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Abstract: MapReduce and Spark have been introduced to ease the task of developing big  data programs and applications. However, the jobs in 

these frameworks are roughly defined and packaged as executable jars without any functionality being exposed or described. This means that 

deployed jobs are not natively composable and reusable for subsequent development. Besides, it also hampers the ability for applying 

optimizations on the data flow of job sequences and pipelines. The Hierarchically Distributed Data Matrix (HDM) which is a functional, 

strongly-typed data representation for writing composable big data applications. Along with HDM, a runtime framework is provided to support 

the execution, integration and management of HDM applications on distributed infrastructures. Based on the functional data dependency graph 

of HDM, multiple optimizations are applied to improve the performance of executing HDM jobs. The experimental results show that our 

optimizations can achieve improvements between 10% to 30% of the Job-Completion-Time and clustering time for different types of 

applications when compared. 
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Introduction 

Big data has become a popular term which is used to describe 

the exponential growth and availability of data.the growing 

demand for large-scale data processing and data analysis 

applications spurred the development of novel solutions to 

tackle this challenge [10]. For about a decade,the mapreduce 

framework has represented the defacto standard of big data 

technologies and has been widely utilized as a popular 

mechanism to harness the power of large clusters of 

computers. In general, the fundamental principle of the 

mapreduce framework is to move analysis to the data, rather 

than moving the data to a system that can analyze it. It allows 

programmers to think in a data-centric fashion where they can 

focus on applying transformations to sets of data records 

while the details of distributed execution and fault tolerance 

are transparently managed by theFramework. However, in 

recent years, with the increasing applications’ requirements in 

the data analytics domain, various limitations of the hadoop 

framework have been recognized and thus we have witnessed 

an unprecedented interest to tackle these challenges with new 

solutions which constituted a new wave of mostly domain-

specific, optimized big data processing platforms. 

Big Data is the large and complex data that is difficult to use 

the traditional tools to store, manage, and analyze in an 

acceptable duration. Therefore, the Big Data needs a new 

processing model which has the better storage, decision-

making, and analyzing abilities. This is the reason why the 

Big Data technology was born. The Big Data technology 

provides a new way to extract, interact, integrate, and analyze 

of Big Data. The Big Data strategy is aiming at mining the 

significant valuable data information behind the Big Data by 

specialized processing. In other words, if comparing the Big 

Data to an industry, the key of the industry is to create the 

data value by increasing the processing capacity of the 

data.Big Data is always online and can be accessed and 

computed. With the rapid developments of the Internet, the 

Big Data is not only big but is also getting online. Online data 

is meaningful when the data connects to the end users or the 

customers. Taking an example, when users use Internet 

applications, the users’ behavior will be delivered to the 

developers immediately. These developers will optimize the 

notifications of the applications by using some methods to 

analyze the data. 

2. HDM Framework 

2.1 Overview 

 Fig 1 shows the system architecture of the HDM runtime 

engine which is composed of three main components: 
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Runtime Engine: is responsible for the management of HDM 

jobs such as explaining, optimization, schedul-ing and 

execution. Within the runtime engine, the AppManager 

manages the information of all deployed jobs. TaskManager 

maintains the activated tasks for runtime scheduling in the 

Schedulers; Planner and Op-timizers interpret and optimize 

the execution plan of HDMs in the explanation phases; HDM 

manager man-ages the information and states of the HDM 

blocks in the entire cluster; Execution Context is an 

abstraction component to support the execution of scheduled 

tasks on either local or remote nodes. Coordination Service: is 

composed of three types of co-ordinations: cluster 

coordination, block coordination 

 

and executor coordination. They are responsible for the 

coordination and management of node resources, distributed 

HDM data blocks and executors on work-ers, respectively. 

Data Provenance Manager: is responsible to interact with the 

HDM runtime engine to collect and main-tain data 

provenance information (such as Dependen-cyTrace, 

JobPlanningTrace and ExecutionTrace) for HDM 

applications. Those information can be queried and obtained 

by client programs through messages for the usage of analysis 

or tracing. 

2.2 HDM Data Flow Optimization  

One key feature of HDM is that, the execution engine 

contains built-in planners and optimizers to automatically 

optimize the functional data ow of submitted applications and 

jobs. During explanation of HDM applications, the data ow 

are represented as DAGs with functional dependencies among 

operations. The HDM optimizers traverse through the DAG to 

reconstruct and modify the operations based on optimization 

rules to obtain more optimal execution plans. Currently, the 

optimization rules implemented in the HDM optimizers 

include: function fusion, local aggregation, oper-ation 

reordering and data caching for iterative jobs [5]. Function 

fusion. During optimization, the HDM planner combines the 

lined-up nonshue operations into one operation with high-

order function so that the sequence of operations can be 

compute within one task rather than separate ones to reduce 

redundant inter-mediate results and task scheduling. This rule 

can be applied recursively on a sequence of fusible operations 

to form a compact combined operation. Local Aggregation. 

Shu e operations are very expensive in the execution of data-

intensive applications. If a shue operation is followed with 

some aggregations, in some cases, the aggregation or part of 

the aggregation can be applied before the shuing stage. During 

optimization, HDM planer tries to move those aggregation 

operations forward before the shuing stage to reduce the 

amount of data that needs to be transferred during shuing. 

Operation reordering/reconstruction. Apart from ag-

gregations, there are a group of operations which l-ter out a 

subset of the input during execution. Thoseoperations are 

called pruning operations1. The HDM planner attempts to lift 

the priority of the pruning operations while sinking the 

priority of shu e-intensive operations to reduce the data size 

that needs to be computed and transferred across the network. 

Data Caching. For many complicated and pipelined analytics 

jobs (such as machine learning algorithms), some intermediate 

results of the job could be reused multiple times by the 

subsequent operations. There-fore, it is necessary to cache 

those repetitively used data to avoid redundant computation 

and communica-tion. In this case, HDM planner counts the 

reference for the output of each operation in the functional 

DAG to detect the potential points that intermediate results 

should be cached for reusing by subsequent operations. 

During optimization process, the rule above are applied one 

by one to reconstruct the HDM DAG and the optimiza-tion 

can last multiple iterations until there is no change in the 

DAG or it has reached the maximum number of itera-tions. 

The HDM optimizer is also designed to be extendable by 

adding new optimization rules by developers when it is 

needed.  

3. HDM Programming 

One major target of contemporary big data processing 

frameworks is to ease the complexity for developing data 

parallel programs and applications. In HDM, functions and 

operations are defined separately to balance between 

performance and programming flexibility. 

HDM Functions In HDM, a function specifies how input data 

are transformed as the output. Functions in HDM have 

different semantics targeting different execution context. 
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Basically, one HDM function can have three possible 

semantics, indicated as Fp, Fa, Fc:  

Fp : List[T] → List[R] (1)  

Fa : (List[T], List[R]) → List[R] (2) 

Fc : (List[R], List[R]) → List[R] (3) 

 Fp is the basic semantics of a function which specifies how to 

process one data block. The basic semantics of HDM function 

assume that the input data is organized as a sequence of 

records with type T. Similarly, the output of all the functions 

are also considered as a sequence of records. Based on the 

type compatibility, multiple functions can be directly 

pipelined. Fa is the aggregation semantics of a function which 

specifies how to incrementally aggregate a new input partition 

to the existing results of this function. Normally, functions are 

required to be performed on multiple data partitions when the 

input is too large to fit into one task. The aggregation 

semantics are very useful under such situations in which 

accumulative processing could get better performance. 

Aggregation semantics exist for a function only when it is 

capable to be represented and calculated in an accumulative 

manner. Fc is the combination semantics for merging multiple 

intermediate results from a series of sub-functions to obtain 

the final global output. It is also a complement for the 

aggregation semantics when a function is decomposable using 

the dividecombine pattern. During the explanation of HDM 

jobs, different semantics are automatically chosen by planers 

to hide users from functional level optimizations. To better 

explain the three types of semantics described above, an 

illustration of the semantics of some basic HDM functions are 

listed in TABLE II. For the Map function, Fp applies 

transforming function f to every element then returns the 

output List with output type R; Fa performs the 

transformation on every element of the input and then 

appends the output elements to the existing List; Fc combines 

the newer output list into the older one. For the GroupBy 

function, Fp groups the elements according to the mapping 

function f, then return the list of grouped elements as output; 

Fa performs mapping function f on every new input element 

to find the related group, then add the element to the existing 

group; Fc combines all the groups from the latter list of 

groups according to the group key.  

4. Related Work 

In principle, the MapReduce framework is originallydesigned 

to operate on multiple cluster environments. There-fore, it is 

not well developed to support the executionon highly 

distributed infrastructures and widely-networkedclusters. To 

address this issue, many research works haveattempted to 

extend the MapReduce framework to supporthighly 

distributed environments such as Grid [2], [11], multi-

clusters/clouds[9]. Hierarchical MapReduce framework that 

introduces global reduce and locality aware scheduling. 

Theypresent another hierarchical framework [7] which can 

co-ordinate multiple clusters to run MapReduce jobs 

amongthem.Hadoop to support schedule data processing on 

multi-datacenters/clusters and can provide larger pool of 

processingand data storage. MapReduce framework that can 

efficiently execute MapRe-duce jobs on geo distributed data 

sets. However, the approach is highly complex and does 

notsupport complicated job sequences well. Compared with 

thisgroup of works which focus on extending MapReduce 

tosupport highly distributed environment and geo-distributed 

data sets, HDM provides the capability to explain andschedule 

general functional data analytics applications onmulti-cluster 

infrastructures.  

5.Analysis Of HDM Framework 

 

Figure 5.1 Time consume by process on HDM and Map 

reduce Framework. 

Fig.5.1 shown the time consume on text data analysis and 

result show the compared between map-reduce and HDM 

framework. 

 

Figure 5.2 Clustering data process on HDM and Map reduce 

Framework. 

Fig 5.2 show clustering process chart on text data and 

displayed analysis of both framework. 
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6. Conclusion 

In this paper conclude that analysis of HDM framework with 

big data and compared analysis with Map-Reduce 

framework.The data flows of HDM jobs are automatically 

optimized before they are executed in the runtime system. 

HDM as a functional and strongly-typed meta-data 

abstraction, along with a runtime system implementation to 

support the execution, optimization and management of HDM 

applications. 
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