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Abstract: 

EHRs (Electronic health records) are a source of big data that offer a wealth of clinical patient health data. However, because these notes are 

free-form texts, writing formats and styles range greatly amongst various records, text data from eHRs, such as discharge rapid notes, provide 

analysis challenges. This research proposed novel technique in electronic healthcare data analysis based on feature selection and classification 

utilizingDL methods. here the input is collected as input EH data, is processed for dimensionality reduction, noise removal. A public data pre-

processing method for dealing with HD-EHR data is dimensionality reduction, which tries to minimize amount of EHR representational 

features while enhancing effectiveness of following data analysis, such as classification. The processed data features has been selected 

utilizingweighted curvature based feature selection with support vector machine. Then this selected deep features has been classified using 

sparse encoder transfer learning. the experimental analysis has been carried out for various EH datasets in terms of accuracy of 96%, 

precision of 92%, recall of 77%, F-1 score of 72%, MAP of 65% 
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1. Introduction: 

EHR systems maintain information about each person's 

health journey. Although the main purpose of EHR was to 

increase the effectiveness and accessibility of healthcare 

systems, it has also found extensive usage in clinical 

informatics and epidemiology. Early EHR analysis focused 

on less complex and better established statistical methods 

[1]. However, more recently, reliable prediction patterns in 

EHR data have also been discovered using statistical 

machine learning (ML) techniques including random forest, 

logistic regression, SVM, Cox proportional hazard model, 

and support vector machines (SVM). Even though these 

statistical models' ease of use and interpretability make them 

ideal for use in medical applications, their inability to handle 

high-dimensional input, reliance on numerous statistical and 

structural assumptions, and requirement for manually 

created features and markers make it impractical to use them 

for thorough analyses of EHR data [2].To address these 

problems, it is necessary to examine each person's complete 

medical background utilizing modelling tools that can find 

and take into account intricate nonlinear relationships 

between factors [3]. 

Although hospitals have successfully utilised the EHR for 

various administrative and corporate activities including 

patient logging, asset management, transfer management, 

and mostly billing operations, there is a need to discover 

strategies for successfully utilising the EHR for patient 

diagnosis [4]. The usage of EHR analytical solutions that 

will assist the doctor's knowledge is the sole remedy for this. 

Machine learning techniques, ranging from straightforward 

regression to intricate Recurrent Neural Networks (RNN), 

can now be employed to close the inferential gap for a 

variety of EHR tasks thanks to recent advances in artificial 

intelligence. The application of these learning systems to 

deliver effective care is hampered by a number of 

complicated integration challenges, the restricted availability 

of labelled data for training models, as well as privacy issues 

related to mistrust amongst providers. Even though deep 

learning methods are regarded as a cutting-edge innovation, 

there are still several EHR tasks that can be effectively 

performed using traditional machine learning methods 

including regression, random forests, and Bayesian methods. 

The most recent approaches in healthcare, such as 

computational phenotyping and the incorporation of genetic 
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data into therapeutic practises, have been made possible by 

machine learning [5]. 

Building health analytics solutions involves the laborious 

task of mining the longitudinal EHR data for clinical 

insights. Hospitals use specialised EHRs that are made up of 

a diverse range of components, many of which are large and 

unstructured content. Before deriving insights from the data, 

effective feature extraction and phenotyping are required 

due to the noise and sparsity of the EHRs. Although many 

studies have been conducted to examine the techniques used 

to extract data from electronic health records, it is important 

to comprehend EHR data mining from an aggregation point 

of view. For instance, a technique called adverse event 

prediction, which seeks to identify a hospitalised patient's 

approaching risk, can be carried out by combining 

information from sources such as medical records, MRI 

scans, ICD-10 nomenclature databases, and other sources. 

For this approach to gather insights from these divergent 

data, an analytical solution is required [6]. 

 

Contribution of this research is as follows: 

• To propose novel technique in electronic healthcare 

data analysis based on feature selection as well as 

classification utilizing deep learning methods. 

• To select the features of processed in data using 

weighted curvature based feature selection with 

support vector machine 

• To classify deep features utilizing sparse encoder 

transfer learning 

 

2. Background: 

Utilizing a "well ordered and recorded database" of clinical 

data to learn from has a long history. Even though EHRs 

include a wealth of data, a recent systematic review of the 

medical literature discovered that predictive models created 

utilising EHR data only use a median of variables, rely on 

conventional generalised linear models, and use data from a 

single centre [7]. Most frequently used in clinical practise 

are simpler models, such as the 5-factor CURB-65 or single-

parameter warning ratings. The lack of standards and 

semantic interoperability of health data from many locations 

has been a significant obstacle to utilising more of the data 

available for each patient [8]. Each new prediction task 

normally requires the selection of a distinct collection of 

variables, and the extraction and normalisation of data from 

many sources frequently necessitates a labor-intensive [9] 

procedure. Researchers have also reported contact-free sleep 

disorder detection utilizing sonar methods and built 

smartphone sensor-based applications for tracking sleep 

apnea [10]. The typical drawback of physiological 

monitoring methods is the need for additional intrusive 

monitoring equipment or professional oversight, which puts 

the alternate strategy of performing screening using 

routinely collected electronic health records front and centre 

[11]. As PSG is expensive, time-consuming, and labor-

intensive, it is assumed that sleep physiological data 

likepulse oximetry as well as sleep stage length have 

significant prognostic capacity, but are not widely accessible 

[12,13]. Deep neural networks, which have many hidden 

layers instead of just one like ANN22–24, has wide range of 

applications in numerous fields [14,15]. Many deep learning 

neural network architectures, such as MLPs, RNNs, 

autoencoders, DBNs or CNNs, have been suggested [16]. In 

particular, CNNs have dominated the field of computer 

vision, and numerous variations are created over time. First 

model to incorporate convolution as well as pooling layers 

into a NN was known as LeNet-533, and their publication 

established the fundamental elements of CNNs [17]. 

However, it wasn't until 2012 that a CNN programme 

dubbed AlexNet34, which took first place in the picture 

classification, began to dominate the ImageNet 2012 

competition. The CNNs' VGGNet, GoogleNet, and ResNet 

accomplishments are further noteworthy ones [18]. These 

methodologies investigate changes to the convolutional 

kernels and network architecture in an effort to reduce the 

size and increase the flexibility of CNNs while enhancing 

their performance [19]. It is demonstrated that CNN are 

adept at extracting local position-invariant characteristics 

from input for classification tasks and that CNN have found 

applicability to general NLP issues in recent years [20]. 

 

3. Materials and methods: 

This section discuss novel technique in electronic healthcare 

data analysis based on feature selection and classification 

using deep learning techniques. here the input is collected as 

input EH data, has been processed for dimensionality 

reduction, noise removal. The processed data features has 

been selected using weighted curvature based feature 

selection with support vector machine. Then this selected 

deep features has been classified using sparse encoder 

transfer learning. the proposed architecture is shown in 

figure-1. 
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Figure 1. Overall proposed architecture 

 

EHR data typically has a high number of dimensions and 

several input factors. It is important to remember that some 

input features might not be necessary for the solution to the 

issue at hand. Applying particular strategies to lower the 

dimensions of the original data set is a typical solution for 

dealing with such high-dimensional data successfully. In 

essence, feature extraction and feature selection are the two 

main components of dimensionality reduction strategies. 

 

Weighted curvature based feature selection (WCFS) 

with support vector machine: 

Reciprocal of radius of circle that permits between three 

points q1, q2, and q3 serves as a representation of the 

curvature. Only problems involving two-dimensional plane 

curves are taken into account in this paper. Given that the 

three points in a 2-D space are designated as q1(x1, y1), 

q2(x2, y2), and q3(x3, y3), and that E 2 and q1, q2, and q3 

are non-collinear, MC on B is determined using equation 

(1): 

ℳ𝒞(𝑞1, 𝑞2, 𝑞3) =
1

𝑅
=
2sin⁡(𝜑)

∥∥𝑞1,𝑞3∥∥
  (1) 

In this equation, R stands for the radius, ||q1, q3|| stands for 

the Euclidean distance between q1 and q3, and ϕ is angle of 

q2-corner of triangle formed by q1, q2, and q3, and it can be 

determined using the Law of Cosines equation (2): 

cos⁡(𝜑) =
∥∥𝑞1,𝑞2∥∥

2+∥∥𝑞2,𝑞3∥∥
2−∥∥𝑞1,𝑞3∥∥

2

2⋅∥∥𝑞1,𝑞2∥∥
2⋅∥∥𝑞2,𝑞3∥∥

2   (2) 

A data cleaning step and a data normalisation phase are 

present in the problem domain in real life. In this work, we 

use eq. (3) to normalise data using Min-Max (MM) method: 

𝒰′ =
𝒰−min(𝒰)

max(𝒰)−min(𝒰)
  (3) 

This procedure ensures that our WCFS can fairly compare 

the curvatures for each characteristic and helps to cancel out 

the effects of any potentially significant big variances in the 

raw data set. Following is a description of the suggested 

WCFS method: 

Step 1: 2D Data Re-construction: Cleaned HD data set U' is 

divided into 𝑛′, 2-D planes as the first stage of the proposed 

CFS. This is accomplished by integrating all input attributes, 

ℱ𝑖
′(1 ⩽ 𝑖 ⩽ 𝑛′), and output y. As a result, U' is divided into 

n' 2-D planes, denoted by P(F 'i,y). 

Step 2 – Feature Weighting: To find averaged curvature 

value of feature Fi' for every decomposed 2-D plane, the 

Menger Curvature method is used. Assumed that a 

deconstructed 2-D panel 𝒫(ℱ𝑖
′ ,𝑦)consist of m data instances, 

Eq. can be used to get the Menger Curvature value (ℳ𝒞𝓂𝒿
𝒾 )  

of data point ℱ𝑖
′(2 ⩽ 𝑖 ⩽ 𝑛′). To this aim, eq. (4) is used to 

compute the mean of MC for F 0 I designated as 𝑀𝐶̂𝐹𝑖
′. 

𝑀𝐶̂𝐹𝑖
′ =

1

2
∑ 𝑀𝐶𝑚𝑗

𝑖𝑚−1
𝑗=2   (4) 

where (ℳ𝒞𝓂𝒿
𝒾 )  represents curvature value of 𝑚𝑗

𝑡ℎ  data 

point in feature 𝐹𝑖
′, 𝑀𝐶̂𝐹𝑖

′  indicates based on weight of 

feature 𝐹𝑖
′, greater value of 𝐹𝑖

′. 

 Step 3 – Feature Ranking and Feature Selection: Based on 

the obtained (ℳ𝒞𝓂𝒿
𝒾 ), the features are ranked using a 

traditional ordinal ranking approach. As a result, U 0's 

attributes are ranked. The necessary features are then chosen 

from the raw data collection U. The features that have 

𝑀𝐶̂𝐹𝑖
′larger than the specified threshold ∂ will be chosen 

provided a threshold ∂. Equivalently, eq. (5) allows for the 

use of a TopK method: 

𝑢′′ = 𝑈[𝑅𝑎𝑛𝑘𝑇𝑜𝑝𝐾(𝑀𝐶̂𝐹1′)]  (5) 

in such a way that 𝒰′ ∈ ℝ𝑚×𝑛
′
 To achieve this, we kept the 

statistical properties of the initial data set while reducing the 

dimensionality of u to u". 

Following division of |M| facets into G groups, determine 

mean Menger curvature for each group as well as the 

maximum and lowest Menger curvatures for each group. 

Assume that Kma,n mg and Kmean mg represent the 

maximum, minimum, and mean Menger curvatures of group 

mg, respectively. Mean Menger curvature Kmean mg of 

group mg is determined as indicated with |mg| the number of 

facets in the group mg by eq. It is average value of all 

Menger curvatures in mg (6). 

𝐾𝑚𝑒𝑎𝑛
𝑚𝑔

=
∑𝐾𝑖∈𝑚𝑔

|𝑚𝑔|
  (6) 

Next, as indicated in Equation, we describe∆mg as average 

of K mg max and K mg min (7). The specific value used to 

modify the mean Menger curvature K mg mean is indicated 

and written as ∆mg. 

Δ𝑚𝑔 =
𝐾
min

𝑚𝑔
+𝐾max

𝑚𝑔

2
  (7) 

By altering the mean Menger curvature value of the group 

mg on basis of average value ∆𝑚𝑔, each group mg is 

encoded in a watermark bit 𝜔𝑔∈ {0,1} (𝑔∈ [1, |𝐺|]). This 

implies that Kmean mg will change into Kmean mg that is 
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smaller than mg if 𝜔𝑔 = 0, 𝐾𝑚𝑒𝑎𝑛𝑚𝑔. If g = 1, Kmean mg 

will be changed by eq. (8) into Kmean𝑚𝑔∗that is bigger 

than mg: 

𝐾mean
𝑚𝑔
∗

= {
𝐾𝑚𝑔∗𝑎𝑛
𝑚𝑚∗ > Δ𝑚𝑔 if 𝜔𝑔 = 1

𝐾mean
𝑚𝑔
∗

< Δ𝑚𝑔 if 𝜔𝑔 = 0
  (8) 

The watermarked mean curvature K mg mean is altered as 

stated in eqns (9) and (10) to satisfy the aforementioned 

embedding condition. 

𝜔𝑔 = 1,𝐾mean 

𝑚𝑔∗
= {

Δ𝑚𝑔 +
Δ𝑚𝑔−𝐾mighan 

𝑚𝑔

𝑚𝑚
 if 𝐾

mean 

𝑚𝑔
< Δ𝑚𝑔

𝐾
mean 

𝑚𝑔
 if 𝐾

mean 

𝑚𝑔
> Δ𝑚𝑔

 (9) 

𝜔𝑔 = 0,𝐾mean 

𝑚𝑔∗
= {

Δ𝑚𝑔 −
𝐾
𝑚𝑖𝑥

𝑚𝑔
−𝐾

minn 

𝑚𝑔

4
 if 𝐾

mean 

𝑚𝑔
> Δ𝑚𝑔

𝐾
mean 

𝑚𝑔
 if 𝐾

mean 

𝑚𝑔
< Δ𝑚𝑔

 (10) 

the watermark bit ωg watermark to mean Menger curvature 

K mg∗ mean of group mg. The blue point designates mean 

Menger curvature, or K mg mean. Red point denotes the 

watermarked mean Menger curvature K mg∗ mean. If K mg 

mean is smaller than mg at ωg = 1, it will become bigger 

than mg. Reference value mg after embedding the 

watermark bit ωg into the group mg's mean Menger 

curvature, as indicated in Equation (11): 

𝛼𝑔 =
𝐾mean 

𝑚𝑔∗

Δ𝑚𝑔
   (11) 

𝑣𝑖𝑗
′ = 𝛼𝑔 × 𝑣𝑖𝑗 + (𝛼𝑔 − 1) × 𝑣𝑖𝑗∀𝑗 ∈ [1,3] 

The objective is to establish a rule that will allow future 

explanations to be classified into the appropriate class using 

only the features that are currently available. One method 

for obtaining the rule is the Support Vector Machine (SVM). 

If the data can be linearly separated, SVM determines a 

boundary that divides two classes by maximising shortest 

distance between observations of each class and the border.s 

: Rp → Rl and seeking a linear discriminant function or a 

hyperplane by eq, (12) approach determines a nonlinear 

boundary when samples are not linearly separable  

𝛽𝑇𝐬(𝐱) + 𝑏 = 0 (12) 

s(x) = (s1(x), . . . ,sl (x)) in feature space F, where β = (β1, 

β2, . . . , βl ) is a l-dimensional vector of parameters. 

Aggregated margin between dividing boundaries can 

theoretically be maximised to get SVM's answer. The 

features that are used to build the rule should be sparse or 

limited in the interim to make it simple to put into practise. 

The SVM border is, mathematically speaking, the answer to 

minimising by eq (13), 

𝑄(𝛽, 𝑏, 𝜉) =
1

2
∥ 𝜷 ∥2+ 𝐶∑𝑖=1

𝑛  𝜉𝑖  (13) 

𝑦𝑖(𝛽
𝑇𝐬(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  for 𝑖 = 1,… , 𝑛  (14) 

Equivalently, the Lagrangian dual function with form by eq. 

(15) can represent this optimization problem, 

Max
𝜅
∑𝑖=1
𝑛  𝛼𝑖 −

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑛  𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 < 𝐬(𝐱𝑖), 𝐬(𝐱𝑗) >

  (15) 

subject to constraints by eq. (16) 

∑𝑖=1
𝑛  𝛼𝑖𝑦𝑖 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶
  (16) 

Inner product of two vectors xi and xj in dual function by eq 

is typically replaced by a scalar function K(·, ·) also known 

as a kernel function (17) 

Max𝛼⁡ ∑𝑖=1
𝑛  𝛼𝑖 −

1

2
∑𝑖=1
𝑛  ∑𝑗=1

𝑛  𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝐱𝑖, 𝐱𝑗) 

 (17) 

Kernel form of SVM boundary is expressed as eq(18) if we 

define SV as the set {j | αj > 0 for j = 1, 2, . . . , n} with all 

observations and xi, i∈ SV as SVMs. 

∑𝑖∈𝑆𝑉  𝛼𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐱) + 𝑏 = 0  (18) 

and as a result, eq(19) is used to define the estimated bias 

term (bj) that was produced using the jth support vector (xj)  

𝑏𝑗 = 𝑦𝑗 − ∑𝑖∈𝑆𝑉  𝛼𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐱𝑗)  (19) 

As a result, in real life, using the estimated coefficients of αi 

we may estimate b by taking the average of all estimated bjs 

with all support vectors. In practise, we may describe kernel 

function rather than locating projection mapping, even 

though kernel form of SVM. There are several frequently 

used kernel functions accessible, such as the radial kernel 

function via eq (20) 

𝐾(𝐱, 𝐳) = ℎ(−∥ 𝐱 − 𝐳 ∥2)  (20) 

The kernel function is then by eq(21) when h() originates 

from a Gaussian distribution with variance σ 2.  

𝐾(𝐱, 𝐳) = exp⁡(−∥ 𝐱 − 𝐳 ∥2/2𝜎2)  (21) 

A tiny change in x in input space, dx, translated into vector 

df in feature space so that by eq. (22), where f is mapped 

outcome of x ∈ R p in F.  

df = ∇𝐬 ⋅ dx = ∑𝑖  
𝑑

∂𝑥𝑗
𝐬(𝐱)d𝑥𝑗  

∇𝐬 = (
∂(𝑠(𝐱)

∂𝑥
) =

(

 
 

∂𝑠1(𝐱)

∂𝑥1
…

∂𝑠1(𝒙)

∂𝑥𝑝

⋮ ⋮ ⋮
∂𝑠𝑖(𝒙)

∂𝑥1
…

∂𝑠1(𝐱)

∂𝑥𝑝 )

 
 

  (22) 

As a result, the squared length of dfis expressed as eq (23) in 

quadratic form  

∥ df ∥2= (df)𝑇 ⋅ df = (∑𝑖  
∂

∂𝑥𝑖
𝐬(𝐱)d𝑥𝑖)

𝑇

⋅ (∑𝑖  
∂

∂𝑥𝑗
𝐬(𝐱)d𝑥𝑗)

= ∑𝑖𝑗  𝑠𝑖𝑗(𝐱)d𝑥𝑖d𝑥𝑗  
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s𝑖𝑗(𝐱) = (
∂

∂𝑥𝑖
𝐬(𝐱))

𝑇

⋅ (
∂

∂𝑥𝑗
𝐬(𝐱)) = (

∂s1(𝐱)

∂𝑥𝑖
… .

∂s𝑗(𝐱)

∂𝑥𝑖
) ⋅

(
∂s1(𝐱)

∂𝑥𝑗
… ,

∂s𝑖(𝐱)

∂𝑥𝑗
)
𝑇

  (23) 

As a result, the kernel K may be used to obtain the 

Riemannian metric, which is defined on the l × l matrix S(x) 

= [sij(x)], where S(x) is positive definite. Following lemma 

shows how a kernel function K and a mapping are related in 

a more simple manner. 

In the traditional loss plus penalty form prediction risk 

framework, the classification boundary is evaluated by a 

linear weighted SVM by solving by eq(24), namely, Qi = c 

if yi = 1 and Qi = 1 c if yi = 1.  

min𝜷,𝑏  Loss⁡(𝜷) = min𝜷,𝑏‾  𝑛
−1∑𝑖=1

𝑛  𝑄𝑖(1 − 𝑦𝑖(𝐱𝑖
𝑇𝜷 +

𝑏))
+
+ 𝜆𝜷𝑇𝜷  (24) 

where (1 t)+ = max (1 t, 0) is hinge loss, β are feature 

coefficients, b are intercept, and λ are positive regularisation 

parameters. Estimators of are given by eq (25) in an 

analytical form when hinge loss is viewed as E[Q(1 (yX T + 

b))+]  

𝛽̃true = arg⁡min𝑏𝛽  𝑛
−1∑𝑖=1

𝑛  𝑄𝑖(1 − 𝑦𝑖(𝐗𝑖
𝑇𝛽 + 𝑏))

+
 

 (25) 

Additionally, imagine the true method contains sparse 

features, or, equivalently, that β T = (β T true, 0 T ), where β 

T true = (β1, β2, . . . , βk ). This will help you choose 

variables from the input space.A general form of penalty 

terms that would be directly added to loss function by eq. 

(26) was proposed in order to choose the vector z.  

Loss⁡(𝛽) = 𝑛−1∑𝑖=1
𝑛  𝑄𝑖(1 − 𝑦𝑖(𝐱𝑖

𝑇𝜷 + 𝛽0))
+
+

∑𝑗=1
𝑝
 𝑝𝜆(∥∥𝛽𝑗∥∥)  (26) 

where pλ(·) is a symmetric, non-convex penalty function 

with a tuning specification. 

Allow f to represent mapped outcome of x ∈ Rp in F, that is, 

f = s(x) ∈Rl. The vector df in feature space will be mapped 

into a minor change in x in input space, dx, in such a way 

that by eq (27), 

df = ∇𝐬 ⋅ dx = ∑𝑗  
∂

∂𝑥𝑗
𝐬(𝐱)d𝑥𝑗, 

∇𝑠 = (
∂𝑠(𝑥)

∂𝑥
) = (

∂𝑠1(𝑥)

∂𝑥1
…

∂𝑠1(𝑥)

∂𝑥𝐹

⋮ ⋮ ⋮
∂𝑠1(𝑥)

∂𝑥1
…

∂𝑠1(𝑥)

∂𝑥𝐹

)  (27) 

As a result, the squared length of dfis expressed as eq in 

quadratic form (28) 

∥ df ∥2= (∑𝑖  
∂

∂𝑥𝑖
𝐬(𝐱)d𝑥𝑖)

𝑇

⋅ (∑𝑖  
∂

∂𝑥𝑗
𝐬(𝐱)d𝑥𝑗) =

∑𝑖𝑗  𝑠𝑖𝑗(𝐱)d𝑥𝑖d𝑥𝑗  (28) 

where the local magnification factor sij(x) can be thought of. 

Assuming C(x, x 0) is a positive scalar function, eq (29) 

𝐶(𝐱𝑖𝑥
′) = 𝑐(𝐱)𝑐(𝐱′)  (29) 

where c(x) is a positive univariate scalar function and x and 

x 0 are feature vectors in input space. Kernel function K is 

then changed to eq (30) 

𝑅(𝐱, 𝐱′) = 𝐶(𝐱, 𝐱′)𝐾(𝐱, 𝐱′) = 𝑐(𝐱)𝐾(𝐱,𝐱
′)𝑐(𝐱′)  

 (30) 

where K(x, x 0) is initial kernel function and K˜(x, x 0 ) is 

the second stage's updated kernel. One way to think about it 

is as a change of initial mapping s(x) to a new mapping 

function s˜(x), fulfilling eq (31) 

𝑠𝑖𝑗(𝐱) = 𝑐𝑖𝑗(𝐱)𝑠𝑖𝑗(𝐱)  (31) 

where sij(x) is described in (14) and 𝑐𝑖𝑗(𝐱) =
∂

∂𝑥𝑖

∂

∂𝜀𝑖
𝐶(𝐱, 𝐳)|

𝑧=𝐱
This method is known as adaptive scaling, 

and it is simple to demonstrate that K satisfies Mercer 

positivity condition. When a suitable positive function c(x) 

is selected, the updated mapping s˜ can enhance separation. 

 

Sparse encoder transfer learning based classification: 

An unsupervised deep learning network called the 

autoencoder is utilized to minimize dimensionality of data as 

well as extract features.Fig. 2 illustrates a three-layer 

autoencoder that contains input layer, a hidden layer, and an 

output layer. By using a weight connection, original data are 

mapped onto concealed layer. The weight is fine-tuned to 

create accurate data representation while minimising 

reconstruction error. Due to the sparse limitation, certain 

buried layer nodes are active while the others are not, 

changing the autoencoder to SAE. 

 
Figure. 2. Network architecture of autoencoder with three 

layers. 
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The activation h of the hidden layer nodes is computed as 

eq. (32) for a sample x in the data set X = [x1, x2,...,xn] 

made up of n data samples  

ℎ = 𝑓(𝑊(1)𝑥 + 𝑏(1))   (32) 

where b(1) is the bias and W(1) is weight used to connect 

input as well as hidden layer. In this study, the sigmoid 

function and the f activation function are both utilized. To 

rebuild original data by hidden layer as by eq. (33), 

connection weight between hidden and output layer is 

utilized. 

𝑥̃ = 𝑓(𝑊(2)ℎ + 𝑏(2))   (33) 

where x˜ is data that has been rebuilt. Bias is defined as 

W(2), where W(2) is weight between hidden and output 

layer. With initial settings, a forward pass method is used to 

determine hidden layer's activation before reconstructing 

data in output layer. Reconstruction error is calculated for all 

data xi, I = 1,..., n in data collection in order to create an 

overall cost function of SAE network as eq (34) 

𝐽(𝑊, 𝑏) =
1

𝑛
∑𝑖=1
𝑛   (

1

2
∥∥𝑥𝑖 − 𝑥̃𝑖∥∥

2) +

𝜆

2
∑𝑙=1
𝑛𝑖−1  ∑𝑖=1

𝑠𝑖  ∑𝑗=1
𝑠𝑙+1  (𝑊𝑗𝑖

(𝑙)
)
2
  (34) 

where J(W, b) is the cost function that is being optimised for 

the two variables W and b. The parameters nl and l specify 

the number of network levels and the layer serial numbers, 

respectively. One hidden layer is utilised in network for nl = 

3, while additional hidden layers are used if nl is more than 

3. W(l) j I stands for all weight vectors connecting lth layer 

and l + 1st layer, whereas parameter sl stands for number of 

nodes in network's lth layer. Error in data reconstruction is 

the first component, and reducing this term can produce an 

accurate data representation. In order to prevent network 

form overfitting and restrict the weight's amplitude, the 

second term is a regularisation. The network weight and 

reconstruction error are adjusted using parameter λ. The 

mean activation of the jth node across data set is represented 

as eq in a hidden layer (35) 

𝜌𝑗 =
1

𝑛
∑𝑖=1
𝑛  ℎ𝑗(𝑥𝑖), 𝑗 = 1,… , 𝑠𝑙  (35) 

with sl standing for number of nodes in fourth hidden layer. 

Activation of hidden layer is constrained by sparse 

parameter ρ, and the total constraint for every node in lth 

hidden layer is written as eq (36) 

∑
𝑗=1

𝑠𝑗
 KL(𝜌 ∥ 𝜌𝑗) = ∑𝑗=1

𝑠𝑖  𝜌log⁡
𝜌

𝜌𝑗
+ (1 − 𝜌)log⁡

(1−𝜌)

(1−𝜌𝑗)
 

 (36) 

The KL(ρρj ) is the Kullback-Leibler (KL) divergence, and 

this restriction is utilized to guide activation of nodes toward 

provided sparse sparse. Cost function of SAE is given as eq. 

when sparse constraint is taken into account (37) 

𝐽sparse (𝑊, 𝑏) = 𝐽(𝑊, 𝑏) + 𝛽∑𝑗=1
𝑠𝑓  KL(𝜌 ∥ 𝜌𝑗)  (37) 

where β and are two tuning parameters for the sparse penalty 

(W, b). The SAE network's cost function is computed 

following the forward pass processing. Back propagation 

approach is utilized to update initial weight as well as bias 

after solving the partial derivative of Jsparse to W and b. 

Fig. 3 depicts a schematic representation of the deep SAE 

network with one input and three hidden layers. The kth 

SAE network, with k = 1, 2, and 3, is where the kth layer 

and (k + 1)th layer are found. (k + 1)th SAE receives its 

input from the hidden layer of the kth SAE. 

 
Figure. 3. Structure diagram of SAE network. 

An unconstrained optimization issue is the minimization 

issue of Eq. (38) based on W1, b1, W2, b2, W0 2, b 0 2, W0 

1, and b 0 1.We use gradient descent techniques to address 

this issue. For clarity, we first introduce following 

intermediate variables. 

𝐴𝑖
(𝑟)
= (𝑥̃𝑖

(𝑟)
− 𝑥𝑖

(𝑟)
) ∘ 𝑥̇𝑖

(𝑟)
∘ (1 − 𝑥̇𝑖

(𝑟)
).  

𝐵𝑖
(𝑟) = 𝜉𝑖

(𝑟) ∘ (1 − 𝝃̂𝑖
(𝑟)) 

𝐶𝑖
(𝑟) = 𝑧𝑖

(𝑟) ∘ (1 − 𝑧𝑖
(𝑟)).    (38) 

𝐷𝑖
(𝑟) = 𝜉𝑖

(𝑟) ∘ (1 − 𝜉𝑖
(𝑟)) 

The objective Eq. (39)'s partial derivatives with regard to 

W1, b1, W2, b2, W 0 2, b 0 2, W 0 1, and b 0 1 is 

calculated, respectively, as follows: 

∂𝒥

∂𝑊1
= ∑𝑖=1

𝑛𝑒
∗

 2𝑾1
′⊤𝐴𝑖

(∗)
∘ (𝑾2

⊤(𝑾2
′⊤𝐵𝑖

(𝑠)
∘ 𝐶𝑖

(𝑠)
)) ∘ 𝐷𝑖

(𝑠)
𝒙𝑖
(𝑠)⊤

 

+∑𝑖=1
𝑛𝑡
𝑡

 2𝑊1
′𝑇𝐴𝑖

(𝑡)
∘ (𝑊2

⊤(𝑊2
′⊤𝐵𝑖

(𝑡)
∘ 𝐶𝑖

(𝑡)
)) ∘ 𝐷𝑖

(𝑡)
𝑥𝑖
(𝑡)⊤

 

+
𝛼

𝑛𝑠
∑𝑖=1
𝑛𝑠  𝐷𝑖

(𝑠)
𝑜 (1 −

𝑃𝑡
𝑃𝑠
+ ln⁡ (

𝑃𝑧
𝑃𝑡
)) 𝑥𝑖

(𝑠)
 

+
𝑎

𝑛𝑡
∑𝑖=1
n𝑡  𝐷𝑖

(𝑡)
⋅ (1 −

𝑃𝑎
𝑃𝑡
+ ln⁡ (

𝑃𝑡
𝑃𝑠
))𝑥𝑖

(𝑡)𝑇
+ 2𝛾𝑊1 
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∂𝒥

∂𝑊2𝑗
= ∑𝑖=1

𝑛𝑠
∗

 2𝑊2𝑗
′⊤(𝑊1

′⊤𝐴𝑖
(∗)
∘ 𝐵𝑖

(𝑣)
) ∘ 𝐶𝑖𝑗

(𝑠)
𝜉𝑖
(𝑠)𝑇

 

   (39) 

+∑𝑖=1
𝑛𝑡  2𝑊2𝑗

′𝑇(𝑊1
′𝑇𝐴𝑖

(𝑡)
∘ 𝐵𝑖

(𝑡)
) ∘ 𝐶𝑖𝑗

(𝑡)
𝜉𝑖
(𝑡)⊤

 

∂𝒥

∂𝑊2
′ = ∑𝑖=1

𝑛∗  2𝑊1
′𝑇𝐴𝑖

(𝑠)
∘ 𝐵𝑖

(𝑠)
𝑧𝑖
(𝑠)𝑇

+ 2𝛾𝑊2
′ 

+∑𝑖=1
𝑛𝑡  2𝑊1

′𝑇𝐴𝑖
(𝑡)
∘ 𝐵𝑖

(𝑡)
𝑧𝑖
(𝑡)𝑇

 

∂𝒥

∂𝑊1
′ = ∑𝑖=1

𝑛,  2𝐴𝑖
(𝑠)
𝜉𝑖
(𝑠)𝑇

+ ∑𝑖=1
𝑛𝑡  2𝐴𝑖

(𝑡)
𝜉𝑖
(𝑣)𝑇

+ 2𝛾𝑊1,
𝑡 

 

where nsj is number of instances with label j in the source 

domain, and W2j is j-th row of W2. We omit details due to 

space constraints because the partial derivatives of objective 

with regard to b1, b2, b 0 2 and b 0 1 are extremely similar 

to those of b1, b2, b 0 2 and b 0 1, respectively. 

 

Algorithm of SAE_TL: 

Input: Given one source domain 𝐷𝑠 = {𝑥𝑖
(𝑠)
, 𝑦𝑖
(𝑠)
}|
𝑖=1

𝑛𝑠
, and 

one target domain 𝐷𝑡 = {𝑥𝑖
(𝑡)
}|
𝑖=1

𝑛𝑖
, trade-off parameters 𝛼,  

𝛽, 𝛾, number of nodes in embedding and label layer, 

𝑘 and 𝑐. 

Output: Results of label layer 𝑧 and embedded layer 𝜉. 

1 Start𝑊1,𝑊2,𝑊2
′,𝑊1

′ and 𝑏1, 𝑏2, 𝑏2
′ , 𝑏1

′  by Stacked 

Autoencoders performed on both source and target 

domains: 

2 Evaluate partial derivatives of all variables  

3 Iteratively update variables utilizing Eq. (18); 

4 Redo Step2 and Step3 until methodmeets; 

5 Evaluate embedding layer 𝜉 and label layer 𝑧. 

 

The process for classifying a new tool is as follows: the 

obtained monitoring data are first entered into new SAE 

network, weight transfer, weight update are then used, as 

illustrated in Fig. 4. 

 
Figure 4. Architecture of SAE transfer network. 

4. Experimental analysis: 

Three open-source broker software solutions that were 

deployed using VMs were used to examine each of the 

distinct monitoring situations on version 3.1.Three VMs 

used to deploy broker software were hosted by Oracle, 2018 

on a Windows 10 computer with 64GB RAM, an Intel Core 

i7-5820K processor, six physical CPUs, and twelve virtual 

CPUs operating at 3.30GHz. 

 

Dataset description: 

1)A project of the PCORI is PCORnet, National Patient-

Centered Clinical Research Network. PCORnet is made up 

of a partner network that includes two HPRNs that are 

actively collaborating to link claims data with Electronic 

Health Records, 20 PPRNs, 13 CDRNs, and 13 PPRNs, all 

of which are based in healthcare systems like hospitals, 

integrated delivery systems, and EHR. EMR are 

standardised and stored uniformly by PCORnet using CDM. 

2) GOS dataset:All information was retrieved from the 

Chinese Intracranial Hemorrhage Image Database 

retroactively (CICHID). From the hospital information 

system (HIS), all medical records and CT scans were 

exported and recoded for anonymization. Independent 

research assistants gathered the patient characteristics and 

scan parameters. Peking Union Medical College Hospital's 

Institutional Review Board gave its approval to the 

retrospective study (Ethics code:S-K1175). Each of the 2486 

patients in the data collection has a single noncontrast 

computed tomography (NCCT) image and accompanying 

GOS. Patients with brain injury can objectively assess their 

recovery in five categories utilizing Glasgow Outcome 

Score. For ease of classification, we divide GOS into two 

groups: poor neurological results (GOS 3) and favourable 
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neurological outcomes (GOS > 3). 929 patients had 

successful neurological results, compared to 1557 patients 

who had unsuccessful neurological outcomes.  

3) ADNI dataset: Data from Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database were utilised to 

prepare this research. ADNI was established in 2003 under 

direction of Principal Investigator Dr. Michael W. Weiner. 

Main objective of ADNI is to determine whether serial MRI, 

PET, other biological markers, clinical, and 

neuropsychological evaluation may be used in conjunction 

to measure course of MCI and early AD. 

 

Table-1 Comparative analysis of PCORnet dataset between 

proposed and existing technique 

Parameter

s 

VGGNe

t 

GoogleNe

t 

CI_EHDA_FS_D

L 

Accuracy 88 92 96 

Precision 75 79 92 

Recall 71 75 77 

F1_Score 65 68 72 

RMSE 75 73 68 

MAP 72 68 65 

 

 
Figure-5 Comparative analysis of PCORnet dataset in 

terms of accuracy, precision, recall 

 
Figure-6 Comparative analysis of PCORnet 

dataset in terms of RMSE, F-1 score, MAP 

 

Table- 2 Comparative analysis of GOS dataset between proposed and existing technique 

Parameters VGGNet35 GoogleNet36 CI_EHDA_FS_DL 

Accuracy 82 86 92 

Precision 75 78 83 

Recall 79 83 85 

F1_Score 82 85 88 

RMSE 61 58 55 

MAP 55 42 41 

 

 
Figure-7 Comparative analysis of GOS dataset in 

terms of accuracy, precision, recall 

 
Figure-8 Comparative analysis of GOS dataset in 

terms of RMSE, F-1 score, MAP 
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Table- 3 Comparative analysis of ADNI dataset between proposed and existing technique 

Parameters VGGNet35 GoogleNet36 CI_EHDA_FS_DL 

Accuracy 91 93 96 

Precision 85 88 91 

Recall 75 79 83 

F1_Score 81 83 85 

RMSE 81 75 71 

MAP 75 71 65 

 

 
Figure-9 Comparative analysis of ADNI dataset in 

terms of accuracy, precision, recall 

 
Figure-10 Comparative analysis of ADNI dataset in 

terms of RMSE, F-1 score, MAP 

 

Above table 1-3 shows comparative analysis in terms of 

accuracy, precision, recall, F-1 score, RMSE and MAP. 

Here comparative analysis has been carried out based on 

various EH dataset like PCORnet, GOS, ADNI.Accuracy is 

one factor to consider when rating categorization methods. 

Accuracy is proportion of forecasts that our method 

successfully predicted. One indicator of the model's 

performance is precision, or the quality of a successful 

prediction. The total number of accurate positive predictions 

is divided by total number of real positives to determine 

precision. a model's ability to find all relevant instances in a 

data source. Calculating recall mathematically involves 

dividing the quantity of true positives by the total of true 

positives and false negatives.Precision: a classification 

model's capacity to isolate only the pertinent data points. 

The harmonic mean of recall and precision is used to 

calculate the F1 score. Recall that the harmonic mean is a 

substitute measure for the more often used arithmetic mean. 

It frequently comes in handy when calculating an average 

rate. We calculate the average of precision and recall for F1 

score. Root mean square error, sometimes referred to as 

RMS deviation, is one of the techniques most frequently 

used to evaluate the accuracy of forecasts. It illustrates the 

Euclidean distance between measured true values and 

forecasts. The mean average precision (mAP), often known 

as average precision (AP), is a well-liked indicator for 

assessing how well models perform tasks like 

document/information retrieval and object detection.For 

PCORnet dataset proposed technique obtained accuracy of 

96%, precision of 92%, recall of 77%, F-1 score of 72%, 

MAP of 65%. Where existing VGGNet obtained accuracy of 

88%, precision of 75%, recall of 71%, F- score of 65%, 

RMSE of 75%, MAP of 72%. Googlenet attained accuracy 

of 92%, precision of 79%, recall of 75%, F- score of 68%, 

RMSE of 73%, MAP of 68%. Proposed method attained 

accuracy of 92%, precision of 83%, recall of 85%, F-1 score 

of 88%, MAP of 41%, VGGnet attained 82% of accuracy, 

75% of precision, 79% of Recall, 82% of F-1 score, RMSE 

of 61%, 55% of MAP. GoogleNet attained accuracy of 86%, 

precision of 78%, recall of 83%, F- score of 85%, RMSE of 

58%, MAP of 42% for GOS dataset.  For PCORnet dataset 

proposed method obtained accuracy of 96%, precision of 

91%, recall of 83%, F-1 score of 85%, RMSE of 71%, MAP 

of 65%. Where existing VGGNet obtained accuracy of 91%, 

precision of 85%, recall of 75%, F- score of 81%, RMSE of 

81%, MAP of 75%. Googlenet attained accuracy of 93%, 

precision of 88%, recall of 79%, F- score of 83%, RMSE of 

75%, MAP of 71% as shown figure 5-10.     

 

5. Conclusion: 

The proposed framework shows EH data analysis based on 

feature extraction and classification using deep learning 
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architectures. The input EH dataset feature extracted using 

weighted curvature based feature selection with support 

vector machine. Then this selected deep features has been 

classified using sparse encoder transfer learning. We 

uncovered the technological aspects of numerous initiatives 

that have been made to use deep learning models for clinical 

knowledge discovery using enormous data sets from 

electronic health records. Even while deep learning has been 

clearly successful for other hospital operations like billing 

and patient administration, there is still more to be done in 

the application of deep learning to EHR data. The proposed 

technique achieved accuracy of 96 percent, precision of 92 

percent, recall of 77 percent, F-1 score of 72 percent, and 

MAP of 65 percent in the experimental study for varied 

datasets. Current methods addressed a number of key 

difficulties related to the depiction of EHR temporal data. In 

order to facilitate clinical adoption, future research 

concentrate on method transferability, clinical domain 

knowledge combination into research model, method 

interpretability improvement. 
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