
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 3 646 – 649

646

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

Analysis of Big Data Processing Using HDM Framework

 Mr.Rajat Bodankar
1
, Ms.Roshani Talmale

2
, Mr.Rajesh Babu

3

1st
M.Tech Student 2

nd
 Year Dept. of Computer Science and Engineering Tulsiramji Gaikwad-Patil College of Engineering and

Technology Nagpur, India

E-mail :rbodankar@gmail.com .

2nd
 Project Guide Dept. of Computer Science and Engineering Tulsiramji Gaikwad-Patil College of Engineering and Technology

Nagpur, India
3nd

 Project Co-Guide Dept. of Computer Science and Engineering Tulsiramji Gaikwad-Patil College of Engineering and

Technology Nagpur, India

Abstract: MapReduce and Spark have been introduced to ease the task of developing big data programs and applications. However, the jobs in

these frameworks are roughly defined and packaged as executable jars without any functionality being exposed or described. This means that

deployed jobs are not natively composable and reusable for subsequent development. Besides, it also hampers the ability for applying

optimizations on the data flow of job sequences and pipelines. The Hierarchically Distributed Data Matrix (HDM) which is a functional,

strongly-typed data representation for writing composable big data applications. Along with HDM, a runtime framework is provided to support

the execution, integration and management of HDM applications on distributed infrastructures. Based on the functional data dependency graph

of HDM, multiple optimizations are applied to improve the performance of executing HDM jobs. The experimental results show that our

optimizations can achieve improvements between 10% to 30% of the Job-Completion-Time and clustering time for different types of

applications when compared.

Keywords:Big data processing, parallel programming, functional programming, system architecture

__*****___

Introduction

Big data has become a popular term which is used to describe

the exponential growth and availability of data.the growing

demand for large-scale data processing and data analysis

applications spurred the development of novel solutions to

tackle this challenge [10]. For about a decade,the mapreduce

framework has represented the defacto standard of big data

technologies and has been widely utilized as a popular

mechanism to harness the power of large clusters of

computers. In general, the fundamental principle of the

mapreduce framework is to move analysis to the data, rather

than moving the data to a system that can analyze it. It allows

programmers to think in a data-centric fashion where they can

focus on applying transformations to sets of data records

while the details of distributed execution and fault tolerance

are transparently managed by theFramework. However, in

recent years, with the increasing applications’ requirements in

the data analytics domain, various limitations of the hadoop

framework have been recognized and thus we have witnessed

an unprecedented interest to tackle these challenges with new

solutions which constituted a new wave of mostly domain-

specific, optimized big data processing platforms.

Big Data is the large and complex data that is difficult to use

the traditional tools to store, manage, and analyze in an

acceptable duration. Therefore, the Big Data needs a new

processing model which has the better storage, decision-

making, and analyzing abilities. This is the reason why the

Big Data technology was born. The Big Data technology

provides a new way to extract, interact, integrate, and analyze

of Big Data. The Big Data strategy is aiming at mining the

significant valuable data information behind the Big Data by

specialized processing. In other words, if comparing the Big

Data to an industry, the key of the industry is to create the

data value by increasing the processing capacity of the

data.Big Data is always online and can be accessed and

computed. With the rapid developments of the Internet, the

Big Data is not only big but is also getting online. Online data

is meaningful when the data connects to the end users or the

customers. Taking an example, when users use Internet

applications, the users’ behavior will be delivered to the

developers immediately. These developers will optimize the

notifications of the applications by using some methods to

analyze the data.

2. HDM Framework

2.1 Overview

 Fig 1 shows the system architecture of the HDM runtime

engine which is composed of three main components:

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 3 646 – 649

647

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

Runtime Engine: is responsible for the management of HDM

jobs such as explaining, optimization, schedul-ing and

execution. Within the runtime engine, the AppManager

manages the information of all deployed jobs. TaskManager

maintains the activated tasks for runtime scheduling in the

Schedulers; Planner and Op-timizers interpret and optimize

the execution plan of HDMs in the explanation phases; HDM

manager man-ages the information and states of the HDM

blocks in the entire cluster; Execution Context is an

abstraction component to support the execution of scheduled

tasks on either local or remote nodes. Coordination Service: is

composed of three types of co-ordinations: cluster

coordination, block coordination

and executor coordination. They are responsible for the

coordination and management of node resources, distributed

HDM data blocks and executors on work-ers, respectively.

Data Provenance Manager: is responsible to interact with the

HDM runtime engine to collect and main-tain data

provenance information (such as Dependen-cyTrace,

JobPlanningTrace and ExecutionTrace) for HDM

applications. Those information can be queried and obtained

by client programs through messages for the usage of analysis

or tracing.

2.2 HDM Data Flow Optimization

One key feature of HDM is that, the execution engine

contains built-in planners and optimizers to automatically

optimize the functional data ow of submitted applications and

jobs. During explanation of HDM applications, the data ow

are represented as DAGs with functional dependencies among

operations. The HDM optimizers traverse through the DAG to

reconstruct and modify the operations based on optimization

rules to obtain more optimal execution plans. Currently, the

optimization rules implemented in the HDM optimizers

include: function fusion, local aggregation, oper-ation

reordering and data caching for iterative jobs [5]. Function

fusion. During optimization, the HDM planner combines the

lined-up nonshue operations into one operation with high-

order function so that the sequence of operations can be

compute within one task rather than separate ones to reduce

redundant inter-mediate results and task scheduling. This rule

can be applied recursively on a sequence of fusible operations

to form a compact combined operation. Local Aggregation.

Shu e operations are very expensive in the execution of data-

intensive applications. If a shue operation is followed with

some aggregations, in some cases, the aggregation or part of

the aggregation can be applied before the shuing stage. During

optimization, HDM planer tries to move those aggregation

operations forward before the shuing stage to reduce the

amount of data that needs to be transferred during shuing.

Operation reordering/reconstruction. Apart from ag-

gregations, there are a group of operations which l-ter out a

subset of the input during execution. Thoseoperations are

called pruning operations1. The HDM planner attempts to lift

the priority of the pruning operations while sinking the

priority of shu e-intensive operations to reduce the data size

that needs to be computed and transferred across the network.

Data Caching. For many complicated and pipelined analytics

jobs (such as machine learning algorithms), some intermediate

results of the job could be reused multiple times by the

subsequent operations. There-fore, it is necessary to cache

those repetitively used data to avoid redundant computation

and communica-tion. In this case, HDM planner counts the

reference for the output of each operation in the functional

DAG to detect the potential points that intermediate results

should be cached for reusing by subsequent operations.

During optimization process, the rule above are applied one

by one to reconstruct the HDM DAG and the optimiza-tion

can last multiple iterations until there is no change in the

DAG or it has reached the maximum number of itera-tions.

The HDM optimizer is also designed to be extendable by

adding new optimization rules by developers when it is

needed.

3. HDM Programming

One major target of contemporary big data processing

frameworks is to ease the complexity for developing data

parallel programs and applications. In HDM, functions and

operations are defined separately to balance between

performance and programming flexibility.

HDM Functions In HDM, a function specifies how input data

are transformed as the output. Functions in HDM have

different semantics targeting different execution context.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 3 646 – 649

648

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

Basically, one HDM function can have three possible

semantics, indicated as Fp, Fa, Fc:

Fp : List[T] → List[R] (1)

Fa : (List[T], List[R]) → List[R] (2)

Fc : (List[R], List[R]) → List[R] (3)

 Fp is the basic semantics of a function which specifies how to

process one data block. The basic semantics of HDM function

assume that the input data is organized as a sequence of

records with type T. Similarly, the output of all the functions

are also considered as a sequence of records. Based on the

type compatibility, multiple functions can be directly

pipelined. Fa is the aggregation semantics of a function which

specifies how to incrementally aggregate a new input partition

to the existing results of this function. Normally, functions are

required to be performed on multiple data partitions when the

input is too large to fit into one task. The aggregation

semantics are very useful under such situations in which

accumulative processing could get better performance.

Aggregation semantics exist for a function only when it is

capable to be represented and calculated in an accumulative

manner. Fc is the combination semantics for merging multiple

intermediate results from a series of sub-functions to obtain

the final global output. It is also a complement for the

aggregation semantics when a function is decomposable using

the dividecombine pattern. During the explanation of HDM

jobs, different semantics are automatically chosen by planers

to hide users from functional level optimizations. To better

explain the three types of semantics described above, an

illustration of the semantics of some basic HDM functions are

listed in TABLE II. For the Map function, Fp applies

transforming function f to every element then returns the

output List with output type R; Fa performs the

transformation on every element of the input and then

appends the output elements to the existing List; Fc combines

the newer output list into the older one. For the GroupBy

function, Fp groups the elements according to the mapping

function f, then return the list of grouped elements as output;

Fa performs mapping function f on every new input element

to find the related group, then add the element to the existing

group; Fc combines all the groups from the latter list of

groups according to the group key.

4. Related Work

In principle, the MapReduce framework is originallydesigned

to operate on multiple cluster environments. There-fore, it is

not well developed to support the executionon highly

distributed infrastructures and widely-networkedclusters. To

address this issue, many research works haveattempted to

extend the MapReduce framework to supporthighly

distributed environments such as Grid [2], [11], multi-

clusters/clouds[9]. Hierarchical MapReduce framework that

introduces global reduce and locality aware scheduling.

Theypresent another hierarchical framework [7] which can

co-ordinate multiple clusters to run MapReduce jobs

amongthem.Hadoop to support schedule data processing on

multi-datacenters/clusters and can provide larger pool of

processingand data storage. MapReduce framework that can

efficiently execute MapRe-duce jobs on geo distributed data

sets. However, the approach is highly complex and does

notsupport complicated job sequences well. Compared with

thisgroup of works which focus on extending MapReduce

tosupport highly distributed environment and geo-distributed

data sets, HDM provides the capability to explain andschedule

general functional data analytics applications onmulti-cluster

infrastructures.

5.Analysis Of HDM Framework

Figure 5.1 Time consume by process on HDM and Map

reduce Framework.

Fig.5.1 shown the time consume on text data analysis and

result show the compared between map-reduce and HDM

framework.

Figure 5.2 Clustering data process on HDM and Map reduce

Framework.

Fig 5.2 show clustering process chart on text data and

displayed analysis of both framework.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 3 646 – 649

649

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

6. Conclusion

In this paper conclude that analysis of HDM framework with

big data and compared analysis with Map-Reduce

framework.The data flows of HDM jobs are automatically

optimized before they are executed in the runtime system.

HDM as a functional and strongly-typed meta-data

abstraction, along with a runtime system implementation to

support the execution, optimization and management of HDM

applications.

Acknowledgement

 We take privilege to greet our beloved parents for their

encouragement in every effort. Also, we are happy to thank

our college management, principal, head of the department and

my colleagues for their sincere support in all concerns of

resources.

References

[1]. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,S.Haridi,

and K. Tzoumas. Apache inkTM: Stream and batch

processing in a single engine. IEEE Data Eng. Bull.,

38(4):28{38, 2015.

[2]. J. Dean and S. Ghemawat. MapReduce: simpli ed data

processing on large clusters. Commun. ACM, 51(1), 2008.

[3]. S. Sakr. Big Data 2.0 Processing Systems - A Survey.

Springer Briefs in Computer Science. Springer, 2016.

[4]. D. Sculley, G. Holt, D. Golovin, E. Davydov,

T.Phillips, D. Ebner, V. Chaudhary, and M. Young.

Machine learning: The high interest credit card of technical

debt. In SE4ML: Software Engineering for Machine

Learning, 2014.

[5]. D. Wu, S. Sakr, L. Zhu, and Q. Lu. Composable and E cient

Functional Big Data Processing Framework. In

IEEE Big Data, 2015.

[6]. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica. Spark: Cluster Computing with Working Sets. In

HotCloud, 2010.

[7]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributed hadoop mapreduce on the grid. In SC, 2012.

[8]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributed hadoop mapreduce on the grid. In SC, 2012.

[9]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributed hadoop mapreduce on the grid. In SC, 2012.

[10]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributed hadoop mapreduce on the grid. In SC, 2012.

[11]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributed hadoop mapreduce on the grid. In SC, 2012.

[12]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributedhadoop mapreduce on the grid. In SC, 2012.

[13]. C. He, D. Weitzel, D. Swanson, and Y. Lu. Hog:

Distributedhadoop mapreduce on the grid. In SC, 2012.

[14]. Y.-L. Su et al. Variable-sized map and locality-aware

reduceon public-resource grids. FGCS, 27(6), 2011.

[15]. L. Wang et al. Mapreduce across distributed clusters for

data-intensive applications. In IPDPS Workshops, 2012.

[16]. L. Wang et al. G-hadoop: Mapreduce across distributed

datacenters for data-intensive computing. FGCS, 29(3),

2013

