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Abstract—PCIe is a high-performing interface used to move data from a central host PC to an accelerator such as Field 

Programmable Gate Arrays (FPGA). This interface allows a system to perform fast data transfers in High-Performance 

Computing (HPC) and provide a performance boost. However, HPC systems normally require large datasets, and in these 

situations PCIe can become a bottleneck. To address this issue, we propose an open-source hardware compression/decompression 

system that can be used to adapt with continuously-streamed data with low latency and high throughput. We implement a 

compressor and decompressor engines on FPGA, scale up with multiple engines working in parallel, and evaluate the energy 

reduction and performance with different numbers of multiple engines. To alleviate the performance bottleneck in the processor 

acting as a controller, we propose a hardware scheduler to fairly distribute the datasets among the engines. Our design reduces the 

transmission time in PCIe, and the results show an energy reduction of up to 48% in the PCIe transfers, thanks to the decrease in 

the number of bits that have to be transmitted. The overhead in terms of latency is maintained to a minimum and user selectable 

depending on the tolerances of the intended application. 
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I.  INTRODUCTION 

Over the past few decades, traditional multi-core CPUs in 
High-Performance Computing (HPC) platforms have been 
adding accelerators using General Purpose Graphics Processing 
Units (GPU) [1][2] and/or Field Programmable Gate Arrays 
(FPGA) [3][4][5]. In a typical configuration, these accelerators 
are built as a coprocessor board to perform high-speed data 
processing and interfaced to the central host via a Peripheral 
Component Interconnect Express (PCIe). The amount of data 
that has to be moved and processed has continued to grow as 
new data center and HPC applications focus on data analytics, 
web searches, and virtual reality evolve. The PCIe interface is 
seen as a potential source of a bottleneck in the system, and 
current efforts are focused on integrating the host and 
accelerator tightly-coupled in the same device with a shared 
memory system [6]. Despite these developments, PCIe remains 
a popular choice, and the transmission of significant amounts 
of data reduces the performance and increases the energy 
requirements —as well as the cost of the utility bill. 

Lossless data compression is one of the effective 
approaches to reduce not only the data size without affecting 
the original content but also the overall energy consumption. 
The reason behind this approach is that a compressed dataset 
can be transferred using less time, which reduces the energy per 
transfer. Furthermore, a high compression ratio yields fewer 
bytes of data requiring transmission, and this method can 
significantly improve the bandwidth in the PCIe. By reducing 
the transmission time, the energy efficiency can be improved as 
long as the compression overheads are low. This work proposes 
a novel open-source PCIe core based on a streaming data 
compression called CPCIe (Compression-enabled PCIe) and 
evaluates the extent to which the data 
compression/decompression implemented on the hardware can 

reduce the energy consumption and improve the overall 
performance. The contributions of this paper can be 
summarized as follows: 

 We extend our open-source CPCIe core [7] by 
implementing a hardware scheduler based on first-in first-
out scheduling scheme. Compared with our previous 
original work presented in [8] which had limitation to 
configure the route for AXI4-Stream channels, this paper 
presents a novelty that the hardware scheduler can 
distribute the block of datasets to multiple compressor and 
decompressor engines without any intervention from a soft 
processor, 

 We create an efficient parallel system framework to 
communicate the scheduler with multiple 
compressor/decompressor engine cores. This framework 
enables the system to effectively hide the latencies from 
one engine to another engines and guarantees for fast 
compression or decompression output without requiring 
synchronization from a processor, 

 We develop a software API for the host PC to facilitate the 
use of the CPCIe framework. Our open-source API can 
integrated by the developers to work with their own 
datasets and hardware accelerators, 

 We demonstrate how a hardware-accelerated application 
can be integrated into our architecture using two realistic 
benchmarks. The first case study was based on matrix 
multiplication. This work has now been extended with a 
second case study called hotspot, which uses a 3x3 sliding 
window to form a convolution. The accelerators are 
created with high-level synthesis tool for rapid-prototyping 
development, 

 Finally, we evaluate the benefits of the data compression 
implementation in a prototype with the hardware 
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accelerator, and perform accurate energy and performance 
measurements. 

 
The whole system with integrated compression has been 

released open-source [7] to encourage third party testing and 
promote further work in the area. The remainder of this paper is 
structured as follows. Section 2 describes related work. Section 
3 presents the proposed system design. Section 4 evaluates the 
main features of the demonstration system. Section 5 briefly 
describes the applications used with our CPCIe system. Section 
6 evaluates the energy and performance with different 
configurations that include the original CPCIe, a CPCIe system 
with a single compressor/decompressor engine, and a CPCIe 
system with multiple compressor/decompressor engines. 
Finally, section 7 concludes the paper. 

II. RELATED WORK 

Modern FPGAs are used as hardware accelerators because 
they can create custom circuits using millions of uncommitted 
logic elements, hardened PCIe interfaces, and can achieve peak 
performance over several GFLOPs, thanks to dedicated floating 
point resources [9]. This high throughput results in high 
requirements on the memory bandwidth and the corresponding 
interfaces to achieve maximum performance. Despite these 

challenges, there are many examples of the successful 
acceleration of compute-intensive applications using FPGAs 
interfaced via PCIe to a host PC [10], [11], [12]. 

 
Compression is a useful technique to reduce the storage 

requirement demands in the local workstation or cloud. There 
are two techniques that are used for compression: lossless or 
lossy compression. In most HPC applications, lossless 
compression is chosen because the original content in the 
datasets must be compressed without any bit losses in the data, 
and a slight change in this sensitive data after decompression is 
unacceptable. The lossy compression technique can be applied 
to other data types, such as video or image processing, since the 
losses bit in the decompressed output is tolerable. In this work, 
we are interested in using lossless compression for our 
evaluations. 

 
An early study by Tremaine et. al. [30] used the IBM MXT 

algorithm to perform lossless data compression in the FPGA 
and their work has contributed to other research on hardware 
lossless data compression, as summarized in Table 1. Recently, 
the deployment of data compression in data centers and data 
warehouse systems has become a topic of interest in this 
research area. Putnam et. al [31] presented Catapult, which 
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integrates reconfigurable hardware accelerators in data centres 
to improve the performance of the Microsoft’s Bing search 
engine. They form a network of eight-node FPGA groups via 
high-speed serial links and each node performs a specific 
function. One of the nodes is the compression stage, and hence 
it is able save the bandwidth during transmission and increase 
the efficiency between the nodes. This project accelerated the 
scoring engines to rank the search results in Bing by a factor of 
2X. This work is part of the research at Microsoft Research 
presented in [32] [33]. Delmerico et. al. [34] have developed 
several cluster computing systems for computing human genes. 
One of the systems used is the Netezza [35][36] data 
warehouse, which can process a huge amount of streaming 
datasets from storage disks. The Netezza comprises an FPGA 
close to the storage disk, along with a PowerPC processor and a 
memory system. However, the FPGA was only used to 
decompress the pre-compressed data from the disk during 
query processing, while the other computations were performed 
by the processor. Nevertheless, they reported that this approach 
improved the query processing time by 3 times and 
outperformed the parallel computation on the PC cluster. 

 
Compared with previous work, our solution offers lower 

latency limited to tens of clock cycles and is transparent to the 
user, as it is tightly coupled to an open-source PCIe core. The 
low latency and high throughput are obtained with hardware 
compression that matches the interface width with the 
compression word width and with a fully streaming pipeline. 
Furthermore, the previous work is proprietary, commercial and 
closed source, while in our research, we have made it open-
source so that further research and optimizations are possible. 
CPCIe is agnostic to the acceleration function being 
implemented and has been tested with functions created in 
hardware using high-level synthesis tools. The first results of 
this work were presented in [8] and in this paper we extend that 
work with new benchmarks and a parallel version of the 
hardware and software system. 
 

III. DESIGN AND ARCHITECTURE OF CPCIE 

In this section, we show how we developed the overall 

system to perform data compression and decompression while 

providing streamed data for PCIe communication. In Fig. 1 

(a), our proposed CPCIe is located between the host PC and 

the hardware accelerator. This is implemented on the FPGA 

development board, which supports the capability of the 

PCIestreamed interface. Fig. 1 (b) shows the detail of the 

CPCIe architecture. On the left hand side, the communication 

is performed between the host PC and the CPCIe via the PCIe 

interface, while on the right hand side the data transmission 

occurs between the CPCIe and the hardware accelerator via 

the AXI-4 Stream interface. The architecture consists of five 

major components and two minor components. The major 

components are the MicroBlaze processor, the Xillybus IP 

Core, a custom interface for Xillybus, the Compressor System 

and the Decompressor System. The two minor components are 

the UART and the Power Monitor, which are used to display 

the output and read the power readings, respectively. More 

details regarding the power readings are discussed in Section 

IV. 

In our proposed design, the commands are issued by the 

host PC and acknowledged by the MicroBlaze processor in the 

CPCIe. The operational model of the host PC is shown in the 

following order: 

1. Send the block size and threshold values that will be 

used for the compression and decompression. These 

two values are saved in the Dual-Port Shared Memory 

in the CPCIe. 

2. Send the command to start the CPCIe with two options: 

either to use the compression/decompression mode or 

not to use it at all (send it as original file). 

3. Wait for an acknowledgement signal from the CPCIe. 

4. Send the datasets to the input buffer of the FPGA. 

5. Retrieve the results from the output buffer of the 

FPGA. 

6. Wait until the CPCIe indicates the execution has 

completed. 

 

 

While on the FPGA side, the CPCIe will: 

1. Wait for the command from the host PC. 

2. The MicroBlaze processor configures the Compressor 

and Decompressor Systems based on the block size 

and threshold values given by the host PC. These two 

values are read from the Dual-Port Shared Memory. 

3. The MicroBlaze sends an acknowledgement signal to 

the host PC. 

4. The Decompressor System receives the input, then 

decompresses the compressed dataset, and sends it to 

the hardware accelerator. 

5. The Compressor System then receives the output 

results from the hardware accelerator, compresses the 

output, and sends it back to the host PC. 

6. Upon completion, the MicroBlaze sends done signal to 

the host PC. 

 

In the next subsection, we first describe in detail our CPCIe 

architecture. Then, we show how our Compressor and 

Decompressor Systems can be used to distribute the datasets 

into multiple compressor or decompressor engines using our 

hardware scheduler. 

 

A. CPCIe Architecture 

 
In this section we discuss the components used in our 

CPCIe architecture. We begin with the MicroBlaze processor 
and then discuss the PCIe controller. Then we describe the 
Custom Interface used in the architecture, which is responsible 
for communicating between Xillybus and the CPCIe. Finally, 
we briefly present the Compressor and Decompressor Systems 
used in our system. 
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MicroBlaze: This soft processor serves as a controller to 
display debugging output, to communicate with the host PC 
and to control the whole system of the CPCIe by, for example, 
configuring the peripherals via the bus interface. In addition, 
this processor is used to read the power dissipated from the on-
board digital power monitor. The power reading is periodically 
displayed on the UART terminal. Xillybus: In order to 
overcome the complexity of developing the controller of the 
transaction layer of PCIe, several third-party IP cores were 
proposed and are available in opensource formats such as 
RIFFA [37] and Xillybus [38]. In our work, Xillybus was 
chosen because of its stability and the fact that no specific API 
is involved. Xillybus uses 32-bit data to transmit/receive data 
to/from the FIFO on the FPGA, and connects the FPGA 
application logic using a FIFO. Furthermore, the Xillybus 
periodically checks two signals from the FIFO: the FIFO’s full 
signal, to initiate data transfer, and the FIFO’s empty signal, to 
read data from the FPGA. On the software side of host PC, the 
Xillybus provides a device driver for the Windows or Linux 
operating system, where the file handler is opened by the host 
application before the user application performs the file I/O 
operation. The I/O files are written or read as binary files 
between the memory buffer and the FIFOs on the FPGA. 

 
Custom Interface: The capabilities of the Xillybus core are 

extended by developing an interface to exchange its command, 
status and FIFO with the CPCIe. In this component, the AXI-4 
Lite Interface is used by the MicroBlaze processor to store/read 
data to/from the Dual-Port Shared Memory (DPSM), and to 
communicate with the Compressor and Decompressor Systems. 
The DPSM is an on-chip dual-port block memory and can be 
accessed by the host PC to store the value of the command and 
status. The values in the DPSM are the start/stop/wait signals, 
the configuration/status of the Compressor and Decompressor 
Systems, and the configuration/status of the hardware 
accelerator. At the bottom of the DPSM, two asynchronous 
FIFOs are implemented between the Xillybus’ FIFO and the 
AXI-4 Stream Interface for the input and output FIFOs. These 
FIFOs are essential to balance the different clocks used in the 
PCIe and the Compressor/Decompressor System and to ensure 
data integrity. The AXI-4 Stream interface is used to convert 
the FIFO signals into standard AXI-4 Stream protocols. 

 
Compressor System: The Compressor System is 

responsible for compressing the result from the hardware 

accelerator and sending the compressed output back to the host 
PC. The MicroBlaze processor sends the command to start the 
compression, which consists of the value to configure the 
compressor engines inside this system. 

 
Decompressor System: The compressed datasets is sent to 

the Decompressor System first before the uncompressed output 
is sent to the hardware accelerator. The flow in the 
Decompressor System is not very different from that in the 
Compressor System, except that this system will use a header 
data in the compressed file to schedule the compressed blocks 
during decompression. 

 
In the following subsections, we describe in depth our 

implementation of the Compressor and Decompressor Systems. 
Then, we describe the functionality of the hardware scheduler 
used in both systems. Finally we discuss the compressor and 
decompressor engines using the X-MatchPRO 
compression/decompression algorithm used for our evaluation. 

B. Compressor/Decompressor System 

 
The Compressor and Decompressor Systems are shown in 

Fig. 2 and Fig. 3, respectively. The Compressor System 
comprises the scheduler, the header packer and multiple 
compressor engines. Note that the number of compressor 
engines is pre-configured before synthesis. In order to start the 
compression, the scheduler requires the value of the original 
file size, and the other two configurations from the host PC, 
which are the block size and threshold value. The value of the 
original file size is stored in the header file, while the other two 
configuration values are required by the compressor engines. 
Each time the compressor engines have finished compressing, 
they generate the compressed size and CRC values, which are 
stored in the FIFO-based header packer. The compressed size is 
the total number of compressed words (1 word is equivalent to 
4 Bytes) and the CRC value is the 32-bit encoding from the 
original uncompressed block. After all of the compressed data 
have been sent from the output of the scheduler, the 
Compressor System will send the header data from the header 
packer to be stored as part of the compressed binary file in the 
host PC. Finally, the Compressor System will notify the 
MicroBlaze processor that it has completed the job via the 
AXI-4 Lite interface. 
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Figure 1:  Overview of the full system. In (a), the deployment of CPCIe within the evaluation system. In (b), the architecture of CPCIe



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 4 Issue: 2                                                                                                                                                                         405 – 419 

_______________________________________________________________________________________________ 

409 

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

Scheduler

Compressor 

Engine #0

Compressor 

Engine #4

Header Packer

...

Input Output

AXI-4 Lite

 Figure 2: Compressor System in the CPCIe Architecture.  
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Figure 3:  Decompressor System in the CPCIe Architecture  
 
The process flow and the components in the Decompressor 

System are very similar to the Compressor System, except that 
the header unpacker is used to replace the header packer. The 
FIFO-based header unpacker is responsible for temporarily 
store the header of the compressed binary file, which is 
unpacked by the scheduler. After all of the data in the header 
have been stored, the scheduler is ready to start distributing the 
compressed data to the decompressor engines. The scheduler 
reads the first compressed size from the header unpacker and 
stores it in its own counter to count the number of data words. 
This counter is used to count the maximum number of data 
elements for the decompressor engine. Simultaneously, the 
decompressed data from the first decompressor engine is sent 
to the hardware accelerator via the output FIFO in the 
scheduler. Once the counter has reached zero, the scheduler 
updates the counter with the second compressed size and starts 
to send the second block of compressed data. Upon completion, 
the scheduler sends a signal to the MicroBlaze processor to 
close the connection. 
 

 

 

Input Output
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 Figure 4: The architecture of scheduler in both Compressor and Decompressor Systems.

 

C. Hardware Scheduler 

 
The architecture of scheduler for both Compressor and 

Decompressor System is shown in Fig. 4. The compressor and 
decompressor parallel engines have each their own schedulers 
to handle multiple blocks of specified block sizes based on the 
uncompressed (for compression) or compressed (for 
decompression) datasets. The scheduler is implemented in 
hardware using a Finite State Machine (FSM) and manages two 
inputs from the user which are the file size and block size 
(ranging between 1 KB to 32 KB). Another capabilities of the 
scheduler is that the FSM controller can be configured to 
disable the compression mechanism and transmit the raw 
datasets. 

 
Prior to sending a block to compress or decompress, the 

scheduler continuously checks if an engine is ready by 
inspecting the status associated with the engine. By using this 
scheduling scheme, the scheduler ensures all engines remain 
busy while there is input data waiting in the buffer and ready to 
be assigned to the next available engine. If an engine is 
available and ready to start processing, the scheduler performs 
the following tasks: locks the engine, configures the split 
switch, configures the block size and transfers the data from 
input buffer to the engine. While the data is being transferred to 
the engine, the scheduler will inspect the next available engine. 
If the engine is busy, the scheduler keeps monitoring the engine 
until it is ready to be processed before sending the next block to 
it. In our design we used loop-checking as the cycles are 
relatively low in the range between 30 to 50 cycles. 
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In compression mode after an engine has finished 
compressing its input data, the scheduler executes the following 
tasks: configures the join switch, copies or ”pushes” the 
compressed size and cyclic redundancy check (CRC) value to 
the FIFO of the header packer, transfers the compressed data 
from compressor to the output buffer of the scheduler, and 
unlocks the engine. If the decompression mode is active and an 
engine has finished decompressing, the scheduler performs the 
following tasks: reads or ”pulls” the compressed size and CRC 
value from the FIFO of the header unpacker, writes these 
values to the decompressor engine, and transfer the 
decompressed data from the decompressor to the output buffer 
of the scheduler. The decompressor engine requires the 
compressed size value to be written in a register as a counter to 
count the number of compressed data read during 
decompression. While the copied CRC value is used after all 
data has been decompressed and will be compared with the 
CRC value generated by the decompressor to identify any 
corrupted data. If the CRC flag outputs an error, the 
decompressor will repeat the process again. 
 

D. X-MatchPRO Compressor/Decompressor Engine 

 
The X-MatchPRO compressor/decompressor is used in our 

evaluation platform since it is also available as an open-source 
core and it offers useful features regarding performance and 
latency. It belongs to the category of dictionary-based 
compressors and consists of a compressor and decompressor 
channel. The compression mode consists of the compressor to 
read uncompressed input data from the input buffer, 
compressing it based on the block size used, and generates 32-
bit data words to the output buffer. In the decompression mode, 
the decompressor reads compressed input data from the input 
buffer, decompress the data based on the dictionary references 
and reconstructs the original data. The compressor and 
decompressor use a parallel dictionary of previously seen data 
to match or partially match the current data element with an 
entry in the dictionary and it is coded in VHDL. More details 
are available at [13][14]. 
 

E. Software API 

 
We developed four API calls to be used by the CPCIe: 

compress, decompress, write addr, read addr. 
 

compress (input, bsize, trshold, output) 

decompress (input, output) 
 

The compress and decompress calls represent the 
compression and decompression function calls from the host 
PC, respectively. In the case of the compress function call, the 
input of the uncompressed dataset is specified by the input 
argument. The block size (bsize) and threshold (trshold) of the 
function argument are the window size for compression and the 
threshold for the compressor engine, respectively, and the 
return value of the compressed dataset is written to an address 
output and saved as a new compressed file. Meanwhile in the 
case of the decompress function call, the block size and the 
threshold are not required in the argument, as these values have 
already been written into the header of the compressed file 
during compression. 

 
write_addr (u32 addr, u32 value) 

read_addr (u32 addr) 

 
The write addr call performs the writing of a hex value to 

an address specified by the argument addr. A developer can 
modify the address maps to execute any command on either the 
host PC or soft processor (e.g. MicroBlaze processor). These 
address maps are used to control and communicate with the 
host PC, while the soft processor will perform an operation 
based on the command values stored in the specific address. 
The addresses which are used to store these values are the start 
and stop operation for the hardware accelerator and 
compressor/decompressor systems, the status of the hardware 
accelerator, the status of the compressor/decompressor engines, 
and the value of metadata (the original file size, the block size 
and the number of blocks) for the main header in the 
compressed file. While the read addr call is used to read a value 
from an address, especially to read the status of the soft 
processor. This status is useful not only for debugging purposes 
but also for monitoring the activities in the FPGA. 

IV. DEMONSTRATION SYSTEM 

The demonstration board used in our work is the Xilinx 
Virtex-7 FPGA VC707 evaluation board [39] and synthesized 
with Xilinx Vivado 2014.4. This board consists of PCIe 
interface, and on-board digital power monitor to obtain power 
readings from the FPGA board. For host PC, we used a 
workstation with Intel Xeon E5520 processor, running on 64-
bit Windows 7 operating system. 

A. Resource Utilisation 

 
In this subsection we present the resource utilization of the 

different modules in our CPCIe core: the Xillybus PCIe core, 
the compressor and the decompressor. In this project, we 
wanted to make sure that all clocks are synchronous and we 
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could only achieve timing closure at fixed frequency of 100 
MHz due to the complexity of using several compression and 
decompression engines in parallel. Table 2 shows the resource 
utilization of the compressor and decompressor engine with 
various number of engines. Each compressor and decompressor 
is divided into four different rows to represent the utilization 
using different number of engines. 

 
At the moment once the number of engines has been 

defined and the design implemented it is not possible to change 
the number without a full implementation cycle. It will be 
possible to create configurations off-line with different number 
of engines and then load the correct configuration at run-time 
using a partial reconfiguration technique but this has not been 
explored in the current work. 

 
One point to note is that the compressor engine utilizes 

almost twice as many logic resources as the decompressor. The 
reason is that in the original configuration of the compressor, 
there is a compressor engine and also a decompressor engine 
implemented in the component for verification purposes. The 
decompressor engine in the compressor is used to produce 
CRC value, after all compressed data has completely 
decompressed. This CRC value will be compared with original 
CRC value in the compressor engine to check for identical 
result. Both the compressor and decompressor engines have the 
same resources of CRC which consists of 32 flip-flop registers 
and 160 LUTs. 

 
Our proposed CPCIe can be extended to other platform 

because none of these resources are restricted to a specific 
technology. Furthermore, the Xillybus also supports other 
FPGA vendors such as the Altera’s PCIe board. For example, if 
one requires using Altera board, the source code has to be 
modified by changing the FIFOs and the BlockRAMs, as these 
resources are based on primitives on the FPGA. 

 
It is correct to that as more FPGA resources are used by the 

CPCIe accelerator in the device the place&route (PAR) phase 
can have more problems finding a good implementation and 
the timing constraints could not be met. In our case the CPCIe 
core is not the bottleneck for performance and the timing 
constraints set for the accelerator can be met for the CPCIe for 
the accelerator. If this was a problem options available in 
Vivado could be used to change the PAR strategy. For all 
experiments, we used the strategy of Performance 
ExplorePostRoutePhsyOpt, which is provided by the Vivado. 
This process is repeated until all the timings are met on the 
FPGA design. 

B. Evaluation of Compression Efficiency 

 

In this subsection we use the demonstration system to 

evaluate the effectiveness of the compressor with typical data 

obtained from high-performance applications. The focus of the 

paper is to use datasets with content that can be processed by 

the hardware accelerator and that achieve good compression. 

In our project, we use a lot of floating point numbers to 

process in the accelerator before returning the result back to 

the host PC. Traditional datasets such as Canterbury datasets 

were not suitable for our purposes because these datasets tend 

to be based on text or binary files which are not suitable for 

the hardware accelerators. 

 

There are four financial time series datasets acquired from 

public domain; sp 3m and sp ibm, which represent the stock 

price of 3M and IBM market, respectively, and the other two 

are sp usd and sp prices, which represent the exchange rates 

between US Dollar and Japanese Yen, respectively. All 

datasets are coded in IEEE 754 single-precision floating-point 

number representation and saved as a binary file. To measure 

the compression efficiency, the compression ratio is used as a 

relative size scale. The compression ratio is defined as:  

 
Compression Ratio =    Original Data Size 

                                  Compressed Data Size 

 

where a higher ratio indicates that a higher rate of 

compression can be achieved in the data. In our evaluation we 

compressed each dataset with different block sizes using the 

XMatchPRO compressor. Upon completion of compressing, 

the compressed output is decompressed to verify correctness. 

 

Fig. 5 analyzes the compression ratio for the different test 

datasets and compares them with block sizes ranging between 

512 Bytes and 64 KB. Compression varies between factors 2X 

to 6X depending on the contents of the datasets. It is possible 

to appreciate that 4 KB is a suitable block size to compress 

and this size is consistent across all evaluated datasets. 

Compressing the data in small independent blocks of 4 KB has 

the advantage that bit errors will only corrupt the data of the 

block in which they are located, thus reduces the overall 

latency and opens the possibility of working in independent 

blocks in parallel. These bit errors can happen during 

transmission between computers. For example, sending raw 

data from one machine (without an FPGA-based compressor 

engine) to another machine (with an FPGA-based compressor 

engine) over the Ethernet might incur the possibility of a bit 

error during transmission. The CPCIe has CRC checking 

capabilities to check any bit errors during transmission, and it 

will request that the specified block to resend again if a bit 

error is been detected. The nature of dictionary-based adaptive 

compression/decompression algorithms means that in 

unblocked mode only a single engine could be used since the 

dictionary is built as new data is seen and its state must be 

synchronized during the compression and decompression 

processes. This 4 KB block size will be used for the energy 

and performance experiments conducted in section VI and also 

in the following sections. 
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C. Latency and Throughput 

 

To measure the latency in CPCIe, we used a counter to 

count the total number of clock cycles. The counting of the 

clock is measured from the endpoint of PCIe to the endpoint of 

output FIFO in the scheduler (just before the accelerator). The 

first measurement was taken to obtain two measurements of 

the latency which occurred in the X-MatchPRO engine and in 

the scheduler during distributing the datasets. The 

compressor/decompressor engine itself has a latency of only 

nine clock cycles before it is ready to produce output data 

compressed and decompressed. The other measurement is the 

latency between the host PC and the CPCIe, which is between 

11 and 18 µs. This latency consists of several paths from the 

host PC, Xillybus, and PCIe, before reaching the engines. It is 

important to note that this latency is bounded by the 

limitations of PCIe communication which in this work consists 

of the Xillybus, the PCIe connections and the PCIe socket on 

the motherboard. 

 

To measure the throughput, we implemented a wall-clock 

timer in the host PC and used the following calculation: 

 
        Throughput = filesize 

                                  time 

 

This calculation is based on a user-selectable mode in the 

host PC: if the compression mode is used, the filesize in the 

calculation will be the uncompressed file size (or the 

compressed file size if decompression mode is selected), while 

the time is the total period to compress the whole file (or the 

total period to decompress the whole file if decompression 

mode is selected). 

 

It is important to note that the frequency of the compressor 

and decompressor engine is fixed at 100 MHz, while the 

frequency in PCIe remains the same at 250 MHz. The PCIe 

theoretical throughput is 800 MB/s and the FIFO in CPCIe 

should not become the bottleneck although the CPCIe runs at 

100 MHz. This is achieved using an asynchronous FIFO in 

each compressor/decompressor engine. Fig. 6 shows the 

throughput for compression and decompression, with various 

number of engines implemented in the CPCIe. In 

decompression mode, the throughput is around 776 MB/s with 

four engines, and the throughput decreases as the engines 

reduced. In compression mode, the throughput of four engines 

without CRC is around 659 MB/s. However, the compressor 

engine with CRC could not achieve the throughput close to 

400 MB/s (in one engine for example) as it has to wait for its 

own decompressor to finish to generate the identical CRC 

result. 

 

D. Power Consumption 

 
In general, there are two types of power we need to consider in 
a circuit: dynamic power and static power. Dynamic power is 
the power when the clock is running and gates are switching in 
the circuit. While static power is the leakage power in the 
circuit with clocks switch off. When the system is not 
performing any operations but the clocks are running, the 
system is said to be in idle state. The idle state has its own 
power called idle power, that contains both dynamic and static 
power components. The static power tends to be significant, 
while the dynamic power is still present in the idle state since 
the clock network is active and some circuits such as 
communication circuits are maintained alive. The system is 
said to be in active state if application operations and events 
occur. The active state has its own power called active power 
due to the processing functions that take place. During active 
state, both dynamic and static power are dissipated and are 
included in the active power. 

 
Before taking any measurements, this work assumes that 

the datasets have been compressed off-line and stored in the PC 
host side in the form of archives or databases that can be 
processed when needed. In essence this will be done only once, 
while the same datasets are used with different accelerators 
multiple times. Notice that if the datasets are uncompressed in 
the PC side and must be compressed by software when needed, 
the whole approach is impractical since the software will be 
much slower than the FPGA board. This idea is similar to how 
images and videos are maintained in a compressed state in the 
database and transmitted in compressed format, and only 
decompressed before processing is needed. In our case our 
datasets are not images or videos but files consisting of 
floatingpoint numbers. 
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In order to calculate the power consumed by the whole 
system, both the host PC and the FPGA board are considered in 
the measurements. The on-board FPGA power consumption 
alone is not sufficient since we are trying to evaluate the effects 
on the whole system. The measurement for the whole system is 
required which includes the reading and writing dataset from 
the host PC to the FPGA (and vice versa). Since the dataset is 
transmitted from the memory buffer in the host PC to the 
FPGA, the affected energies are the main memory in the host 
PC, the PCIe socket and the FPGA itself. Note that small size 
data will achieve less energy compared to huge data during this 
transmission. This energy must be taken into account for the 
total energy consumption. 

 
To measure and isolate the power on the FPGA, we used 

the on-board digital power monitor available on the Xilinx 
Virtex- 7 VC707 development board. The power monitor has a 
Texas Instruments UCD9248 chip controller [40] and has the 
capabilities to obtain voltage, current and power readings from 
12 voltage rails on the FPGA board. The power monitor chip 
wires the connection between voltage rails and the PMBus 
(powermanagement bus) [41] to obtain the power reading. We 
used the MicroBlaze processor to obtain the output power from 
the PMBus using our custom software. Then the output power 
is written to the UART to display the power from the selected 
rails. To evaluate the power usage, only a few selected rails on 
the board are measured which are referred as VCCINT, 
MGTAVCC, and MGTAVTT; other unnecessary power rails 
are not measured as they are wired to the unrelated peripherals 
which were not involved in the experiments (such as HDMI 
ports, USB, Ethernet and others). The VCCINT rail provides 
internal power supply to FPGA resources such as registers, 
LUTs, and DSPs. While the MGTAVCC and MGTAVTT 
voltage rails are the analog supply to GTX transceivers in the 
PCIe endpoints, which are used for internal analog circuits and 
termination circuits, respectively. These are the power in the 
PCIe which are wired with eight GTX transceivers located in 
transceiver bank of the Multi Gigabit Transceiver MGT BANK 
114 and MGT BANK 115 on the FPGA chip. 

 
To obtain the power measurement on the PC side, we used 

a power meter [42] located between the power wall socket and 
the host PC. Our measurements try to evaluate the real power 
and energy required by the system and the possible costs 
savings of using compression and decompression. The power 
wall measurements are real power since they represent energy 
that the user needs to pay for the bills, even if some of that 
energy does not make into the system and it is wasted. For that 
reason we do not perform adjustments based on efficiency and 
use the raw measurements from the power sensors in our 
calculations. It is worth noting that the power consumption to 
transmit a datasets requires several components to be involved, 
which include the power from the motherboard, the CPU, 
memories, and the FPGA board. 

 
We conducted three power experiments to get the 

measurement of idle and active power that correspond to the: 
(1) transmission of a dataset between the host PC and FPGA, 
(2) compression, and (3) decompression. The objective of these 
experiments is to obtain the idle and active power in three 
components which are the host PC, the Xillybus PCIe and the 
FPGA. In each experiment, the measurement was taken during 
two states: (1) while the components were in idle state, and (2) 
while the components were in active state when the 
transmission takes place between the host PC and FPGA. By 
measuring these power from the host PC and FPGA side, we 
can obtain an estimation of the total energy of the overall 
system using both the uncompressed and compressed datasets. 
We can then estimate the energy savings obtained by using the 
proposed compression/decompression system, compared with 
not doing so. 

 
Table 3 shows the power experiments during idle and active 
states. In experiment (1), the idle power and active power in the 
host PC are 101.52 W and 132.41 W, respectively. These 
measurements were obtained from the power meter only. The 
idle and active power on the PC side alone are the same during 
compression and decompression, regardless of the number of 
engines. The only difference is the time taken for the PCIe to 
transmit the data, which contributes to the total energy 
consumed for the different configurations. While the idle power 
and active power in the Xillybus PCIe are 2.473 W and 2.625 
W, respectively. These measurements were obtained from the 
VCCINT, MGTAVCC and MGTAVTT rails of the on-board 
power monitor. In experiment (2) and (3), the idle and active 
power in the compressor/decompressor engines were obtained 
from the VCCINT rail only. Based on the number of engines 
used, one can observe that the power in the compression were 
between 27 mW to 131 mW. While the power in the 
decompression were slightly lower than compression which 
results between 19 mW to 93 mW. 

V. APPLICATION SELECTION AND ANALYSIS 

We have selected two applications to represent benchmarks 
typically used in high performance computing: the buffer 
applications and streaming applications. The matrix 
multiplication is an example of buffer application, and the 
hotspot convolution is an example of streaming application. In 
matrix multiplication, two matrices are written into two input 
buffers, multiplication is performed, and the final results are 
obtained from the output buffer. In our specific case, we 
consider that we need to multiply 4 tiles of 256x256 matrices 
which give us a total of 1024x1024 matrices. Typically the 
buffers are processed locally in the block memory. There are a 
lot of data reused as rows and matrix are multiplied and added 
together. It is important to note that the input and output buffers 
are synthesized as a Block RAMs by Vivado HLS. The use of 
Block RAMs in the FPGA dramatically reduces the amount of 
available Block RAMs for the user application and limits the 
size of matrices that can be multiplied. While the hotspot 
application is used to observe how temperature propagates on 
the chip surface and to avoid extreme thermal effects. Hotspot 
typically uses 2D convolution and a 3x3 sliding window size 
(or kernel) that is applied to the input frames that represent the 
chip surface. 
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The input datasets are chosen to be representative of real 
problems. In our work, we consider floating-point numbers 
instead of integer numbers, as floating-numbers are widely 
used in scientific computing. The datasets used are two input 
matrices which comprise 1024x1024 floating-point numbers. 
These datasets have two versions for our evaluation: an 
uncompressed and pre-compressed datasets. The pre-
compressed datasets are compressed beforehand in the host PC. 
All the source code for these applications is written using 
Vivado High Level Synthesis 2014.4 with an AXI4-Stream 
interface and used IEEE 754 single-precision. For the purposes 
of this experiment these accelerators are constrained to 100 
MHz to achieve synchronous clock in the whole FPGA design. 

 
Table 4 the Xilinx Virtex-7 FPGA. Clearly matrix 

multiplication is the most complex compared to hotspot. Table 
5 shows the power consumption of test applications for the 
benchmark. The idle and active power in matrix multiplication 
is around 0.103 W and 0.145 W, respectively. While in hotspot, 
the idle and active power is around 0.081 W and 0.103 W, 
respectively. Fig. 7 shows an overview of the implementation 
of CPCIe to be used with these applications.  

VI. PERFORMANCE AND ENERGY ANALYSIS 

In this section, we compare three systems with and without 

deploying the compression technology to understand the 

impact of the compressor and decompressor in terms of 

transmission speed and energy. The designed system sends 

two input datasets with matrix size of 1024x1024 each and 

obtains and output with the same matrix size. 

A. Test case without compression 

 
In this test system, the task is to send an uncompressed 

dataset from host PC to the input of accelerator, and the output 
of the accelerator are then sent back to the host PC as an 
uncompressed result after processing. Fig. 8 illustrates the 
execution phase in the PCIe and the accelerator. As soon the 
accelerator receives the input, it starts to process the dataset. It 
is clear that the active time is the most time consuming in the 
PCIe transmission, in both sending, Tpas (the active period 
during host PC sending the data over PCIe), and receiving 
dataset,Tpar (the active period during host PC receiving the 
data from PCIe). We measure the performance and energy of 
this test case to be used as a comparison reference with the test 
cases that use compression. 

B. Test case with compression 

 

In this second task, the objective is to send a compressed 
dataset from host PC to the accelerator, and the result from 
accelerator is sent back to the host PC as a compressed result. 
We deployed our CPCIe core in between the host PC and the 
accelerator, which connected with an AXI4-Stream interface. 
The CPCIe will decompress the compressed dataset first, 
before supplying the decompressed data into the input of the 
accelerator. The result of the accelerator is connected to the 
compressor, and will be compressed by the CPCIe before 
returning the result to the host PC. 

 
Fig. 9 shows the execution phases of CPCIe using a single 

compressor/decompressor engine, while Fig. 10 shows the 
execution phases using four engines. The execution phases 
with two and three engines are similar to the four engines case 
and not shown in this work. The time taken to read the header 
is denoted as Txdh. While the host PC is transmitting the 
compressed dataset, the scheduler stores its header file into a 
temporary buffer before decompressing the blocks. We refer 
this as a timing overhead and it is measured between the 
endpoint of the PCIe interface and the FIFO in CPCIe. The 
overhead consists of time to control the signals in the FSM 
controller and transfer delays in PCIe. The header must be fully 
loaded into the temporary buffer in the scheduler during PCIe 
transmission, before the compressed data can be used in the 
decompressor. The total time of the header to be fully loaded is 
determined by the number of blocks. The time to write the 
header, denoted as Txch, in the configuration with four engines 
took almost the same amount of time with one 
compressor/decompressor engine. 

 
In a single-engine configuration, the scheduler depends on 

the availability of the compressor/decompressor engine before 
transferring the input data for compression/decompression. 
That is, if one block of data is still processing in an engine 
(either in compressor or decompressor engine), this will induce 
a waiting time in the scheduler until the engine has finished. 
While in the multiple-engine configuration, the compressor and 
decompressor engines work in parallel. This can be seen after  
Txdh in Fig. 10 where all decompressors are running 
independently at the same speed, and the scheduler does not 
have to wait for a decompressor to finish and can keep the 
performance by continuously distributing the data among the 
decompressor engines. 

 
We also repeated the same experiments with other two 

datasets which have a significantly higher compression ratio of 
4X and 6X and the results in terms of performance and energy 
are shown in the next section. 

C. Performance and Energy Evaluation 

 
For each transmitted Byte, we are interested in exploring 

the energy requirements. We did this by transmitting datasets 
for different file sizes (ranging from 1 KB to 4 MB). By 
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dividing the energy required by the file size, we could obtain 
the tradeoff nJ/Byte: 
 
       Trade-off, nJ/Byte =   Energy (nJ) 

                                         Filesize (Byte) 

 

Fig. 11 investigates the tradeoff between energy and block size 

in unit of nanoJoules/Bytes. The block size of 512 Bytes has 

the highest Energy/Bytes (14.2 nJ/B), followed by block size 

of 1 KB (13.8 nJ/B), and 2 KB (13.6 nJ/B). However, for more 

than 4 KB of block size, this trade-off is around 13.5 nJ/B. 

From this graph, we can conclude that for optimal energy per 

byte over PCIe, we need to use a basic block transfer size of at 

least 4 KB. The reason behind this situation is that the block 

size of less than 4 KB has a high amount of overhead (header, 

protocol, status, etc.) over the payload size. Furthermore, 4 KB 

is also a good block size from a pure compression ratio point 

of view as seen in Fig. 5. For these reasons, in this evaluation, 

all tests used the block size of 4 KB during compression and 

decompression. 

 

Table 6 and Table 7 show the result of the energy consumption 

of the matrix multiplication and hotspot, respectively. Both 

tables show the energy consumed during the processing of the 

datasets in the hardware accelerator, which includes 

transmitting, processing, and sending back the results of the 

datasets. The row called ”Uncompressed” is the result for the 

energy consumed while processing the raw datasets in the 

hardware accelerator. The following rows are the compression 

ratio of a data, with other configurations varying the number 

of compressor and decompressor engines working in parallel 

(in addition to the single engine). In order to obtain the total 

energy involved performing the process, the energy of both the 

host PC (such as CPU, memory, etc.) and the FPGA should be 

considered in the calculation. In these tables, the total energy 

consumed while processing the uncompressed datasets for the 

matrix multiplication and hotspot application was calculated 

around 453 J and 81 J, respectively.  

 

In the next row, it can be seen that the total energy has reduced 

due to the presence of the compressor/decompressor engine. 

Note that the energy reductions are dependent on the 

compressed data size and also the number of engines used. For 

example, considering a compression ratio of 1.5X using a 

single engine (which consists of one compressor and one 

decompressor engine) in the matrix multiplication, the energy 

reports around 430 J. Thus, the energy in the PCIe of this 

configuration decreases by 4.90% compared with the energy 

using the uncompressed datasets. The next row presents the 

configuration using two engines, and this reports the energy 

consumed to be around 428 J. Although the number of engines 

was doubled, the energy used is only slightly lower compared 
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to a single engine. The reason is that although the additional 

compressor and decompressor engines on the FPGA increase 

the power, the energy reduces due to the reduction in time. In 

Table 7, we found that the hotspot application obtains the 

highest energy savings around 48%. This was acquired with 

datasets that achieve a compression ratio of 6X and deploying 

on four compressor/decompressor engines in parallel. In 

conclusion, significant energy savings can be achieved with 

two conditions: the CPCIe uses a high number of 

compressor/decompressor engines working in parallel and the 

compression ratio of a dataset is high (more than 6X of 

compression ratio). 

 

Fig. 12 summarizes the result for the matrix multiplication, 

while Fig. 13 for the hotspot application. The horizontal axis 

on each graph is the number of engines (the orange bar 

represents the implementation without CPCIe), the vertical 

axis on the left is the total energy for completing a task, and 

the vertical axis on the right is the performance of execution 

time. In each number of engine, we repeated the experiments 

with three datasets of different compression ratio of 1.5X, 4X 

and 6X. 

 

As the graphs illustrates, the energy obtained by implementing 

a single engine is significant lower than those obtained without 

compression. The hotspot achieved slightly higher reduction 

of energy since this accelerator does not use a lot of logic 

resources, while the matrix multiplication has to fill up all the 

input matrices in the buffers before it can process the result. It 

can be seen that in both graphs, the execution time to complete 

the acceleration task using a single engine increases around 

3%. This performance degradation is due to the overhead 

during compression and decompression. However the graphs 

also show that these overhead reduces as the number of 

engines increases. Nevertheless, one can observe that the 

energy consumed for the task to complete has decreased since 

the amount of time during active state in PCIe becomes 

shorter. 

 

In the configuration with four engines we found that the 

performance has reached its peak value. At this point, the 

performance of the whole system entirely depends on the 

accelerator and its frequency to achieve higher performance. 

For both applications, the implementation of four 

compressor/decompressor engines is the number needed to be 

configured to maintain the same performance as the case 

without compression. 

 

For the other compression ratios (by taken the configuration 

with one engine for example), the compression ratio of 4X 

results in a 11% energy reduction for the matrix 

multiplication, and a 38% energy reduction for the hotspot 

application. The compression ratio of 6X on the other hand, 

has only a slightly energydecreasecomparedwith4Xratio, 

whichresultsina15% and 43% in both application, respectively. 

However, the execution time of each compression ratio is not 

significantly affected as the size and number of blocks needed 

to be compressed/decompressed remains the same. We also 

tested up to eight compression/decompression engines, but 

there were unique cases for each implementation. 

 

In decompression mode, more than four decompressor engines 

will result in close to 800 MB/s. The throughput cannot exceed 
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more than 800 MB/s due to the PCIe limitation (the board used 

was the PCIe Gen2, which is limited to up to eight lanes). 

Although CPCIe can be configured with between five and 

eight decompressor engines, some of the decompressor 

engines will idle most of the time since the process in the 

previous engine(s) finishes earlier before the current engine 

can take any data. This situation will create another drawback 

on energy consumption where the additional power on the idle 

decompressor engines will contribute to the total energy. If 

these are plotted on Figures 12 and 13, the execution time will 

still be the same, but the total energy will increase based on 

the increment of the number of engines. In compression mode, 

adding more engines increases the critical path in the CPCIe. 

In our experiments, we found that the timing of four 

compressor engines is to meet the timing constraint of the 

accelerator, but the critical path of more than four compressor 

engines increases with each additional engine becoming a 

bottleneck. 

VII. DISCUSSION 

Alternative compression scheme: The compression algorithm 

X-matchPRO is designed for fast hardware implementation so 

it will not be very efficient in a software implementation and 

for that reason a CPU will not be able to obtain the required 

performance. The system is designed for networking 

applications in which data is compressed in hardware in one 

node and it arrives to another node in which is decompressed 

and processed also in hardware. It will be possible to replace 

the compression scheme with another compression algorithm 

and obtain new hardware. For example, the most popular 

compression scheme is the GZIP compression, which is 

widely used in the computing field, especially in the following 

two areas: networking (on websites such as Google and Yahoo 

for sending/receiving data over the Ethernet), and data storage 

(in cloud storage to store the compressed format rather than 

the original format). Since GZIP is open source, the user can 

easily use the software code, which can be extracted from the 

public repositories. However, to deploy such software into the 

hardware (FPGA) will require a new hardware development 

cycle. It will be also difficult to achieve the real-time 

performance that X-matchPRO achieves because GZIP is 

inherently a serial algorithm. To acquire rapid development in 

this research, an open-source compression/decompression 

hardware on FPGA was used. We selected XMatchPRO, as it 

is licenced under the LGPL licence and can be ported on any 

FPGA vendor. Although the X-MatchPRO algorithm is not 

similar to other algorithms such as GZIP or other LZ-family, 

the X-MatchPRO algorithm is able to make use of the FPGA 

resources and thanks to its parallelism is very fast. 

 

Other compression method (lossy compression): While it is 

true that this work can be expanded into lossy compression, 

we have limited the scope of this work to using lossless 

compression. The reason is that, in our research, we are 

working with sensitive data that should be preserved. Slight 

changes in the original data floating-point data could lead to 

different results in these applications. Several floating-point 

datasets, such as the stock price market, have been obtained 

from public repositories. Although these data contain millions 

of floating-point values, the compression ratio of each dataset 

is different and is between a ratio of 2.0 and 6.5. However, if 

the datasets are compressed into the lossy format (and used the 

quantization) then the achieved compressed ratios will much 

larger. Based on our results in Figures 12 and 13, we could 

predict that the compression ratios of more than 7.0 will use 

less energy. Although the lossy compression can benefit from 

our proposed system, the drawback of the lossy method is that 

some data will be lost after quantisation. This could lead to 

incorrect decisions in a stock market application. 

 

Alternative accelerators: Our focus on this work is to show 

that by using hardware resources, the overall performance and 

energy characteristics of PCIe can be improved by using 

hardware resources to create a hardware core that performs 

compression/decompression. Thus, this work was not really to 

demonstrate the advantage of FPGAs against competing 

solutions. Future work will consider the overall performance 

of the acceleration solution with compression enabled against 

other HPC platforms (e.g. Xeon Phi, GPU) and measure the 

possible advantages of FPGAs in this case. 

VIII. CONCLUSION 

In this paper, we have proposed the CPCIe 

(Compressionenabled PCIe) framework that employs the X-

MatchPRO compressor/decompressor engines. We have 

demonstrated that data compression implemented between the 
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PCIe core and the accelerator can result in energy savings 

while maintaining the performance for custom hardware 

accelerator designs. Our evaluation shows that our CPCIe 

design can reduce the PCIe energy from 5% to 48%, 

depending on the number of compressor/decompressor 

engines working in parallel and the achieved compression 

ratio. Furthermore, the latency is kept to be minimum in the 

hardware scheduler needed to complete the scheduling task. 

The configuration with four engines provides the highest 

performance and has the lowest overheads, while the 

compression ratio of 6X provides the highest energy reduction 

during the PCIe transmission. Based on our experiments, it can 

be concluded that energy efficiency during PCIe transmission 

can be improved thanks to the reduction in the transmission 

period obtain with parallel compression/decompression. This 

improvement is proportional to the obtain compression ratios 

and the number of engines working in parallel. 
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