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Abstract— In Remote Sensing (RS) cameras, used for earth observation, are generally mounted on satellite or on aero plane. Due to very high 

altitude of Hyperspectral Cameras (HSCs) the spatial resolution of images taken by such camera is very poor, in order of 4 m by 4m to 20m by 

20m. So a single pixel from image taken by HSC may contain more than one materials and it is not possible to know about the materials present 

in single pixel. HSC measures the reflectance of object in the wavelength of range from 0.4 to 2.5um at 200 bands with spectral resolution of 

10nm. High spectral resolution enables the accurate estimation of number of materials present in scene, known as endmembers, their spectral 

signature and fractional proportion within pixel, known as abundance map. This process is known as Hyperspectral Unmixing (HU). Due to 

large data size, environmental noise, endmember variability, not availability of pure endmembers HU is a challenging task. HU enables various 

application like an agricultural assessment, environmental monitoring, change detection, mineral exploitation, ground cover classification, target 

detection and surveillance. There are three approaches to solve this task: Geometrical, statistical and sparse regression. First two methods are 

Blind Source Separation (BSS) techniques. Third approach is based on sparsity and considered as semi-blind approach because it assumes the 

availability of spectral library. Spectral library contains the spectral signatures of various materials measured on the earth surface using advance 

Spectro radiometers. In sparse unmixing a mixed pixel is represented in the form of linear combination of a number of spectral signature known 

in advance and available in standard library. In this paper, mathematical steps for Spectral Unmixing using variable Splitting and Augmented 

Lagrangian (SUnSAL) are simplified.  performance of SUnSAL is evaluated with the help of standard and publically available synthetic data 

base. 
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I.  INTRODUCTION 

Remote Sensing (RS) is the field of science for 

obtaining information about objects or area, without any 

physical contact with it, from satellite or aircraft. Remote 

sensors placed on satellite or can be on aircraft. Remote 

sensors collect data by processing energy that is reflected from 

earth surface. The term “Remote Sensing” was first introduced 

in 1960 by Evelyn L. Pruitt of the U.S. office of Naval 

research. Hyperspectral Cameras (HSC) contribute 

significantly to earth observation and remote sensing. HSCs 

are built to work in many regions of the electromagnetic 

spectrum. The HSCs can be operate in the visible, near-

infrared and shortwave infrared spectral bands of range 0.4 to 

2.5um [1]. Spectral imaging widely used in remote sensing 

because of its broad applications in agricultural and 

environmental monitoring, mineral exploration, military 

surveillance and so on [2]. Due to low spatial resolution of 

HSCs, multiple scattering, microscopic material mixing and 

spectral measured by HSCs are mixtures of spectral signature 

of materials in a scene. However, due to low spatial resolution 

of imaging sensor, a single pixel is often composed of more 

than one different materials, leading to mixed pixel problem 

[2]. So, unmixing is required for accurate estimation. Pixels 

are mixtures of a few materials which is called endmembers 

[1]. Unmixing involves estimation of the number of 

endmembers, their spectral signatures and their abundances at 

each pixel [1]. Unmixing is a challenging task, ill-posed 

inverse problem because of large data size, model 

inaccuracies, observation noise, different environmental 

conditions and endmember variability [1]. Multispectral image 

has some limitations: Low spectral Resolution and Low spatial 

Resolution. This Limitations of Multispectral image are 

overcome by Hyperspectral image. Hyperspectral image 

captures more narrow bands than multispectral image in the 

same portion of the EMS (Electro Magnetic Spectrum). The 

accurate estimation of number of materials present in scene, 

which is known as Endmembers. Their spectral signature and 

fractional proportion within pixel, known as Abundance map. 

This process is known as Hyperspectral Unmixing. For 

spectral unmixing, a Linear Mixture Model (LMM) is often 

used to capture the mixing behaviour of mixed pixels [2]. This 

model assumes that the observed spectrum of a pixel is a linear 

combination of a collection of endmembers weighted by the 

corresponding abundances [2]. Based on LMM, spectral 

unmixing consists of two procedures: (1) endmember 

extraction (2) abundance recovery [2]. Endmember extraction 

is to find and identify the endmembers presented in the scene. 

Abundance recovery is a linear inverse problem that is one of 

the most important mathematical problems [2]. 

Hyperspectral images are 3-dimensional arrays with 

two spatial dimensions and one spectral dimension. There are 

3 basic approach of HU. First is Geometrical based approach, 

second is Statistical based and third is Sparse regression based 

approach. First two approaches are Blind and third one is Semi 

Blind approach. In first approach there is only observed image 

and no other data, from observed image we have to estimate 

signature of endmember and abundance of matrix. In rest of 

two, observed image and partial information of spectral 

signature, so it is known as semi blind approach. High level of 
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sparsity is useful to mitigate highly correlated spectral 

signatures. 

Sparse unmixing has been introduced in HIS to 

characterize mixed pixels. It assumes that the observed image 

signatures can be expressed in the form of linear combinations 

of a number of pure spectral signatures known in advance. The 

sparsity prior, which assumes that few elements of the signals 

in the original domain are nonzero, has received extensive 

attentions in many applications [2]. There are some standard 

libraries which is publically available like USGS (U.S. 

Geological Survey), which has more than 1300 spectral 

signatures and ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer) Spectral library, which 

contain over 2400 spectral signatures. These libraries used to 

guarantee accuracy in practical applications because of several 

reasons. When, distinct materials are combined into a 

microscopic (intimate) mixture [13]. Section 2 describes the 

Linear Mixing Model. Section 3 describes the sparse unmixing 

approach for Hyperspectral images. Section 4 shows the 

MATLAB simulation for synthetic data using SUnSUL 

algorithm. Conclusion and future work presents in section 5. 

II. MIXING MODEL 

As per linear mixing model (LMM) the observed 

spectral signature of a mixed pixel is assumed to be linear 

combination of spectral signatures of endmembers present in 

respective pixel as shown in figure 1 [1]. For each single pixel 

of 3-dimensional hyperspectral data cube the LMM can be 

written as,  





q

j

ijiji nxAy
1

      (1) 

Where the subscript i represents the spectral band 

number and subscript j represents the endmember number 

from endmember matrix. The length of observed vector y is L, 

i.e. i=1, 2… L. and number of endmembers in endmember 

matrix are q, i.e. j=1,2,…,q.  𝐴𝑖𝑗  represents the reflectance at 

spectral band i of  𝑗𝑡ℎ endmember. The fractional proportion 

of jth endmember in a pixel is given by xj.    𝑛𝑖  represents the 

error term for the spectral b and  𝑖. In general, mathematically 

LMM can be written in compact form as  

𝑦 = 𝐴𝑥 + 𝑛                    (2) 

Where 𝑦 ∈ 𝑅𝐿  is a observed spectral vector,  𝐴 ∈

𝑅𝐿×𝑞  is endmember matrix containing 𝑞  pure spectral 

signatures 𝑥 ∈ 𝑅𝑞  is fractional abundances of the endmembers 

for a given pixel, and 𝑛 ∈ 𝑅𝐿 is the errors which affecting the 

measurements at the each spectral band [13].   

The value of fractional abundance is always 

nonnegative, lie in the range of 0 to 1 and sum of its values for 

single pixel is always one. These are known as Abundance 

non-Negativity Constraint (ANC) Abundance Sum-to-one 

Constraint (ASC), which are represented in compact form as 

𝑥𝑗 ≥ 0 and  𝑥𝑗
𝑞
𝑗=1 = 1 [3]. 

In the problem of LSU, given a hyperspectral data cube 

Y and the objective is to estimate the endmembers signatures 

and their fractional abundances, denoted by M and x for each 

pixel of the image respectively. 

III. SPARSE UNMIXING: SIMPLIFIED APPROACH 

The priori availability of spectral libraries has increased 

interest in sparse unmixing. Sparse unmixing has two 

important drawbacks like the difficulty of estimating the 

number of endmembers and the process of extracting the 

endmembers itself, the result of which will vary according to 

the utilized extraction method [1]. The mixed pixel can be 

expressed in the form of linear combination of a number of 

spectral signature known in advance and it is available in 

standard library [13]. There are some standard libraries which 

is publically available like USGS (U.S. Geological Survey), 

which has more than 1300 spectral signatures and ASTER 

(Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) Spectral library, which contain over 2400 spectral 

signatures. The use of image-derived endmembers may not 

result in accurate fractional abundance estimations, it can be 

like that such endmembers may not be completely pure in 

nature [13]. 

 

Figure (a) 

 

Figure (b) 

Figure 1 (a)Concept of Mixed Pixel (b) Linear Mixing 

scenario for a single pixel in HIS. 
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Figure 2. Sparse Regression Based Approach [2]. 

The mixtures is obtained at the particle level, the use of image-

derived spectral endmembers cannot accurately characterize 

the different spectral mixtures. When, distinct materials are 

combined into a microscopic mixture. 

A sparse signal is exactly recoverable from an 

underdetermined linear system of equations in 

computationally efficient manner. Let 𝐴 ∈ 𝑅l 𝑋 𝑚  , l<m. where 

l is number of spectral band and m is number of material. 

The objective function is given as,  

 AX − Y 2
2

x   
min + λ x 1 + ιR+ x   

 Where, ιR+ x =indicator function 

 

The objective function can be rewritten after applying the 

concept of variable splitting as,  

    
1

2
 V1 − Y 2

2 +
U,V1 ,V2 ,V3

min     

λ V2 1+ιR+ V3     (2) 

Subject to V1=AU   V2 = U    V3=U 

In compact form 

            g(V)
     U,V 

min
           (3) 

Subject to GU+BV=0 

Where, g V =
1

2
 V1 − Y 2

2 + λ  V2 1+ιR+ V3        (4) 

In which V= (V1,V2, V3) 

Given that, V1=AU, V2 = U, V3=U  

Using this we can write, 

V1=AU ⟹AU - V1 = 0 

                              V2 = U ⟹ U - V2=0                        (5) 

V3 = U ⟹U - V3=0 

Using above equation, we can write in matrix form like, 

G= 
A
I
I
    B= 

−I 0 0
0 −I 0
0 0 −I

  

Consider augmented Lagrange multiplier for above equation 

and it can be written as, 

ℒ(U, V, D)=g (U, V) +
𝜇

2
 𝐺𝑈 + 𝐵𝑉 − 𝐷 2

2  (6) 

subject to 𝐺𝑈 + 𝐵𝑉=0 

Expansion of above expression is given as,  

ℒ 𝑈, 𝑉1, 𝑉2, 𝑉3 ,𝐷1 , 𝐷2 , 𝐷3 =
1

2
 𝑉1 − 𝑌 2

2 +

𝜆 𝑉2 1+ιR+ V3 +
𝜇

2
 𝐴𝑈 − 𝑉1 − 𝐷1 2

2+𝜇 𝑈 − 𝑉2 −

    𝐷222+𝜇2𝑈−𝑉3−𝐷322                          (7) 

Pseudocode 

When we take optimization with respect to variable U we get: 

   𝑈(𝑘+1) ←  𝐴𝑇𝐴 + 2𝐼 −1 𝐴𝑇𝜀1 + 𝜀2 + 𝜀3        (8) 

Where, 𝜀1=𝑉1
 𝑘 

+ 𝐷1
(𝑘)

 

𝜀2=𝑉2
 𝑘 

+ 𝐷2
(𝑘)

 

𝜀3=𝑉3
 𝑘 

+ 𝐷3
(𝑘)

 

For minimization with respect to variable V we get three 

values of V: 

𝑉1
 𝑘+1 

 ←
1

1+𝜇
 𝑌 + 𝜇 𝐴𝑈(𝑘) − 𝐷1

(𝑘)
          (9) 

             𝑉2
(𝑘+1)

 ←soft (𝜀2,
𝜆

𝜇
)             (10) 

Where, 𝜀2=𝑈(𝑘+1) + 𝐷2
(𝑘)

 

       𝑉3
(𝑘+1)

 ← max (𝑈(𝑘) − 𝐷3
 𝑘 

, 0)           (11) 

Now, we have to Update Lagrange multipliers as: 

𝐷1
(𝑘+1)

← 𝐷1
(𝑘)

− 𝐴𝑈 𝑘+1 + 𝑉1
(𝑘+1)

 

         𝐷2
(𝑘+1)

← 𝐷2
(𝑘)

− 𝑈 𝑘+1 + 𝑉2
(𝑘+1)

    (12) 

𝐷3
 𝑘+1 

← 𝐷3
 𝑘 

− 𝑈 𝑘+1 + 𝑉3
 𝑘+1 

 

After updating Lagrange multiplier, update the value of k by 

adding 1 and do this iterative process till stopping criterion is 

satisfied. The CSR problem is solved by using SUnSAL 

algorithm. 

IV. SIMULATION RESULT 

Performance of SUnSAL algorithm has been tested 

with the help of synthetically generated Data Cubes (DC). For 

simulation, subset of original USGS spectral library is used, 

which contains 498 spectral signatures and denoted with A. 

Each spectral signature has 224 bands, which is denoted by L. 

Three data cubes, of size 100 X 100, have been generated 

using fraction abundance map generated by HYDRA toolbox 

and randomly selecting spectral signatures from A. For the DC 

#1 spectral signature number [135, 394, 409] and fractional 

abundance map as shown in figure are used. Similarly, DC # 2 

and DC # 3 are generated using spectral signature number [21 

135 176 394 487] and [21 31 129 135 176 377 394 409 487] 

respectively. Fractional abundance map for DC # 2 and DC # 
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3 are shown in figure. Signal to Reconstruction Error (SRE) is 

used as a performance evaluation parameter as, 

SRE=20 log10 
𝐸  𝑋 2

2 

𝐸  𝑋−𝑋  2
2 

 

Where, x was the estimated fractional abundance 

vector by the unmixing algorithms. The smaller RMSE meant 

𝑋  (the estimated fractional abundance) was closer to x (the 

real fractional abundance), which indicate better unmixing 

performance. SRE gave more information regarding the power 

of the error in relation with the power of the signal. The Vales 

of SRE is opposite to RMSE. For the better unmixing 

performance SRE should be higher. 

The synthetically generated data cubes are corrupted 

with different noise level like 30dB, 40dB, 50dB and 60dB. In 

this simulation we have measured the value of SRE after 250 

iterations for different values of parameter λ. 

 

 

 
 

Figure 3. First row shows the abundance map of true 

endmembers. Second row show the abundance map for 

estimated endmember. 

 

 

 
 

Figure 4. First row shows the abundance map of true 

endmembers. Second row show the abundance map for 

estimated endmember. 

 

 

 
 

Figure 5. First row shows the abundance map of true 

endmembers. Second row show the abundance map for 

estimated endmember. 

 

TABLE I 

Results for signal to reconstruction error for image size 64 x 

64 and different endmembers. 

 

Endmember 3 5 7 9 

SRE (64*64) 15.821 16.553 17.255 12.975 

 

TABLE IIIII 

Results for signal to reconstruction error for image size 100 x 

100 and different endmember. 

 

Endme

mber 

3 4 5 6 10 15 17 20 

SRE 16.

546 

11.

824 

11.

623 

12.

244 

15.

991 

15.

959 

12.

906 

12.

500 

 

This section discusses the simulation results of Signal 

to Reconstruction Error(SRE) for different values of lambda 

and different values of signal to noise ratio(SNR) for three, 

five and seven endmembers respectively for 100 x 100 image 

size. 

TABLE IVVI 

Results of signal to reconstruction error and signal to noise 

ratio for image size 100 x 100 (p=3) 

 

Lambda 0.000

5  

0.000

1  

0.001  0.01  

SNR(dB

) 

SRE  SRE  SRE  SRE  

30  10.11

0  

8.369  8.421  8.406  

40  13.40

4  

13.40

0  

13.43

8  

11.08

4  

50  17.10

9  

17.04

5  

17.20

0  

11.70

2  

60  19.61

6  

19.17

8  

19.41

2  

11.77

7  

 

TABLE VIV 

Results of signal to reconstruction error and signal to noise 

ratio for image size 100 x 100 (p=5) 

 

Lambda 0.0005  0.0001  0.001  0.01  

SNR(dB) SRE  SRE  SRE  SRE  

30  7.061 7.046 7.094 6.872 

40  11.623 11.608 11.664 9.173 

50  15.903 15.961 15.453 9.815 

60  18.760 18.910 17.113 9.925 
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TABLE V 

Results of signal to reconstruction error and signal to noise 

ratio for image size 100 x 100 (p=7) 

 

Lambda 0.000

5  

0.000

1  

0.001  0.01  

SNR(dB

) 

SRE  SRE  SRE  SRE  

30  8.385 8.369 8.421 8.406 

40  13.40

4 

13.40

0 

13.43

8 

11.08

4 

50  17.10

9 

17.04

5 

17.20

0 

11.70

2 

60  19.70

0 

19.90

0 

19.11

3 

11.90

5 

 

The below figures show the graphical representation of SRE to 

SNR for 100*100 image size for three, five and seven 

endmembers. 

 

 

 

 

V. CONCLUSIONS 

Linear spectral unmixing is emerging topic for the 

researcher in the field of remote sensing. HU is inverse ill-

posed problem. HU is challenging task due to large data size, 

observation noise, model inaccuracy, different environment 

conditions and endmember variability. HU is the process to 

collect number of endmembers, their spectral signature and 

their abundance map. From the three approaches, sparse 

regression based approach is selected for HU. 

For sparse unmixing SUnSAL algorithm is selected. 

And it is implemented using USGS spectral library in 

MATLAB. The contribution of different materials are viewed 

based on synthetic image and also the implementation is done 

using SUnSAL algorithm. Plot the SRE (dB) values for 

different values of white noise, using spectral libraries. SRE is 

increases with increase in SNR values. Also Plot the SRE (dB) 

and p values (number of endmembers), which is obtained 

using spectral library. The obtained synthetic image found to 

be efficient and effective. Also estimation of abundance matrix 

is done by using SUnSAL algorithm. 
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