 

desire drug at the tumor site, non-target systemic exposure and minimize the organ toxicity to the patients. Biomaterial 

implants are widely used in the local concurrent delivery of chemotherapy and anti-angiogenic agents, local delivery of 

poly-chemotherapy, gene therapy as an alternative to drug delivery, scaffolds for cancer immunotherapy and polymer-

based composites of drug molecules. There are different types of polymers like poly anhydride poly [bis (p-carboxy-

phenoxy) propane-sebacic acid] copolymer [p(CPP:SA)], fatty acid dimer-sebacic acid copolymer (FAD-SA), poly 

(lactic-co-glycolic acid) copolymer (PLGA), poly (ε-caprolactone) (PCL), poly (glycerol monostearate-co-

caprolactone), alginate and silica, used in successively cancer therapy. In order to minimize the risk of unwanted side 

effect of different types of biomaterials implants, it’s biocompatible to reduce the ability to elicit the inflammatory 

effect to the implanted area or the site. Therefore, the key role of choosing the appropriate and biocompatible implants 

to particular therapy is an indispensable. This should be validated with respect to risk benefit ratio in case of cancers. 

Biomaterial based implant local delivery systems provide more versatile and tailorable approach to against treatment 

of different types of the cancer. 

 

Keywords: Adverse reactions, Biomaterials, Cancer, Hazard, Implants, Alginate, Silica 

 



Maanvizhi S et al. Int J Basic Clin Pharmacol. 2021 Jul;10(7):886-892 

                                                          
                 

                               International Journal of Basic & Clinical Pharmacology | July 2021 | Vol 10 | Issue 7    Page 887 

treatment options available for cancer includes surgery, 

radiation therapy, chemotherapy, immunotherapy, 

targeted therapy, hormone therapy, stem cell transplant 

and precision medicine.2 The difficulty in both diagnosis 

and treatment of cancer is due to the complex nature of the 

cancer like drug resistance developed by cancer cells, 

penetration of the drug being obstructed by the increasing 

levels of interstitial fluid pressure (IFP) etc., with the 

advancement of bioengineering tools and their 

incorporation in the cancer research paved the way for 

completely newer techniques for the treatment of cancer.3,4 

In addition to it, these tools also promoted the efficacy of 

the classical treatment procedures like chemotherapy and 

surgery.5,6  

One of the important contributions of the bioengineering 

is the biomaterials in which various novel strategies are 

being applied for the treatment of cancer. Biomaterials can 

be of natural or synthetic origin which are used in various 

medical applications for supporting, enhance or replace 

damaged tissue or biological function and various fields of 

science like medicine, biology, physics, chemistry, tissue 

engineering and material science are also combined with 

the modern field of biomaterials.7 The different clinical 

applications of engineered materials include controlled 

drug delivery systems, gene therapies, development of 

scaffolds for tissue engineering, replacement and 

augmentation of body tissues, and surgical devices.8 Based 

on their utilization in different implant applications 

biomaterials are classified mainly into five types such as 

natural biomaterials, biopolymers, metals and their alloys, 

composites and bio-ceramics. When compared to the 

metals and ceramics polymers show versatility, which is 

the main reason for being widely used.9 The various 

examples for natural biodegradable polymeric materials 

are proteins such as silk, fibrin, collagen, gelatin and 

polysaccharides like as alginate, starch, hyaluronic acid 

derivatives and chitosan.10,11  Though natural polymers are 

potential candidates they have few limitations like 

difficulty to control their degradation rates and mechanical 

properties, ability to induce an immune response.12 In case 

of synthetic polymers biocompatibility is considered to be 

a huge challenge and hence synthetic biodegradable 

polymers plays a significant role due to their ability of 

overcoming the effects of synthetic polymer like 

inflammation and scarring.13 Some of the examples of 

synthetic biodegradable polymers are poly (glycolicacid) 

(PGA), poly (lactic acid) (PLA) and their copolymers such 

as poly (lactic-co-glycolide) (PLGA) or poly (L-lactic 

acid) (PLLA), polydioxanone (PDO), poly (caprolactone) 

(PCL) and the copolymers of glycolide and 

trimethylenecarbonate.14,15 This review focuses on the 

various polymers which are used for making different 

group of biomaterial implants for the treatment of cancer. 

METHODS 

Polyanhydride poly [bis (p-carboxy-phenoxy) propane-

sebacic acid] copolymer (p(CPP:SA)) 

It is widely used for the delivering of anticancer drugs in 

the form of an implantable device and the biocompatibility 

was found to be non-toxic.16 By modifying the ratio of 

carboxy phenoxy propane (CPP) and sebacic acid (SA) the 

degradation rate can be controlled. An implantable device 

(Gliadel®) made of (p(CPP:SA)) is commercially 

available for the treatment of brain glioblastoma, which is 

approved by the U S Federal Food and Drug 

Administration (FDA, USA) for treating high grade 

malignant gliomas and recurrent glioma multiforme 

(GBM) in added to the surgical procedures.17,18 The heat 

of fusion value (ΔH) (p(CPP: SA)) found to be decreased 

from the value of 36.6 to 2.0 Cal/g when the CPP was 

added up to 40% whereas the ΔH value found to be 

increasing when the value is up to 26.5 Cal/g while CPP is 

further added. The p(CPP:SA) comprising of the ratio as 

60:40 is found to have a low molecular weight of about 

6400 but with high tensile strength of about 981 MPa. It is 

found to be one of the most successful polyanhydride 

copolymers which undergoes erosion at a constant rate.19,20 

By increasing the concentration of CPP the erosion 

velocity of p(CPP:SA) gets decreased. The erosion zones 

of p(CPP:SA) are found to be separated by erosion fronts 

from the non-eroded polymer and these erosion fronts will 

move to the centre from the surface of matrix at a constant 

velocity.21 

Poly (lactic-co-glycolic acid) copolymer (PLGA) 

Poly - (lactic acid) (PLA) and poly - (glycolic acid) (PGA) 

are synthetic biodegradable polyesters are being used as 

monofilaments and absorbable sutures, since early 

1970s.22,23 Drug delivery, surgical and medical devices, 

tissue engineering are some of the different applications of 

PLGA owing to its nature of non-toxic, bio-degradability 

and biocompatibility.24,25 USFDA has also approved 

PLGA for various purposes. Organic solvents are required 

for formulation with PLGA, because of its comparatively 

hydrophobic nature.26,27 PLGA has very good solubility in 

different kinds of solvents like ethyl acetate, acetone, 

tetrahydrofuran whereas the solubility is poor for the pure 

forms of polylactic and polyglycolic acid. Hence, 

encapsulation of water soluble or water-insoluble drugs 

can done using this polymer.28 PLGA is obtained by 

different proportions of the lactic acid and glycolic acid 

and it is found to be a linear aliphatic copolymer. The 

synthesis of PLGA involves polymer having molecular 

weight ranging from 10,000 to 200,000 g/ mol and diverse 

ratios of lactic acid and glycolic acid.29 PLGA could be 

made either as an amorphous form or crystalline form. It 

was found that when the lactic acid is less than 70% the 

polymer is said to be in amorphous form.30 An amorphous 

form provides uniform dispersion of the payload in the 

polymer matrix. Hence, it is very much suitable for the 

drug release and also it exhibits low mechanical strength.31 

Poly (ε-caprolactone) (PCL) 

PCL is found to be chemically comprising of repeating 

units of hexanoic acid (C6H10O2)n and it can be also 
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called as 6-caprolactone polymer or 2-oxepanone 

homopolymer.32 The melting temperature (Tm) of PCL 

ranges around 332-337 K and glass transition temperature 

(Tg) of about 213 K, because of the relatively low melting 

point it allows to easily producing of drug delivery systems 

and scaffolds.33  

Table 1: Structure of the polymers. 

Name of the polymers Structure of the polymers Reference 

Polyanhydride poly [bis (p- carboxy-

phenoxy) propane-sebacic acid] 

copolymer (p(CPP:SA)  
67 

Poly (lactic –co- glycolic acid) 

copolymer (PLGA) 

 

68 

Poly (ε-caprolactone) (PCL) 

 

 

68 

Poly (glycerol monostearate-co- 

caprolactone) 

 

 

48 

Alginate 

 

 

49 

Silica 

 

69 

The synthesis of PCL involves ring-opening 

polymerization of ε-caprolactone which proceeds by 

different mechanisms like anionic, cationic and radical or 

coordination and also one of the non-hazardous 

polymers.34 The solubility of PCL is found to insoluble in 

petroleum ether, ethyl alcohol and water. Similarly, in 

solvents like acetone, acetonitrile, 2-butanone, 

dimethylformamide, ethyl acetate the solubility is low 

whereas in solvents like benzene, carbon tetrachloride, 

chloroform, cyclohexanone, dichloromethane, toluene, 

and 2-nitropropane the solubility is high.35-39  

The PCL chains will move freely at the body temperature, 

since the amorphous chains becomes rubbery at ambient 

conditions and this will ultimately result in the increase in 

permeability of the body metabolites being replaced into 

the body.40 The PCL chain fragments will take longer time 

for degradation by the hydrolysis by enzymes because of 

the presence of ester bonds per monomer in a less 
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frequently manner and hence, it makes the polymer more 

stable in comparison to polylactides but biodegradable. It 

is found that in the biological media with the presence of a 

constantly changing interstitial fluid the complete 

degradation of the polymer generally takes about 2-3 

years.41-43 Hence, the degradation rate is influenced by the 

pH of the medium and when compared to the acidic 

environment the degradation rate is rapid in alkaline 

environment.44 The polymer provides desirable interfacial 

characteristics and surfaces for the tissue because of its 

adaptability of surface roughness and hydrophilicity.45 

Since, the degradation rate of PCL is slow, it is found to 

be a polymer of choice in the long-term drug delivery and 

it also has another advantage of being compatible with 

different group of drugs particularly drugs which are 

lipophilic in nature.46 

Poly (glycerol monostearate-co-caprolactone) 

The polymer has an advantage of attaching different 

functional groups which enables it to modify its ability for 

different healthcare applications like imaging, drug 

delivery systems, targeted delivery of drugs and also 

allows to being responsive to the stimulation from the 

environment (like change in pH). Different structures like 

3D constructs, particles and fibres can be processed by 

employing this. It was found that, when the hydroxyl group 

of the glycerol is not free and being coupled with a group 

like benzyl alcohol then the poly (glycerol-co-

caprolactone) copolymer backbone will not degrade 

significantly taking at least 6 months on exposing to a 

phosphate buffered solution maintained at 37°C.47 Hence, 

in case of a functionalized polymer cast films the drug 

release kinetics is said to be diffusion controlled. When 

compared to the unmodified polymer functionalization of 

polymer by a lipophilic side chain prolonged the drug 

release kinetics promisingly from the solvent-cast polymer 

film.48 

Alginate 

Some of the brown seaweeds like Laminaria hyperborea, 

Laminaria digitata, Laminaria japonica are the sources for 

alginate which can isolated by the extraction of these sea 

weeds.49 Hence, they contain lot of impurities like heavy 

metals, endotoxins and other ingredients, which needs to 

be removed before their use. The composition of alginate 

involves a sequence of β-D-mannuronic acid (M) and α-L-

guluronic acid (G) which are linked by a 1→4 linkage.49 

The choice of sea weed and also their age which is used as 

a source determines the relative proportion of α-L-

guluronate (G) and β-D-mannuronate (M) and the 

molecular weight ranges from 32 to 400 kg/mol.50,51 The 

ratio of M and G affects different factors like visco-

elasticity, swelling and transmittancy of the alginate gel 

membranes.52,53  

The toxicity of alginate is found to be very low and is also 

biocompatible.54 Alginates are widely used because of 

their ability of being soluble at alkaline and neutral 

conditions by the presence of carboxyl groups which 

becomes charged when the pH increases more than 3-4. 

Alginate is found to be one of the preferable polymers 

especially in the conditions of modified drug release or 

protecting the drug from getting degraded in the stomach 

pH and get absorbed in the intestinal tract. Alginate is 

made as a satisfying biomaterial for drug delivery systems 

with these advantages.55 The alginate gels will become 

harder and brittle when the α-L-guluronic acid (G) content 

is very high. Hence, the physical and mechanical stability 

is determined based on the α-L-guluronic acid (G) content. 

However, ethylene diamine tetraacetic acid (EDTA) or 

sodium citrate can be used in order to revert back the above 

process.56 

Silica 

Silica also called as silicon dioxide (SiO2) consists of a 

structure involving repeating units of SiO4 in the form of 

tetrahedrons. The partial ionic character in silica is created 

by the larger covalent radii of the silica and oxygen atom 

than the bond length of 0.162 nm between Si-O atoms.57 

The important properties of silica with respect to in vivo 

drug delivery includes the in the presence of aqueous 

environment its nature of degrading into silicic acid 

exactly like in vivo conditions, membranes and micro-nano 

particles can be easily processed using silica, can be used 

for biosensing (photonic properties) and surface area being 

very huge such as up to 800 m2/g.58-64 The various forms 

in which silica can be used are synthetic silica (prepared 

by modification of sol-gel chemistry), freshly synthesized 

silica also. Bioactive glass monoliths and xerogels can be 

created by processing of the Sol-gel produced silica. The 

release kinetics of silica xerogel solids can be modified by 

altering the parameters such as temperature or gelation 

time which makes xerogels prominent for drug delivery.65 

Bioactive glass has the ability of promoting the bonding to 

both soft and hard tissue by forming a carbonate 

hydroxyapatite layer once there is a contact with the 

physiological fluids.66 The structure of the polymers was 

tabulated in Table 1. 

CONCLUSION 

The perfect solution for the successful treatment of cancer 

lies on the developing of efficacious drugs and proper drug 

delivery system, which provides delivering of drugs 

selectively on the particular target cancer cells. This can be 

achieved through biomaterials – based implants, which 

help to overcome the obstacles which are faced by the 

systemic delivery of the drugs and ultimately resulting in 

better therapeutic outcomes. The drugs which are failed to 

provide successful outcome can be repurposed with the 

recent advancement of the local delivery devices. The 

important point to be considered in the local delivery of 

drugs are more desirable for localized lesions, however, the 

case of tumors which are spread and poorly localized, then 

the most appropriate approach will be a combination 

comprising of both systemic and local delivery. In future, 

novel strategies and methods in biomaterial implants 
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should be developed in such a way that instead of existing 

technology like delivery of drugs using only one method 

combinational therapy should be adopted.  

In summary, the biomaterial implants are playing a crucial 

role in the treatment of cancer and will also act as an 

indispensable device for all the new generation 

therapeutics. 
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