
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

405

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Extending the PCIe Interface with Parallel Compression/Decompression Hardware for

Energy and Performance Optimization

Mohd Amiruddin Zainol

Department of Electrical and Electronic Engineering,

University of Bristol,

Bristol, United Kingdom

Mb14650@bristol.ac.uk

Jose Luis Nunez-Yanez

Department of Electrical and Electronic Engineering,

University of Bristol,

Bristol, United Kingdom

j.l.nunez-yanez@bristol.ac.uk

Abstract—PCIe is a high-performing interface used to move data from a central host PC to an accelerator such as Field

Programmable Gate Arrays (FPGA). This interface allows a system to perform fast data transfers in High-Performance

Computing (HPC) and provide a performance boost. However, HPC systems normally require large datasets, and in these

situations PCIe can become a bottleneck. To address this issue, we propose an open-source hardware compression/decompression

system that can be used to adapt with continuously-streamed data with low latency and high throughput. We implement a

compressor and decompressor engines on FPGA, scale up with multiple engines working in parallel, and evaluate the energy

reduction and performance with different numbers of multiple engines. To alleviate the performance bottleneck in the processor

acting as a controller, we propose a hardware scheduler to fairly distribute the datasets among the engines. Our design reduces the

transmission time in PCIe, and the results show an energy reduction of up to 48% in the PCIe transfers, thanks to the decrease in

the number of bits that have to be transmitted. The overhead in terms of latency is maintained to a minimum and user selectable

depending on the tolerances of the intended application.

Keywords- PCIe, FPGA, data compression, energy efficiency, parallel hardware

__*****___

I. INTRODUCTION

Over the past few decades, traditional multi-core CPUs in
High-Performance Computing (HPC) platforms have been
adding accelerators using General Purpose Graphics Processing
Units (GPU) [1][2] and/or Field Programmable Gate Arrays
(FPGA) [3][4][5]. In a typical configuration, these accelerators
are built as a coprocessor board to perform high-speed data
processing and interfaced to the central host via a Peripheral
Component Interconnect Express (PCIe). The amount of data
that has to be moved and processed has continued to grow as
new data center and HPC applications focus on data analytics,
web searches, and virtual reality evolve. The PCIe interface is
seen as a potential source of a bottleneck in the system, and
current efforts are focused on integrating the host and
accelerator tightly-coupled in the same device with a shared
memory system [6]. Despite these developments, PCIe remains
a popular choice, and the transmission of significant amounts
of data reduces the performance and increases the energy
requirements —as well as the cost of the utility bill.

Lossless data compression is one of the effective
approaches to reduce not only the data size without affecting
the original content but also the overall energy consumption.
The reason behind this approach is that a compressed dataset
can be transferred using less time, which reduces the energy per
transfer. Furthermore, a high compression ratio yields fewer
bytes of data requiring transmission, and this method can
significantly improve the bandwidth in the PCIe. By reducing
the transmission time, the energy efficiency can be improved as
long as the compression overheads are low. This work proposes
a novel open-source PCIe core based on a streaming data
compression called CPCIe (Compression-enabled PCIe) and
evaluates the extent to which the data
compression/decompression implemented on the hardware can

reduce the energy consumption and improve the overall
performance. The contributions of this paper can be
summarized as follows:

 We extend our open-source CPCIe core [7] by
implementing a hardware scheduler based on first-in first-
out scheduling scheme. Compared with our previous
original work presented in [8] which had limitation to
configure the route for AXI4-Stream channels, this paper
presents a novelty that the hardware scheduler can
distribute the block of datasets to multiple compressor and
decompressor engines without any intervention from a soft
processor,

 We create an efficient parallel system framework to
communicate the scheduler with multiple
compressor/decompressor engine cores. This framework
enables the system to effectively hide the latencies from
one engine to another engines and guarantees for fast
compression or decompression output without requiring
synchronization from a processor,

 We develop a software API for the host PC to facilitate the
use of the CPCIe framework. Our open-source API can
integrated by the developers to work with their own
datasets and hardware accelerators,

 We demonstrate how a hardware-accelerated application
can be integrated into our architecture using two realistic
benchmarks. The first case study was based on matrix
multiplication. This work has now been extended with a
second case study called hotspot, which uses a 3x3 sliding
window to form a convolution. The accelerators are
created with high-level synthesis tool for rapid-prototyping
development,

 Finally, we evaluate the benefits of the data compression
implementation in a prototype with the hardware

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

406

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

accelerator, and perform accurate energy and performance
measurements.

The whole system with integrated compression has been

released open-source [7] to encourage third party testing and
promote further work in the area. The remainder of this paper is
structured as follows. Section 2 describes related work. Section
3 presents the proposed system design. Section 4 evaluates the
main features of the demonstration system. Section 5 briefly
describes the applications used with our CPCIe system. Section
6 evaluates the energy and performance with different
configurations that include the original CPCIe, a CPCIe system
with a single compressor/decompressor engine, and a CPCIe
system with multiple compressor/decompressor engines.
Finally, section 7 concludes the paper.

II. RELATED WORK

Modern FPGAs are used as hardware accelerators because
they can create custom circuits using millions of uncommitted
logic elements, hardened PCIe interfaces, and can achieve peak
performance over several GFLOPs, thanks to dedicated floating
point resources [9]. This high throughput results in high
requirements on the memory bandwidth and the corresponding
interfaces to achieve maximum performance. Despite these

challenges, there are many examples of the successful
acceleration of compute-intensive applications using FPGAs
interfaced via PCIe to a host PC [10], [11], [12].

Compression is a useful technique to reduce the storage

requirement demands in the local workstation or cloud. There
are two techniques that are used for compression: lossless or
lossy compression. In most HPC applications, lossless
compression is chosen because the original content in the
datasets must be compressed without any bit losses in the data,
and a slight change in this sensitive data after decompression is
unacceptable. The lossy compression technique can be applied
to other data types, such as video or image processing, since the
losses bit in the decompressed output is tolerable. In this work,
we are interested in using lossless compression for our
evaluations.

An early study by Tremaine et. al. [30] used the IBM MXT

algorithm to perform lossless data compression in the FPGA
and their work has contributed to other research on hardware
lossless data compression, as summarized in Table 1. Recently,
the deployment of data compression in data centers and data
warehouse systems has become a topic of interest in this
research area. Putnam et. al [31] presented Catapult, which

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

407

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

integrates reconfigurable hardware accelerators in data centres
to improve the performance of the Microsoft’s Bing search
engine. They form a network of eight-node FPGA groups via
high-speed serial links and each node performs a specific
function. One of the nodes is the compression stage, and hence
it is able save the bandwidth during transmission and increase
the efficiency between the nodes. This project accelerated the
scoring engines to rank the search results in Bing by a factor of
2X. This work is part of the research at Microsoft Research
presented in [32] [33]. Delmerico et. al. [34] have developed
several cluster computing systems for computing human genes.
One of the systems used is the Netezza [35][36] data
warehouse, which can process a huge amount of streaming
datasets from storage disks. The Netezza comprises an FPGA
close to the storage disk, along with a PowerPC processor and a
memory system. However, the FPGA was only used to
decompress the pre-compressed data from the disk during
query processing, while the other computations were performed
by the processor. Nevertheless, they reported that this approach
improved the query processing time by 3 times and
outperformed the parallel computation on the PC cluster.

Compared with previous work, our solution offers lower

latency limited to tens of clock cycles and is transparent to the
user, as it is tightly coupled to an open-source PCIe core. The
low latency and high throughput are obtained with hardware
compression that matches the interface width with the
compression word width and with a fully streaming pipeline.
Furthermore, the previous work is proprietary, commercial and
closed source, while in our research, we have made it open-
source so that further research and optimizations are possible.
CPCIe is agnostic to the acceleration function being
implemented and has been tested with functions created in
hardware using high-level synthesis tools. The first results of
this work were presented in [8] and in this paper we extend that
work with new benchmarks and a parallel version of the
hardware and software system.

III. DESIGN AND ARCHITECTURE OF CPCIE

In this section, we show how we developed the overall

system to perform data compression and decompression while

providing streamed data for PCIe communication. In Fig. 1

(a), our proposed CPCIe is located between the host PC and

the hardware accelerator. This is implemented on the FPGA

development board, which supports the capability of the

PCIestreamed interface. Fig. 1 (b) shows the detail of the

CPCIe architecture. On the left hand side, the communication

is performed between the host PC and the CPCIe via the PCIe

interface, while on the right hand side the data transmission

occurs between the CPCIe and the hardware accelerator via

the AXI-4 Stream interface. The architecture consists of five

major components and two minor components. The major

components are the MicroBlaze processor, the Xillybus IP

Core, a custom interface for Xillybus, the Compressor System

and the Decompressor System. The two minor components are

the UART and the Power Monitor, which are used to display

the output and read the power readings, respectively. More

details regarding the power readings are discussed in Section

IV.

In our proposed design, the commands are issued by the

host PC and acknowledged by the MicroBlaze processor in the

CPCIe. The operational model of the host PC is shown in the

following order:

1. Send the block size and threshold values that will be

used for the compression and decompression. These

two values are saved in the Dual-Port Shared Memory

in the CPCIe.

2. Send the command to start the CPCIe with two options:

either to use the compression/decompression mode or

not to use it at all (send it as original file).

3. Wait for an acknowledgement signal from the CPCIe.

4. Send the datasets to the input buffer of the FPGA.

5. Retrieve the results from the output buffer of the

FPGA.

6. Wait until the CPCIe indicates the execution has

completed.

While on the FPGA side, the CPCIe will:

1. Wait for the command from the host PC.

2. The MicroBlaze processor configures the Compressor

and Decompressor Systems based on the block size

and threshold values given by the host PC. These two

values are read from the Dual-Port Shared Memory.

3. The MicroBlaze sends an acknowledgement signal to

the host PC.

4. The Decompressor System receives the input, then

decompresses the compressed dataset, and sends it to

the hardware accelerator.

5. The Compressor System then receives the output

results from the hardware accelerator, compresses the

output, and sends it back to the host PC.

6. Upon completion, the MicroBlaze sends done signal to

the host PC.

In the next subsection, we first describe in detail our CPCIe

architecture. Then, we show how our Compressor and

Decompressor Systems can be used to distribute the datasets

into multiple compressor or decompressor engines using our

hardware scheduler.

A. CPCIe Architecture

In this section we discuss the components used in our

CPCIe architecture. We begin with the MicroBlaze processor
and then discuss the PCIe controller. Then we describe the
Custom Interface used in the architecture, which is responsible
for communicating between Xillybus and the CPCIe. Finally,
we briefly present the Compressor and Decompressor Systems
used in our system.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

408

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

MicroBlaze: This soft processor serves as a controller to
display debugging output, to communicate with the host PC
and to control the whole system of the CPCIe by, for example,
configuring the peripherals via the bus interface. In addition,
this processor is used to read the power dissipated from the on-
board digital power monitor. The power reading is periodically
displayed on the UART terminal. Xillybus: In order to
overcome the complexity of developing the controller of the
transaction layer of PCIe, several third-party IP cores were
proposed and are available in opensource formats such as
RIFFA [37] and Xillybus [38]. In our work, Xillybus was
chosen because of its stability and the fact that no specific API
is involved. Xillybus uses 32-bit data to transmit/receive data
to/from the FIFO on the FPGA, and connects the FPGA
application logic using a FIFO. Furthermore, the Xillybus
periodically checks two signals from the FIFO: the FIFO’s full
signal, to initiate data transfer, and the FIFO’s empty signal, to
read data from the FPGA. On the software side of host PC, the
Xillybus provides a device driver for the Windows or Linux
operating system, where the file handler is opened by the host
application before the user application performs the file I/O
operation. The I/O files are written or read as binary files
between the memory buffer and the FIFOs on the FPGA.

Custom Interface: The capabilities of the Xillybus core are

extended by developing an interface to exchange its command,
status and FIFO with the CPCIe. In this component, the AXI-4
Lite Interface is used by the MicroBlaze processor to store/read
data to/from the Dual-Port Shared Memory (DPSM), and to
communicate with the Compressor and Decompressor Systems.
The DPSM is an on-chip dual-port block memory and can be
accessed by the host PC to store the value of the command and
status. The values in the DPSM are the start/stop/wait signals,
the configuration/status of the Compressor and Decompressor
Systems, and the configuration/status of the hardware
accelerator. At the bottom of the DPSM, two asynchronous
FIFOs are implemented between the Xillybus’ FIFO and the
AXI-4 Stream Interface for the input and output FIFOs. These
FIFOs are essential to balance the different clocks used in the
PCIe and the Compressor/Decompressor System and to ensure
data integrity. The AXI-4 Stream interface is used to convert
the FIFO signals into standard AXI-4 Stream protocols.

Compressor System: The Compressor System is

responsible for compressing the result from the hardware

accelerator and sending the compressed output back to the host
PC. The MicroBlaze processor sends the command to start the
compression, which consists of the value to configure the
compressor engines inside this system.

Decompressor System: The compressed datasets is sent to

the Decompressor System first before the uncompressed output
is sent to the hardware accelerator. The flow in the
Decompressor System is not very different from that in the
Compressor System, except that this system will use a header
data in the compressed file to schedule the compressed blocks
during decompression.

In the following subsections, we describe in depth our

implementation of the Compressor and Decompressor Systems.
Then, we describe the functionality of the hardware scheduler
used in both systems. Finally we discuss the compressor and
decompressor engines using the X-MatchPRO
compression/decompression algorithm used for our evaluation.

B. Compressor/Decompressor System

The Compressor and Decompressor Systems are shown in

Fig. 2 and Fig. 3, respectively. The Compressor System
comprises the scheduler, the header packer and multiple
compressor engines. Note that the number of compressor
engines is pre-configured before synthesis. In order to start the
compression, the scheduler requires the value of the original
file size, and the other two configurations from the host PC,
which are the block size and threshold value. The value of the
original file size is stored in the header file, while the other two
configuration values are required by the compressor engines.
Each time the compressor engines have finished compressing,
they generate the compressed size and CRC values, which are
stored in the FIFO-based header packer. The compressed size is
the total number of compressed words (1 word is equivalent to
4 Bytes) and the CRC value is the 32-bit encoding from the
original uncompressed block. After all of the compressed data
have been sent from the output of the scheduler, the
Compressor System will send the header data from the header
packer to be stored as part of the compressed binary file in the
host PC. Finally, the Compressor System will notify the
MicroBlaze processor that it has completed the job via the
AXI-4 Lite interface.

CPCIe Architecture

Custom Interface for CPCIe

Dual-port Shared

Memory

Async. FIFO
Decompressor

System

to HW Acc

BRAM MicroBlaze
ILMB

DLMB

AXI-4 Lite Interface

PCIe

 Development Board

 FPGA

Hardware

Accelerator

CPCIe

UART
Digital Power

Monitor

Host

PC

PCIe

Xillybus

PCIe command

PCIe status

PCIe FIFO output

PCIe FIFO input

AXI-4 Lite

IF

AXI-4

Stream IF

(a) (b)

from HW AccCompressor

System

Async. FIFO

UART
Power

Monitor

Legend:

AXI-4 Lite

AXI-4 Stream

FIFO

Wire

Figure 1: Overview of the full system. In (a), the deployment of CPCIe within the evaluation system. In (b), the architecture of CPCIe

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

409

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Scheduler

Compressor

Engine #0

Compressor

Engine #4

Header Packer

...

Input Output

AXI-4 Lite

 Figure 2: Compressor System in the CPCIe Architecture.

Scheduler

Decompressor

Engine #0

Decompressor

Engine #4

Header

Unpacker

...

Input Output

AXI-4 Lite

Figure 3: Decompressor System in the CPCIe Architecture

The process flow and the components in the Decompressor

System are very similar to the Compressor System, except that
the header unpacker is used to replace the header packer. The
FIFO-based header unpacker is responsible for temporarily
store the header of the compressed binary file, which is
unpacked by the scheduler. After all of the data in the header
have been stored, the scheduler is ready to start distributing the
compressed data to the decompressor engines. The scheduler
reads the first compressed size from the header unpacker and
stores it in its own counter to count the number of data words.
This counter is used to count the maximum number of data
elements for the decompressor engine. Simultaneously, the
decompressed data from the first decompressor engine is sent
to the hardware accelerator via the output FIFO in the
scheduler. Once the counter has reached zero, the scheduler
updates the counter with the second compressed size and starts
to send the second block of compressed data. Upon completion,
the scheduler sends a signal to the MicroBlaze processor to
close the connection.

Input Output

Split

switch

Join

switch

FIFO FIFO

FSM

Controller

FSM

Controller

AXI-4 Lite
Controller

Counter

Header Register

 Figure 4: The architecture of scheduler in both Compressor and Decompressor Systems.

C. Hardware Scheduler

The architecture of scheduler for both Compressor and

Decompressor System is shown in Fig. 4. The compressor and
decompressor parallel engines have each their own schedulers
to handle multiple blocks of specified block sizes based on the
uncompressed (for compression) or compressed (for
decompression) datasets. The scheduler is implemented in
hardware using a Finite State Machine (FSM) and manages two
inputs from the user which are the file size and block size
(ranging between 1 KB to 32 KB). Another capabilities of the
scheduler is that the FSM controller can be configured to
disable the compression mechanism and transmit the raw
datasets.

Prior to sending a block to compress or decompress, the

scheduler continuously checks if an engine is ready by
inspecting the status associated with the engine. By using this
scheduling scheme, the scheduler ensures all engines remain
busy while there is input data waiting in the buffer and ready to
be assigned to the next available engine. If an engine is
available and ready to start processing, the scheduler performs
the following tasks: locks the engine, configures the split
switch, configures the block size and transfers the data from
input buffer to the engine. While the data is being transferred to
the engine, the scheduler will inspect the next available engine.
If the engine is busy, the scheduler keeps monitoring the engine
until it is ready to be processed before sending the next block to
it. In our design we used loop-checking as the cycles are
relatively low in the range between 30 to 50 cycles.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

410

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

In compression mode after an engine has finished
compressing its input data, the scheduler executes the following
tasks: configures the join switch, copies or ”pushes” the
compressed size and cyclic redundancy check (CRC) value to
the FIFO of the header packer, transfers the compressed data
from compressor to the output buffer of the scheduler, and
unlocks the engine. If the decompression mode is active and an
engine has finished decompressing, the scheduler performs the
following tasks: reads or ”pulls” the compressed size and CRC
value from the FIFO of the header unpacker, writes these
values to the decompressor engine, and transfer the
decompressed data from the decompressor to the output buffer
of the scheduler. The decompressor engine requires the
compressed size value to be written in a register as a counter to
count the number of compressed data read during
decompression. While the copied CRC value is used after all
data has been decompressed and will be compared with the
CRC value generated by the decompressor to identify any
corrupted data. If the CRC flag outputs an error, the
decompressor will repeat the process again.

D. X-MatchPRO Compressor/Decompressor Engine

The X-MatchPRO compressor/decompressor is used in our

evaluation platform since it is also available as an open-source
core and it offers useful features regarding performance and
latency. It belongs to the category of dictionary-based
compressors and consists of a compressor and decompressor
channel. The compression mode consists of the compressor to
read uncompressed input data from the input buffer,
compressing it based on the block size used, and generates 32-
bit data words to the output buffer. In the decompression mode,
the decompressor reads compressed input data from the input
buffer, decompress the data based on the dictionary references
and reconstructs the original data. The compressor and
decompressor use a parallel dictionary of previously seen data
to match or partially match the current data element with an
entry in the dictionary and it is coded in VHDL. More details
are available at [13][14].

E. Software API

We developed four API calls to be used by the CPCIe:

compress, decompress, write addr, read addr.

compress (input, bsize, trshold, output)

decompress (input, output)

The compress and decompress calls represent the
compression and decompression function calls from the host
PC, respectively. In the case of the compress function call, the
input of the uncompressed dataset is specified by the input
argument. The block size (bsize) and threshold (trshold) of the
function argument are the window size for compression and the
threshold for the compressor engine, respectively, and the
return value of the compressed dataset is written to an address
output and saved as a new compressed file. Meanwhile in the
case of the decompress function call, the block size and the
threshold are not required in the argument, as these values have
already been written into the header of the compressed file
during compression.

write_addr (u32 addr, u32 value)

read_addr (u32 addr)

The write addr call performs the writing of a hex value to

an address specified by the argument addr. A developer can
modify the address maps to execute any command on either the
host PC or soft processor (e.g. MicroBlaze processor). These
address maps are used to control and communicate with the
host PC, while the soft processor will perform an operation
based on the command values stored in the specific address.
The addresses which are used to store these values are the start
and stop operation for the hardware accelerator and
compressor/decompressor systems, the status of the hardware
accelerator, the status of the compressor/decompressor engines,
and the value of metadata (the original file size, the block size
and the number of blocks) for the main header in the
compressed file. While the read addr call is used to read a value
from an address, especially to read the status of the soft
processor. This status is useful not only for debugging purposes
but also for monitoring the activities in the FPGA.

IV. DEMONSTRATION SYSTEM

The demonstration board used in our work is the Xilinx
Virtex-7 FPGA VC707 evaluation board [39] and synthesized
with Xilinx Vivado 2014.4. This board consists of PCIe
interface, and on-board digital power monitor to obtain power
readings from the FPGA board. For host PC, we used a
workstation with Intel Xeon E5520 processor, running on 64-
bit Windows 7 operating system.

A. Resource Utilisation

In this subsection we present the resource utilization of the

different modules in our CPCIe core: the Xillybus PCIe core,
the compressor and the decompressor. In this project, we
wanted to make sure that all clocks are synchronous and we

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

411

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

could only achieve timing closure at fixed frequency of 100
MHz due to the complexity of using several compression and
decompression engines in parallel. Table 2 shows the resource
utilization of the compressor and decompressor engine with
various number of engines. Each compressor and decompressor
is divided into four different rows to represent the utilization
using different number of engines.

At the moment once the number of engines has been

defined and the design implemented it is not possible to change
the number without a full implementation cycle. It will be
possible to create configurations off-line with different number
of engines and then load the correct configuration at run-time
using a partial reconfiguration technique but this has not been
explored in the current work.

One point to note is that the compressor engine utilizes

almost twice as many logic resources as the decompressor. The
reason is that in the original configuration of the compressor,
there is a compressor engine and also a decompressor engine
implemented in the component for verification purposes. The
decompressor engine in the compressor is used to produce
CRC value, after all compressed data has completely
decompressed. This CRC value will be compared with original
CRC value in the compressor engine to check for identical
result. Both the compressor and decompressor engines have the
same resources of CRC which consists of 32 flip-flop registers
and 160 LUTs.

Our proposed CPCIe can be extended to other platform

because none of these resources are restricted to a specific
technology. Furthermore, the Xillybus also supports other
FPGA vendors such as the Altera’s PCIe board. For example, if
one requires using Altera board, the source code has to be
modified by changing the FIFOs and the BlockRAMs, as these
resources are based on primitives on the FPGA.

It is correct to that as more FPGA resources are used by the

CPCIe accelerator in the device the place&route (PAR) phase
can have more problems finding a good implementation and
the timing constraints could not be met. In our case the CPCIe
core is not the bottleneck for performance and the timing
constraints set for the accelerator can be met for the CPCIe for
the accelerator. If this was a problem options available in
Vivado could be used to change the PAR strategy. For all
experiments, we used the strategy of Performance
ExplorePostRoutePhsyOpt, which is provided by the Vivado.
This process is repeated until all the timings are met on the
FPGA design.

B. Evaluation of Compression Efficiency

In this subsection we use the demonstration system to

evaluate the effectiveness of the compressor with typical data

obtained from high-performance applications. The focus of the

paper is to use datasets with content that can be processed by

the hardware accelerator and that achieve good compression.

In our project, we use a lot of floating point numbers to

process in the accelerator before returning the result back to

the host PC. Traditional datasets such as Canterbury datasets

were not suitable for our purposes because these datasets tend

to be based on text or binary files which are not suitable for

the hardware accelerators.

There are four financial time series datasets acquired from

public domain; sp 3m and sp ibm, which represent the stock

price of 3M and IBM market, respectively, and the other two

are sp usd and sp prices, which represent the exchange rates

between US Dollar and Japanese Yen, respectively. All

datasets are coded in IEEE 754 single-precision floating-point

number representation and saved as a binary file. To measure

the compression efficiency, the compression ratio is used as a

relative size scale. The compression ratio is defined as:

Compression Ratio = Original Data Size

 Compressed Data Size

where a higher ratio indicates that a higher rate of

compression can be achieved in the data. In our evaluation we

compressed each dataset with different block sizes using the

XMatchPRO compressor. Upon completion of compressing,

the compressed output is decompressed to verify correctness.

Fig. 5 analyzes the compression ratio for the different test

datasets and compares them with block sizes ranging between

512 Bytes and 64 KB. Compression varies between factors 2X

to 6X depending on the contents of the datasets. It is possible

to appreciate that 4 KB is a suitable block size to compress

and this size is consistent across all evaluated datasets.

Compressing the data in small independent blocks of 4 KB has

the advantage that bit errors will only corrupt the data of the

block in which they are located, thus reduces the overall

latency and opens the possibility of working in independent

blocks in parallel. These bit errors can happen during

transmission between computers. For example, sending raw

data from one machine (without an FPGA-based compressor

engine) to another machine (with an FPGA-based compressor

engine) over the Ethernet might incur the possibility of a bit

error during transmission. The CPCIe has CRC checking

capabilities to check any bit errors during transmission, and it

will request that the specified block to resend again if a bit

error is been detected. The nature of dictionary-based adaptive

compression/decompression algorithms means that in

unblocked mode only a single engine could be used since the

dictionary is built as new data is seen and its state must be

synchronized during the compression and decompression

processes. This 4 KB block size will be used for the energy

and performance experiments conducted in section VI and also

in the following sections.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

412

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

C. Latency and Throughput

To measure the latency in CPCIe, we used a counter to

count the total number of clock cycles. The counting of the

clock is measured from the endpoint of PCIe to the endpoint of

output FIFO in the scheduler (just before the accelerator). The

first measurement was taken to obtain two measurements of

the latency which occurred in the X-MatchPRO engine and in

the scheduler during distributing the datasets. The

compressor/decompressor engine itself has a latency of only

nine clock cycles before it is ready to produce output data

compressed and decompressed. The other measurement is the

latency between the host PC and the CPCIe, which is between

11 and 18 µs. This latency consists of several paths from the

host PC, Xillybus, and PCIe, before reaching the engines. It is

important to note that this latency is bounded by the

limitations of PCIe communication which in this work consists

of the Xillybus, the PCIe connections and the PCIe socket on

the motherboard.

To measure the throughput, we implemented a wall-clock

timer in the host PC and used the following calculation:

 Throughput = filesize

 time

This calculation is based on a user-selectable mode in the

host PC: if the compression mode is used, the filesize in the

calculation will be the uncompressed file size (or the

compressed file size if decompression mode is selected), while

the time is the total period to compress the whole file (or the

total period to decompress the whole file if decompression

mode is selected).

It is important to note that the frequency of the compressor

and decompressor engine is fixed at 100 MHz, while the

frequency in PCIe remains the same at 250 MHz. The PCIe

theoretical throughput is 800 MB/s and the FIFO in CPCIe

should not become the bottleneck although the CPCIe runs at

100 MHz. This is achieved using an asynchronous FIFO in

each compressor/decompressor engine. Fig. 6 shows the

throughput for compression and decompression, with various

number of engines implemented in the CPCIe. In

decompression mode, the throughput is around 776 MB/s with

four engines, and the throughput decreases as the engines

reduced. In compression mode, the throughput of four engines

without CRC is around 659 MB/s. However, the compressor

engine with CRC could not achieve the throughput close to

400 MB/s (in one engine for example) as it has to wait for its

own decompressor to finish to generate the identical CRC

result.

D. Power Consumption

In general, there are two types of power we need to consider in
a circuit: dynamic power and static power. Dynamic power is
the power when the clock is running and gates are switching in
the circuit. While static power is the leakage power in the
circuit with clocks switch off. When the system is not
performing any operations but the clocks are running, the
system is said to be in idle state. The idle state has its own
power called idle power, that contains both dynamic and static
power components. The static power tends to be significant,
while the dynamic power is still present in the idle state since
the clock network is active and some circuits such as
communication circuits are maintained alive. The system is
said to be in active state if application operations and events
occur. The active state has its own power called active power
due to the processing functions that take place. During active
state, both dynamic and static power are dissipated and are
included in the active power.

Before taking any measurements, this work assumes that

the datasets have been compressed off-line and stored in the PC
host side in the form of archives or databases that can be
processed when needed. In essence this will be done only once,
while the same datasets are used with different accelerators
multiple times. Notice that if the datasets are uncompressed in
the PC side and must be compressed by software when needed,
the whole approach is impractical since the software will be
much slower than the FPGA board. This idea is similar to how
images and videos are maintained in a compressed state in the
database and transmitted in compressed format, and only
decompressed before processing is needed. In our case our
datasets are not images or videos but files consisting of
floatingpoint numbers.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

413

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

In order to calculate the power consumed by the whole
system, both the host PC and the FPGA board are considered in
the measurements. The on-board FPGA power consumption
alone is not sufficient since we are trying to evaluate the effects
on the whole system. The measurement for the whole system is
required which includes the reading and writing dataset from
the host PC to the FPGA (and vice versa). Since the dataset is
transmitted from the memory buffer in the host PC to the
FPGA, the affected energies are the main memory in the host
PC, the PCIe socket and the FPGA itself. Note that small size
data will achieve less energy compared to huge data during this
transmission. This energy must be taken into account for the
total energy consumption.

To measure and isolate the power on the FPGA, we used

the on-board digital power monitor available on the Xilinx
Virtex- 7 VC707 development board. The power monitor has a
Texas Instruments UCD9248 chip controller [40] and has the
capabilities to obtain voltage, current and power readings from
12 voltage rails on the FPGA board. The power monitor chip
wires the connection between voltage rails and the PMBus
(powermanagement bus) [41] to obtain the power reading. We
used the MicroBlaze processor to obtain the output power from
the PMBus using our custom software. Then the output power
is written to the UART to display the power from the selected
rails. To evaluate the power usage, only a few selected rails on
the board are measured which are referred as VCCINT,
MGTAVCC, and MGTAVTT; other unnecessary power rails
are not measured as they are wired to the unrelated peripherals
which were not involved in the experiments (such as HDMI
ports, USB, Ethernet and others). The VCCINT rail provides
internal power supply to FPGA resources such as registers,
LUTs, and DSPs. While the MGTAVCC and MGTAVTT
voltage rails are the analog supply to GTX transceivers in the
PCIe endpoints, which are used for internal analog circuits and
termination circuits, respectively. These are the power in the
PCIe which are wired with eight GTX transceivers located in
transceiver bank of the Multi Gigabit Transceiver MGT BANK
114 and MGT BANK 115 on the FPGA chip.

To obtain the power measurement on the PC side, we used

a power meter [42] located between the power wall socket and
the host PC. Our measurements try to evaluate the real power
and energy required by the system and the possible costs
savings of using compression and decompression. The power
wall measurements are real power since they represent energy
that the user needs to pay for the bills, even if some of that
energy does not make into the system and it is wasted. For that
reason we do not perform adjustments based on efficiency and
use the raw measurements from the power sensors in our
calculations. It is worth noting that the power consumption to
transmit a datasets requires several components to be involved,
which include the power from the motherboard, the CPU,
memories, and the FPGA board.

We conducted three power experiments to get the

measurement of idle and active power that correspond to the:
(1) transmission of a dataset between the host PC and FPGA,
(2) compression, and (3) decompression. The objective of these
experiments is to obtain the idle and active power in three
components which are the host PC, the Xillybus PCIe and the
FPGA. In each experiment, the measurement was taken during
two states: (1) while the components were in idle state, and (2)
while the components were in active state when the
transmission takes place between the host PC and FPGA. By
measuring these power from the host PC and FPGA side, we
can obtain an estimation of the total energy of the overall
system using both the uncompressed and compressed datasets.
We can then estimate the energy savings obtained by using the
proposed compression/decompression system, compared with
not doing so.

Table 3 shows the power experiments during idle and active
states. In experiment (1), the idle power and active power in the
host PC are 101.52 W and 132.41 W, respectively. These
measurements were obtained from the power meter only. The
idle and active power on the PC side alone are the same during
compression and decompression, regardless of the number of
engines. The only difference is the time taken for the PCIe to
transmit the data, which contributes to the total energy
consumed for the different configurations. While the idle power
and active power in the Xillybus PCIe are 2.473 W and 2.625
W, respectively. These measurements were obtained from the
VCCINT, MGTAVCC and MGTAVTT rails of the on-board
power monitor. In experiment (2) and (3), the idle and active
power in the compressor/decompressor engines were obtained
from the VCCINT rail only. Based on the number of engines
used, one can observe that the power in the compression were
between 27 mW to 131 mW. While the power in the
decompression were slightly lower than compression which
results between 19 mW to 93 mW.

V. APPLICATION SELECTION AND ANALYSIS

We have selected two applications to represent benchmarks
typically used in high performance computing: the buffer
applications and streaming applications. The matrix
multiplication is an example of buffer application, and the
hotspot convolution is an example of streaming application. In
matrix multiplication, two matrices are written into two input
buffers, multiplication is performed, and the final results are
obtained from the output buffer. In our specific case, we
consider that we need to multiply 4 tiles of 256x256 matrices
which give us a total of 1024x1024 matrices. Typically the
buffers are processed locally in the block memory. There are a
lot of data reused as rows and matrix are multiplied and added
together. It is important to note that the input and output buffers
are synthesized as a Block RAMs by Vivado HLS. The use of
Block RAMs in the FPGA dramatically reduces the amount of
available Block RAMs for the user application and limits the
size of matrices that can be multiplied. While the hotspot
application is used to observe how temperature propagates on
the chip surface and to avoid extreme thermal effects. Hotspot
typically uses 2D convolution and a 3x3 sliding window size
(or kernel) that is applied to the input frames that represent the
chip surface.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

414

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

The input datasets are chosen to be representative of real
problems. In our work, we consider floating-point numbers
instead of integer numbers, as floating-numbers are widely
used in scientific computing. The datasets used are two input
matrices which comprise 1024x1024 floating-point numbers.
These datasets have two versions for our evaluation: an
uncompressed and pre-compressed datasets. The pre-
compressed datasets are compressed beforehand in the host PC.
All the source code for these applications is written using
Vivado High Level Synthesis 2014.4 with an AXI4-Stream
interface and used IEEE 754 single-precision. For the purposes
of this experiment these accelerators are constrained to 100
MHz to achieve synchronous clock in the whole FPGA design.

Table 4 the Xilinx Virtex-7 FPGA. Clearly matrix

multiplication is the most complex compared to hotspot. Table
5 shows the power consumption of test applications for the
benchmark. The idle and active power in matrix multiplication
is around 0.103 W and 0.145 W, respectively. While in hotspot,
the idle and active power is around 0.081 W and 0.103 W,
respectively. Fig. 7 shows an overview of the implementation
of CPCIe to be used with these applications.

VI. PERFORMANCE AND ENERGY ANALYSIS

In this section, we compare three systems with and without

deploying the compression technology to understand the

impact of the compressor and decompressor in terms of

transmission speed and energy. The designed system sends

two input datasets with matrix size of 1024x1024 each and

obtains and output with the same matrix size.

A. Test case without compression

In this test system, the task is to send an uncompressed

dataset from host PC to the input of accelerator, and the output
of the accelerator are then sent back to the host PC as an
uncompressed result after processing. Fig. 8 illustrates the
execution phase in the PCIe and the accelerator. As soon the
accelerator receives the input, it starts to process the dataset. It
is clear that the active time is the most time consuming in the
PCIe transmission, in both sending, Tpas (the active period
during host PC sending the data over PCIe), and receiving
dataset,Tpar (the active period during host PC receiving the
data from PCIe). We measure the performance and energy of
this test case to be used as a comparison reference with the test
cases that use compression.

B. Test case with compression

In this second task, the objective is to send a compressed
dataset from host PC to the accelerator, and the result from
accelerator is sent back to the host PC as a compressed result.
We deployed our CPCIe core in between the host PC and the
accelerator, which connected with an AXI4-Stream interface.
The CPCIe will decompress the compressed dataset first,
before supplying the decompressed data into the input of the
accelerator. The result of the accelerator is connected to the
compressor, and will be compressed by the CPCIe before
returning the result to the host PC.

Fig. 9 shows the execution phases of CPCIe using a single

compressor/decompressor engine, while Fig. 10 shows the
execution phases using four engines. The execution phases
with two and three engines are similar to the four engines case
and not shown in this work. The time taken to read the header
is denoted as Txdh. While the host PC is transmitting the
compressed dataset, the scheduler stores its header file into a
temporary buffer before decompressing the blocks. We refer
this as a timing overhead and it is measured between the
endpoint of the PCIe interface and the FIFO in CPCIe. The
overhead consists of time to control the signals in the FSM
controller and transfer delays in PCIe. The header must be fully
loaded into the temporary buffer in the scheduler during PCIe
transmission, before the compressed data can be used in the
decompressor. The total time of the header to be fully loaded is
determined by the number of blocks. The time to write the
header, denoted as Txch, in the configuration with four engines
took almost the same amount of time with one
compressor/decompressor engine.

In a single-engine configuration, the scheduler depends on

the availability of the compressor/decompressor engine before
transferring the input data for compression/decompression.
That is, if one block of data is still processing in an engine
(either in compressor or decompressor engine), this will induce
a waiting time in the scheduler until the engine has finished.
While in the multiple-engine configuration, the compressor and
decompressor engines work in parallel. This can be seen after
Txdh in Fig. 10 where all decompressors are running
independently at the same speed, and the scheduler does not
have to wait for a decompressor to finish and can keep the
performance by continuously distributing the data among the
decompressor engines.

We also repeated the same experiments with other two

datasets which have a significantly higher compression ratio of
4X and 6X and the results in terms of performance and energy
are shown in the next section.

C. Performance and Energy Evaluation

For each transmitted Byte, we are interested in exploring

the energy requirements. We did this by transmitting datasets
for different file sizes (ranging from 1 KB to 4 MB). By

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

415

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

dividing the energy required by the file size, we could obtain
the tradeoff nJ/Byte:

 Trade-off, nJ/Byte = Energy (nJ)

 Filesize (Byte)

Fig. 11 investigates the tradeoff between energy and block size

in unit of nanoJoules/Bytes. The block size of 512 Bytes has

the highest Energy/Bytes (14.2 nJ/B), followed by block size

of 1 KB (13.8 nJ/B), and 2 KB (13.6 nJ/B). However, for more

than 4 KB of block size, this trade-off is around 13.5 nJ/B.

From this graph, we can conclude that for optimal energy per

byte over PCIe, we need to use a basic block transfer size of at

least 4 KB. The reason behind this situation is that the block

size of less than 4 KB has a high amount of overhead (header,

protocol, status, etc.) over the payload size. Furthermore, 4 KB

is also a good block size from a pure compression ratio point

of view as seen in Fig. 5. For these reasons, in this evaluation,

all tests used the block size of 4 KB during compression and

decompression.

Table 6 and Table 7 show the result of the energy consumption

of the matrix multiplication and hotspot, respectively. Both

tables show the energy consumed during the processing of the

datasets in the hardware accelerator, which includes

transmitting, processing, and sending back the results of the

datasets. The row called ”Uncompressed” is the result for the

energy consumed while processing the raw datasets in the

hardware accelerator. The following rows are the compression

ratio of a data, with other configurations varying the number

of compressor and decompressor engines working in parallel

(in addition to the single engine). In order to obtain the total

energy involved performing the process, the energy of both the

host PC (such as CPU, memory, etc.) and the FPGA should be

considered in the calculation. In these tables, the total energy

consumed while processing the uncompressed datasets for the

matrix multiplication and hotspot application was calculated

around 453 J and 81 J, respectively.

In the next row, it can be seen that the total energy has reduced

due to the presence of the compressor/decompressor engine.

Note that the energy reductions are dependent on the

compressed data size and also the number of engines used. For

example, considering a compression ratio of 1.5X using a

single engine (which consists of one compressor and one

decompressor engine) in the matrix multiplication, the energy

reports around 430 J. Thus, the energy in the PCIe of this

configuration decreases by 4.90% compared with the energy

using the uncompressed datasets. The next row presents the

configuration using two engines, and this reports the energy

consumed to be around 428 J. Although the number of engines

was doubled, the energy used is only slightly lower compared

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

416

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

to a single engine. The reason is that although the additional

compressor and decompressor engines on the FPGA increase

the power, the energy reduces due to the reduction in time. In

Table 7, we found that the hotspot application obtains the

highest energy savings around 48%. This was acquired with

datasets that achieve a compression ratio of 6X and deploying

on four compressor/decompressor engines in parallel. In

conclusion, significant energy savings can be achieved with

two conditions: the CPCIe uses a high number of

compressor/decompressor engines working in parallel and the

compression ratio of a dataset is high (more than 6X of

compression ratio).

Fig. 12 summarizes the result for the matrix multiplication,

while Fig. 13 for the hotspot application. The horizontal axis

on each graph is the number of engines (the orange bar

represents the implementation without CPCIe), the vertical

axis on the left is the total energy for completing a task, and

the vertical axis on the right is the performance of execution

time. In each number of engine, we repeated the experiments

with three datasets of different compression ratio of 1.5X, 4X

and 6X.

As the graphs illustrates, the energy obtained by implementing

a single engine is significant lower than those obtained without

compression. The hotspot achieved slightly higher reduction

of energy since this accelerator does not use a lot of logic

resources, while the matrix multiplication has to fill up all the

input matrices in the buffers before it can process the result. It

can be seen that in both graphs, the execution time to complete

the acceleration task using a single engine increases around

3%. This performance degradation is due to the overhead

during compression and decompression. However the graphs

also show that these overhead reduces as the number of

engines increases. Nevertheless, one can observe that the

energy consumed for the task to complete has decreased since

the amount of time during active state in PCIe becomes

shorter.

In the configuration with four engines we found that the

performance has reached its peak value. At this point, the

performance of the whole system entirely depends on the

accelerator and its frequency to achieve higher performance.

For both applications, the implementation of four

compressor/decompressor engines is the number needed to be

configured to maintain the same performance as the case

without compression.

For the other compression ratios (by taken the configuration

with one engine for example), the compression ratio of 4X

results in a 11% energy reduction for the matrix

multiplication, and a 38% energy reduction for the hotspot

application. The compression ratio of 6X on the other hand,

has only a slightly energydecreasecomparedwith4Xratio,

whichresultsina15% and 43% in both application, respectively.

However, the execution time of each compression ratio is not

significantly affected as the size and number of blocks needed

to be compressed/decompressed remains the same. We also

tested up to eight compression/decompression engines, but

there were unique cases for each implementation.

In decompression mode, more than four decompressor engines

will result in close to 800 MB/s. The throughput cannot exceed

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

417

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

more than 800 MB/s due to the PCIe limitation (the board used

was the PCIe Gen2, which is limited to up to eight lanes).

Although CPCIe can be configured with between five and

eight decompressor engines, some of the decompressor

engines will idle most of the time since the process in the

previous engine(s) finishes earlier before the current engine

can take any data. This situation will create another drawback

on energy consumption where the additional power on the idle

decompressor engines will contribute to the total energy. If

these are plotted on Figures 12 and 13, the execution time will

still be the same, but the total energy will increase based on

the increment of the number of engines. In compression mode,

adding more engines increases the critical path in the CPCIe.

In our experiments, we found that the timing of four

compressor engines is to meet the timing constraint of the

accelerator, but the critical path of more than four compressor

engines increases with each additional engine becoming a

bottleneck.

VII. DISCUSSION

Alternative compression scheme: The compression algorithm

X-matchPRO is designed for fast hardware implementation so

it will not be very efficient in a software implementation and

for that reason a CPU will not be able to obtain the required

performance. The system is designed for networking

applications in which data is compressed in hardware in one

node and it arrives to another node in which is decompressed

and processed also in hardware. It will be possible to replace

the compression scheme with another compression algorithm

and obtain new hardware. For example, the most popular

compression scheme is the GZIP compression, which is

widely used in the computing field, especially in the following

two areas: networking (on websites such as Google and Yahoo

for sending/receiving data over the Ethernet), and data storage

(in cloud storage to store the compressed format rather than

the original format). Since GZIP is open source, the user can

easily use the software code, which can be extracted from the

public repositories. However, to deploy such software into the

hardware (FPGA) will require a new hardware development

cycle. It will be also difficult to achieve the real-time

performance that X-matchPRO achieves because GZIP is

inherently a serial algorithm. To acquire rapid development in

this research, an open-source compression/decompression

hardware on FPGA was used. We selected XMatchPRO, as it

is licenced under the LGPL licence and can be ported on any

FPGA vendor. Although the X-MatchPRO algorithm is not

similar to other algorithms such as GZIP or other LZ-family,

the X-MatchPRO algorithm is able to make use of the FPGA

resources and thanks to its parallelism is very fast.

Other compression method (lossy compression): While it is

true that this work can be expanded into lossy compression,

we have limited the scope of this work to using lossless

compression. The reason is that, in our research, we are

working with sensitive data that should be preserved. Slight

changes in the original data floating-point data could lead to

different results in these applications. Several floating-point

datasets, such as the stock price market, have been obtained

from public repositories. Although these data contain millions

of floating-point values, the compression ratio of each dataset

is different and is between a ratio of 2.0 and 6.5. However, if

the datasets are compressed into the lossy format (and used the

quantization) then the achieved compressed ratios will much

larger. Based on our results in Figures 12 and 13, we could

predict that the compression ratios of more than 7.0 will use

less energy. Although the lossy compression can benefit from

our proposed system, the drawback of the lossy method is that

some data will be lost after quantisation. This could lead to

incorrect decisions in a stock market application.

Alternative accelerators: Our focus on this work is to show

that by using hardware resources, the overall performance and

energy characteristics of PCIe can be improved by using

hardware resources to create a hardware core that performs

compression/decompression. Thus, this work was not really to

demonstrate the advantage of FPGAs against competing

solutions. Future work will consider the overall performance

of the acceleration solution with compression enabled against

other HPC platforms (e.g. Xeon Phi, GPU) and measure the

possible advantages of FPGAs in this case.

VIII. CONCLUSION

In this paper, we have proposed the CPCIe

(Compressionenabled PCIe) framework that employs the X-

MatchPRO compressor/decompressor engines. We have

demonstrated that data compression implemented between the

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

418

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

PCIe core and the accelerator can result in energy savings

while maintaining the performance for custom hardware

accelerator designs. Our evaluation shows that our CPCIe

design can reduce the PCIe energy from 5% to 48%,

depending on the number of compressor/decompressor

engines working in parallel and the achieved compression

ratio. Furthermore, the latency is kept to be minimum in the

hardware scheduler needed to complete the scheduling task.

The configuration with four engines provides the highest

performance and has the lowest overheads, while the

compression ratio of 6X provides the highest energy reduction

during the PCIe transmission. Based on our experiments, it can

be concluded that energy efficiency during PCIe transmission

can be improved thanks to the reduction in the transmission

period obtain with parallel compression/decompression. This

improvement is proportional to the obtain compression ratios

and the number of engines working in parallel.

ACKNOWLEDGMENT

This work is supported by the UK EPSRC under grants
ENPOWER (EP/L00321X/1) and ENEAC (EP/N002539/1)
grants.

REFERENCES

[1] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, Gpu cluster for

high performance computing, in: Supercomputing, 2004.
Proceedings of the ACM/IEEE SC2004 Conference, IEEE,
2004, pp. 47–47.

[2] O. Kayıran, A. Jog, M. T. Kandemir, C. R. Das, Neither more
nor less: optimizing thread-level parallelism for gpgpus, in:
Proceedings of the 22nd international conference on Parallel
architectures and compilation techniques, IEEE Press, 2013, pp.
157–166.

[3] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing
fpgabased accelerator design for deep convolutional neural
networks, in: Proceedings of the 2015 ACM/SIGDA
International Symposium on FieldProgrammable Gate Arrays,
ACM, 2015, pp. 161–170.

[4] A. Iordache, G. Pierre, P. Sanders, J. G. d. F. Coutinho, M.
Stillwell, High performance in the cloud with fpga groups, in:
Utility and Cloud Computing (UCC), 2016 IEEE/ACM 9th
International Conference on, IEEE, 2016, pp. 1–10.

[5] K. Nagasu, K. Sano, F. Kono, N. Nakasato, Fpga-based tsunami
simulation: Performance comparison with gpus, and roofline
model for scalability analysis, Journal of Parallel and Distributed
Computing 106 (2017) 153–169.

[6] H. Giefers, R. Polig, C. Hagleitner, Accelerating arithmetic
kernels with coherent attached fpga coprocessors, in:
Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, EDA Consortium, 2015, pp. 1072–
1077.

[7] Cpcie, https://github.com/mohdazainol/cpcie/, [maintained by
Mohd A. Zainol].

[8] M. A. Zainol, J. L. Nunez-Yanez, Cpcie: A compression-enabled
pcie core for energy and performance optimization, in: Nordic
Circuits and Systems Conference (NORCAS), 2016 IEEE,
IEEE, 2016, pp. 1–6.

[9] G. Inggs, S. Fleming, D. Thomas, W. Luk, Is high level
synthesis ready for business? a computational finance case
study, in: Field-Programmable Technology (FPT), 2014
International Conference on, IEEE, 2014, pp. 12–19.

[10] O. Lindtjorn, R. Clapp, O. Pell, H. Fu, M. Flynn, O. Mencer,
Beyond traditional microprocessors for geoscience high-
performance computing applications, Ieee Micro 31 (2) (2011)
41–49.

[11] C. de Schryver, P. Torruella, N. Wehn, A multi-level monte
carlo fpga accelerator for option pricing in the heston model, in:

Proceedings of the ConferenceonDesign,
AutomationandTestinEurope, EDAConsortium, 2013, pp. 248–
253.

[12] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas, F. Rubio, I.
Gelado, M. Shafiq, E. Morancho, N. Navarro, E. Ayguade, et al.,
Assessing accelerator-based hpc reverse time migration, IEEE
Transactions on Parallel and Distributed Systems 22 (1) (2011)
147–162.

[13] J. L. Nunez-Yanez, S. Jones, Gbit/s lossless data compression
hardware, IEEE Transactions on very large scale integration
(VLSI) systems 11 (3) (2003) 499–510.

[14] J. Nunez-Yanez, V. Chouliaras, Gigabyte per second streaming
lossless data compression hardware based on a configurable
variable-geometry cam dictionary, IEE Proceedings-Computers
and Digital Techniques 153 (1) (2006) 47–58.

[15] M.-B. Lin, J.-F. Lee, G. E. Jan, A lossless data compression and
decompression algorithm and its hardware architecture, IEEE
TRANSACTIONS on very large scale integration (vlsi) systems
14 (9) (2006) 925 – 936.

[16] K. Papadopoulos, I. Papaefstathiou, Titan-r: A reconfigurable
hardware implementation of a high-speed compressor, in: Field-
Programmable Custom Computing Machines, 2008. FCCM’08.
16th International Symposium on, IEEE, 2008, pp. 216–225.

[17] D. C. Zaretsky, G. Mittal, P. Banerjee, Streaming
implementation of the zlib decoder algorithm on an fpga, in:
Circuits and Systems, 2009. ISCAS 2009. IEEE International
Symposium on, IEEE, 2009, pp. 2329–2332.

[18] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, K. Sheng, Fpga
implementation of gzip compression and decompression for idc
services, in: Field-Programmable Technology (FPT), 2010
International Conference on, IEEE, 2010, pp. 265–268.

[19] A. G. Villafranca, S. Mignot, J. Portell, E. Garc´ıa-Berro,
Hardware implementation of the fapec lossless data compressor
for space, in: Adaptive Hardware and Systems (AHS), 2010
NASA/ESA Conference on, IEEE, 2010, pp. 164–170.

[20] R. Naqvi, R. Riaz, F. Siddiqui, Optimized rtl design and
implementation of lzw algorithm for high bandwidth
applications, Electrical Review 4 (2011) 279–285.

[21] B. Sukhwani, B. Abali, B. Brezzo, S. Asaad, High-throughput,
lossless data compresion on fpgas, in: Field-Programmable
Custom Computing Machines (FCCM), 2011 IEEE 19th Annual
International Symposium on, IEEE, 2011, pp. 113–116.

[22] I. Shcherbakov, C. Weis, N. Wehn, A high-performance fpga-
based implementation of the lzss compression algorithm, in:
Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), 2012 IEEE 26th International, IEEE,
2012, pp. 449–453.

[23] I. Shcherbakov, N. Wehn, A parallel adaptive range coding
compressor: Algorithm, fpga prototype, evaluation, in: Data
Compression Conference (DCC), 2012, IEEE, 2012, pp. 119–
128.

[24] D. Hogawa, S.-i. Ishida, H. Nishi, Hardware parallel decoder of
compressed http traffic on service-oriented router, in:
Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA), The Steering
Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp),
2013, p. 1.

[25] B. Li, L. Zhang, Z. Shang, Q. Dong, Implementation of lzma
compression algorithm on fpga, Electronics Letters 50 (21)
(2014) 1522–1524.

[26] M. S. Abdelfattah, A. Hagiescu, D. Singh, Gzip on a chip: High
performance lossless data compression on fpgas using opencl,
in: Proceedings of the International Workshop on OpenCL 2013
& 2014, ACM, 2014, p. 4.

[27] Y. Li, Y. Sun, G. Dai, Y. Wang, J. Ni, Y. Wang, G. Li, H. Yang,
A self-aware data compression system on fpga in hadoop, in:
Field Programmable Technology (FPT), 2015 International
Conference on, IEEE, 2015, pp. 196–199.

[28] S. M. Najmabadi, Z. Wang, Y. Baroud, S. Simon, High
throughput hardware architectures for asymmetric numeral
systems entropy coding, in: Image and Signal Processing and

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 405 – 419

419

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Analysis (ISPA), 2015 9th International Symposium on, IEEE,
2015, pp. 256–259.

[29] M. Wijeyasinghe, D. Thomas, Combining hardware and
software codecs to enhance data channels in fpga streaming
systems, Microprocessors and Microsystems 51 (2017) 275–288.

[30] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz,
T. B. Smith, M. E. Wazlowski, P. M. Bland, Ibm memory
expansion technology (mxt), IBM Journal of Research and
Development 45 (2) (2001) 271–285.

[31] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K.
Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, et al., A reconfigurable fabric for accelerating
large-scale datacenter services, in: Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on,
IEEE, 2014, pp. 13–24.

[32] J. Y. Kim, S. Hauck, D. Burger, A scalable multi-engine xpress9
compressor with asynchronous data transfer, in: Field-
Programmable Custom Computing Machines (FCCM), 2014
IEEE 22nd Annual International Symposium on, IEEE, 2014,
pp. 161–164.

[33] J. Fowers, J.-Y. Kim, D. Burger, S. Hauck, A scalable high-
bandwidth architecture for lossless compression on fpgas, in:
Field-Programmable Custom Computing Machines (FCCM),
2015 IEEE 23rd Annual International Symposium on, IEEE,
2015, pp. 52–59.

[34] J. A. Delmerico, N. A. Byrnes, A. E. Bruno, M. D. Jones, S. M.
Gallo, V. Chaudhary, Comparing the performance of clusters,

hadoop, and active disks on microarray correlation
computations, in: High Performance Computing (HiPC), 2009
International Conference on, IEEE, 2009, pp. 378–387.

[35] G. S. Davidson, J. R. Cowie, S. C. Helmreich, R. A. Zacharski,
K. W. Boyack, Data-centric computing with the netezza
architecture., Tech. rep., Sandia National Laboratories (2006).

[36] P. Francisco, The netezza data appliance architecture: A
platform for high performance data warehousing and analytics,
IBM Redguide.

[37] M. Jacobsen, D. Richmond, M. Hogains, R. Kastner, Riffa 2.1:
A reusable integration framework for fpga accelerators, ACM
Transactions on Reconfigurable Technology and Systems
(TRETS) 8 (4) (2015) 22.

[38] Xillybus, www.xillybus.com/.

[39] Xilinx, https://www.xilinx.com/products/boards-and-kits/ek-v7-
vc707-g.html, xilinx Virtex-7 FPGA VC707 Evaluation Kit
(UG885 v1.7).

[40] Texas instruments inc,
http://www.ti.com/lit/ug/sluu490/sluu490.pdf

[41] Power management bus (pmbus), http://www.pmbus.org/Home/.

[42] Brennenstuhl primera-line wattage and current meter pm 231-e,
https://www.brennenstuhl.co.uk/en-EN/primera-line-wattage-
and-current-meter-pm-231-e-gb/ .

