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Abstract— In this paper, a two-stage neural network consisting of a feed-forward neural network and a Kohonen self-organizing map, has been 

used to predict secondary structure. We have applied our methods to determine the structure of 245 proteins containing neurotoxins, cytotoxins, 

cardiotoxins and three-finger toxins, derived from venoms of Elapid snakes. In doing so, the system achieved a Q3 score of 70%, which is quite 

remarkable. 
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I.  INTRODUCTION 

Protein databases have been growing exponentially over the 

past two decades, owing to a deluge of new sequence data 

from various sequencing projects. As a result, protein structure 

prediction is now more important than ever. Numerous 

structure prediction methods are available today that employ 

various techniques, but the most reliable is the comparative 

modeling approach [1]. However, a disadvantage of this 

method is that it requires the structure of a protein, which is 

largely homologous to the query protein, to be known before it 

can predict the structure of the latter. In the absence of a 

suitable homologous protein being available, we need to look 

at other prediction techniques, such as fold recognition [2-4] 

and ab initio methods [5-13]. 

 

Secondary structure prediction is often the precursor step to 

predicting tertiary structure. The most common secondary 

structure prediction methods have been either based on 

stereochemical [5] or statistical principles [6-7]. More recently 

however, a number of other approaches have arrived at the 

forefront due to a family of related proteins being available 

simultaneously for analysis. This lends to applying multiple 

sequence alignment (MSA) on the set of sequences, and 

determining additional information about the family regarding 

insertions, deletions, and mutations. Employing multiple 

sequence alignment to structure prediction was successfully 

performed by Niermann et al. [14] on the alpha-subunit of 

tryptophan synthase, which was later generalized by Zvelebil 

et al. [8]. But MSA based prediction methods were 

popularized by Benner & Gerloff [15] by the successful 

prediction of cAMP-dependent kinases. The popularization of 

soft computing approaches, and neural networks in particular, 

gradually led to more automated methods of structure 

prediction. Most popular algorithms employing neural 

networks in this field are the PHD method [9], DeepCNF [16], 

JNet [17] and PSIPRED [18]. Most of these algorithms 

employ feed-forward neural networks – the latter employing 

two of them connected sequentially, to determine the Q3 

structure of a protein. 

 
The proposed method is based on combining Kohonen self-

organizing maps [19-20] with Artificial neural networks [21-
24], feeding the output of the former to the latter. An overview 
of these two types of neural networks is presented briefly in 
section 2. The proposed method is presented in Section 3, and 
the results obtained by our method are presented in Section 4. 

II. NEURAL NETWORKS 

Neural networks are a popular soft computing approach that 
has been developed from a computational model of the human 
brain [21]. The most popular neural networks are those of the 
feed-forward variety, which is explained in Section 2.1. The 
other popular methods are Self-organizing maps (see Section 
2.2), Hopfield networks [25], etc. 

 

A. Feed-Forward Artificial Neural Networks 

 
A feed-forward artificial neural network (ANN) is a neural 

network containing a series of nodes called neurons, which are 
organized in a sequential array of stages called layers. The term 
feed-forward arises due to the fact that neurons in a layer pass 
information to neurons only in the next subsequent layer and 
never in the backward direction (except during training). The 
first layer is called the input-layer, and the last being the output 
layer. These two layers are separated by zero or more hidden 
layers. Each neuron receives data from all neurons in its 
previous layer, and it activates depending on a threshold 
function. A weight value is associated with each inter-neuron 
connection, which is updated during the training phase in order 
to reduce the error at each iteration, through an algorithm 
known as back-propagation [26]. The input received by a 
neuron is the output produced by the connected neuron in its 
previous layer, adjusted by the weight of the edge connecting 
the two. A typical feed-forward ANN, containing two hidden 
layers and three output nodes, is shown in Fig. 1. 
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Figure 1. A typical feed-forward artificial neural network 
 

B. Kohonen Self-Organizing Maps 

 
A self-organizing map [20], developed by T. Kohonen, is a 

tool to map high dimensional data onto a low dimensional grid, 
often for better visualization purposes. A SOM contains an 
input layer and an output layer – the latter often being arranged 
in the form of a two dimensional grid, although more than two 
dimensions are also possible. Each element in the input layer is 
connected to every node in the output grid, each of which has 
an associated weight vector. Whenever a data is presented at 
the input, the connected output elements are activated. The 
winning neuron is determined to be the one which has a weight 
vector closest to the data presented. The weights of the winning 
neuron and those of its immediate vicinity are adjusted to 
reduce the error further. This vicinity radius keeps on 
decreasing with each iteration, and reaches zero, upon which 
the training phase is deemed to have ended. During the 
classification phase, the winning node is the output when a data 
is presented at the input. The structure of a typical SOM is 
shown in Fig. 2. 
 

 
 

Figure 2. A typical self-organizing map 

III. DATA AND METHODS 

A. Data 

 
The objective of our study is to determine the secondary 

structure of Elapid venom toxins. The data for testing our 
method consisted of 245 snake venom protein sequences 
containing long and short neurotoxins, cytotoxins, three-finger 
toxins, cardiotoxins, etc. All these proteins are derived from 
venoms of snakes in the Elapidae family. For each protein 
sequence, the secondary structure was isolated in terms of 
helices, beta strands, and turns. This structural information was 
consolidated from various computational as well as 
experimental sources, and was retrieved from 
UniProtKB/Swiss-Prot [27]. 

 

B. The Network Architecture 

 
The network used by our approach consists of a SOM 

which is sequentially connected to a feed-forward ANN. The 
SOM used in our network has an input layer size of 13 nodes, 
and the output grid is a two-dimensional grid with five rows 
and five columns. The ANN used in our algorithm contains 4 
layers: one input layer, two hidden layers, and one output layer. 
The output layer contains 3 nodes corresponding to the three 
types of structures to be predicted. The input layer contains 90 
nodes, while the two hidden layers contain 61 and 30 nodes 
respectively. 25 of the input 90 nodes in the ANN are directly 
fed into by the 25 output nodes of the SOM. 
 

C. Methodology 

 
The proposed prediction method, shown in Fig. 3, consists 

of two stages: training phase, and prediction phase. Each phase 
in turn, is split into two sub-phases: the first for the self-
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organizing map (SOM), and the second for the feed-forward 
artificial neural network (ANN). The dataset was divided into 
half, with one half being used for training the neural networks, 
and the other to be used for validation. During the SOM 
training, for each proteins sequence a consecutive subsequence 
of 13 amino-acid residues were fed into it. Each amino-acid 
was converted to a real number normalized in the range 0-1. 
The window size was tested for 5 through 19 residues, but the 
size of 13 was found to be optimal with respect to both 
accuracy obtained and feasibility of execution time. With each 
input, the window was shifted one amino-acid to the right and 
the process was continued till the entire length of the sequence, 
and in turn, for the entire test set of proteins. When the SOM 
outputs had become stable, its 25 node output along with the 
same window of 13 amino-acids was fed into the ANN. 
However, this time, the amino-acids were not fed as a real 
number, but were encoded into binary, thereby requiring 5 bits 
for each amino-acid. Therefore, the total input size for the 
ANN was 90 (25 + 5×13). The ANN produced a 3 bit output, 
which was then decoded to the three possible structures, 
namely: alpha helices, beta strands or turns. 

 

IV. RESULTS AND DISCUSSION 

 
The proposed algorithm was implemented in Java. The 

testing was performed on an Intel Celeron M single-core 
1.6GHz processor with 2GB memory. For the 122 proteins in 
the training set, the bulk of the execution time was taken for 
training the ANN. The SOM was trained in 28 seconds but the 
ANN required 56 minutes for the same dataset. The Q3 
accuracy for the structure prediction results against the 123 test 
proteins are shown in Fig. 4. As we can see, our proposed 
method has a very high accuracy, in par with well known 
algorithms in this field. The plot of the reducing MSE (mean 
squared error) during the ANN training phase is shown in Fig. 
5. 

 
 

 
 

Fig. 3. The proposed method 
 

 
 
 
 

The mean Q3 accuracy was found to be 70.53% and the 
median accuracy was 73.3%. Only 3 sequences out of 123 were 
found to have an accuracy lower than 20%, while 94 sequences 
achieved an accuracy of at least 60%, with 8 of those reaching 
above 90%. The standard deviation was found to be 16%. In 
contrast, methods such as PSIPRED consistently reach a 
median accuracy of 76% with a standard deviation of 7-8% 
over many datasets including CASP3. Other methods such as 
DSC [13] fare worse than our method with a median accuracy 
of 67.3% over 16 CASP3 targets. PSIPRED may be marginally 
better than the proposed method but the advantage of our 
method is that, unlike PSIPRED or the PHD method, it does 
not require the generation of sequence profiles or multiple 
sequence alignments prior to prediction. This makes porting 
from client to server-side implementations much easier, and 
also results in much faster execution times. 

 

V. CONCLUSIONS 

Neural networks have been successfully used in the past for 
predicting protein secondary structures, such as in PSIPRED, 
JNet and DeepCNF. This is the first time neural networks have 
been mixed with SOM. The impressive results presented above 
suggest that the advantage gained by generating alignments and 
sequence profiles prior to prediction can be overcome to a large 
extent by incorporating SOM with ANNs. More studies are 
underway to finding ways of improving the neural network 
architecture presented above in order to increase the accuracy 
up from 70% to 80%. More studies are also required to see how 
our algorithm scales with the increase in the number of 
sequences, as well as their variability in terms of both length 
and structure. The primary objective of this study was to 
predict the structure of Elapid venom toxins. 

 
 

 
 

Fig. 4. Accuracy of the proposed method 
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Fig. 5. Plot of MSE during training 
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