
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

9
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

A Hybrid of Improved Bulls and Weighted Round Robin to optimize the Leader

and Load Balancing in Cloud and Distributed Computing Environment

Suvarna Lakshmi C, M. V. Ramana Murthy, Rajani Bellamkonda

Asst. Professor, Dept. of Computer

Science,

Aurora’s Degree and P.G. College

Chikkadapalli, Hyderabad,

Telangana, India

Email-id: bkrajani@gmail.com

S. China Ramu

Assoc. Professor, Dept. of CSE,

CBIT, Gandipet, Hyderabad, Telangana,

India,

Email-id:chinaramu@cbit.ac.in

Abstract: Day by Day there is increase of internet users which leads to increase the traffic in the network which causing the generation of huge

data. It requires the balancing of network load on the network servers with different Load balancing techniques. It is also required to have

efficient algorithm to analysis the huge data in distributed manner to identify the leader to act as centralized point of contact for services. If we

audit on the heap adjusting systems, there are a few potential outcomes to upgrade the methods. In the present scenario, we have the methods,

round robin algorithm (static load adjusting), Weighted Round Robin algorithm and Least Load algorithm (Dynamic Load Balancing). A

researcher D. Chitra Devi .et .al has given the idea of enhanced weighted round robin algorithm (EWRR) which gives much better reaction when

contrasted with basic round robin calculation. Another scholar Rashmi Saini et. al recommended the half breed of round robin calculation and

minimum Load Algorithm.

From the above scholars’ articles, I hereby propose a resolution by improved Bulls algorithm along with Weighted Round Robin (WRR)

algorithm to achieve high performance in Distributed and Cloud Computing domain in terms of leader election from a group of distributed and

non-failed processes, load balancing dynamically and coordinate other nodes.

Bulls algorithm uses the following message types:

 Election Message: Sent to announce election.

 Answer (Alive) Message: Responds to the Election message.

 Coordinator (Victory) Message: Sent by winner of the election to announce victory.

When coordinator fails to recover a process P, from failure or detecting before failure, the process P performs the following actions:

1. If P has the highest process id, it sends a Victory message to all other processes and becomes the new Coordinator. Otherwise, P broadcasts

an Election message to all other processes with higher process IDs than itself.

2. If P does not receive any Election message, then it broadcasts a Victory message to all other processes and becomes the Coordinator.

3. If P receives an Answer from a process with a higher ID, it sends no further messages for this election and waits for a Victory message.

When there is no Victory message after a stipulated period, it restarts the process from the beginning.

4. If P receives an Election message from another process with a lower ID it sends an Answer message back and starts the election process at

the beginning, by sending an Election message to higher-numbered processes.

5. If P receives a Coordinator message, it treats the sender as the coordinator.

Keywords: Bulls Algorithm, Cloud computing, Distributed systems, Load Balancing, weighted round robin, least load balancing algorithm.

__*****___

Assistant Professor,

Dept of Computer Science,

Aurora’s Degree and P.G. College,

 Chikkadapally, Hyderabad,

Telangana, India,

vcsl189@gmail.com.

Professor & Head,

Dept. Of Mathematics &
Computer Science

MGIT, Gandipet, Hyderabad,

Telangana, India,

mv.rm50@gmail.com.

mailto:mv.rm50@gmail.com
mailto:bkrajani@gmail.com

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

10
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

I. INTRODUCTION

The Fig:1 shows the environment of Load Balancing and schedule

design in distributed and cloud environment.

Fig1: Schedule & load balance design

Let us take 4 servers (Server1, through Server4) are interconnected

with two routers (L2SW1 & L2SW2), and 2 Load Balancing

devices (LB Device2 and LB Device 2’) are connected to two

routers (L2SW1 & L2SW2). The 2 Load Balking devices

connected to another 2 Load Balancing devices (LB Device 1 and

LB Device1’) through interconnected Fire walls for security

purpose and connected through cloud to different users located

geographically.

Any request of the cloud should reach to either Load Balancing

device 1 or Load Balancing device 2. Then request upwards to the

Server and response will be received in any direction.

Following are the scheduling and load balancing algorithms.

1) Dynamic Load Balancing

It distributes the total work load among all the processors at

runtime before initiating the process. The master assigns new

processes to the slaves based on the new information collected.

2) Least Load Algorithm [3]:

BEGIN PROCEDURE LEAST_LOAD_ALGO

array SERVERS = {s1, s2, s3…sn};

array SERVER_LOAD = {l1, l2, l3…ln};

WHILE(request) DO

Integer POS=FIND_MIN(SERVER_LOAD);

 GOTOSERVER[POS];

END WHILE

END PROCEDURE

BEGIN PROCEDURE FIND_MIN (SERVER_LOAD [1 to n])

Integer POS=0;

For I=1 to n-1 do

IF SERVER_LOAD[POS]>SERVER_LOAD[I]THEN

 POS=I;

END IF

RETURN POS;

END PROCEDURE

The above algorithm uses the policy of Shortest Remaining

Processing Time which is the optimal algorithm for minimizing

mean response time. The job that has the least remaining process

time will be served. Some of the demerits in this policy are

 The dispatcher or load balancer or job scanner should know

the time required to execute the job before its actual

execution.

 Larger size jobs may need to wait for a while.

Fig2: Least Load for client request

3) Static Load Balancing

In Static Load Balancing, the processor's execution is resolved

towards the start of its execution. At that point just, the work stack

is conveyed to the processors towards the begin level as per the

execution decided. At the underlying stage, the processors are

thought to be free. It sends message to all the remote processors

with respect to new the heap state, if the heap condition of the

processor surpasses a heap level farthest point. On the off chance

that it isn't over-burden than the procedure is distributed locally.

4) Round Robin [3] Algorithm

Round robin is a simple continuous looping technique, in which

the user content access request is responded by the load balance in

the circular fashion, handles all the processes. The first access

grants to the first available server by giving its IP Address, and

second to the second server IP Address and so on in cyclic

manner. Whenever a server IP Address is given, instantly its IP

Address is moved back to the list of available IP Addresses and

gradually it moves back to the top of the list and becomes available

again.

BEGIN PROCEDURE ROUND_ROBIN

STATIC INTEGER COUNT=0

INTEGER QUANTUM=q

array SERVERS = {s1, s2, s3…sn};

INTEGER SQ = q*n

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

11
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

WHILE (request) DO

INTEGER Range = count % SQ

IF Range > 0 and Range <= Q

THEN set SERVER[S1]

ENDIF

IF Range > 1*Q and Range <= 2*Q

THEN set SERVER[S2]

ENDIF

IF Range > (N-1) *Q and Range <= N*Q

THEN set SERVER[Sn]

ENDIF

END WHILE

END PROCEDURE

5) Weighted Round Robin [9] Algorithm:

In this algorithm, the resource capabilities of the machine are

considered and the machines having the higher capacity assigns the

higher number of tasks, based on which weightage is given to each

machine. But the issue is that it doesn't think about the length of

the assignments to choose the suitable machine.

6) Enhanced Weighted Round Robin (EWRR) [9] Algorithm:

D. Chitra Devi. et.al states that the EWRR calculation is the most

optimal and it assigns the job to most suitable machine by

considering the machine's data like its handling limit and length of

the arrived tasks with its priority. The static scheduling of this

algorithm uses the processing capacity of the machine. The

allocation of task to a suitable machine is decided based on the

length of each task..

The dynamic scheduling option (at run time) of this calculation

also utilizes the load on each of the Virtual Machines (VM) along

with the information mentioned above to decide the allocation of

the task to the appropriate machine. During run time, there is a

probability that the task may take longer execution time than the

initial calculation, due to the execution of more number of cycles

(like a loop) on the same instructions based on the complicated run

time data.

In such situations, the load balancer rescues the scheduling

controller and rearranges the jobs according to the ideal slot

available in the other unutilized/underutilized machines by moving

a waiting job from the heavily loaded machines.

Nature of Load Balancing [3]

 Co-agent: In cooperative situation, all processors have the

responsibility to complete their own bite of task undertaking,

yet all processors cooperate to accomplish an objective for

better efficiency. In non-cooperative situation individual

processor go about as autonomous elements and touch base at

choices about the utilization of their assets with no impact of

their choice on whatever remains of the framework.

 Process Migration: When a system decides to export a

process, it provides process migration parameter too. It

decides whether to create locally or remotely. This algorithm

is capable to decide that it should make changes of load

distribution during execution of process.

 Resource Utilization: It include automatic load balancing. A

distributed system might have unexpected number of

processes that demand more processing power. In such cases

the algorithm is capable to utilize resources efficiently or can

be moved to underutilized processors.

Both Round Robin and Least Load Algorithms have their own

drawbacks. Both are working with great specific criteria, yet

additionally have certain restrictions. The main disadvantage of

Round Robin is that load balancing of various sizes and complexity

of load or request due to lack of precision. Where as in Least Load

Algorithm, the load at server is considered before distributing it,

which results in low efficiency of the system. Only a set of servers

gets load in case of sparse load condition thereby leaving some of

the systems ideal.

Assets Least Load Round Robin

Nature Dynamic Static

Stability Medium High

Cooperative Yes No

Resource Utilization Medium Low

Table1: Comparison of Load Balance Algorithms [3]

Property Round

Robin

Weighted

Round

Robin

Enhanced

Weighted

Round Robin

Least

Load

Nature Static Static Dynamic Dynamic

Stability High High Higher Medium

Co

operative

No No No Yes

Resource

Utilization

Low Medium High Medium

Table2: Round Robin, Weighted Round Robin, EWRR, Least

Load comparisons

ANALYSIS EVIDENCE

Server Total

Data

(MB)

Request

per Sec

Bandwidth

(Bytes per

Sec)

Busy

Threads

Main 168 5.78 480.23 8

Server1 66 2.89 152.678 2

Server2 78 3.032 167.35 4

Server3 99 2.732 154.897 3

Table3: Round Robin [3]

Server Total

Data

Request Bandwidth

(Bytes per

Busy

Threads

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

12
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

(MB) per Sec Sec)

Main 189 6.078 512.899 7

Server1 57 3.189 168 3

Server2 65 3.032 176.789 4

Server3 57 3.94 164.234 3

Table4: Weighted Round Robin [3]

Fig:3[9] Execution Completion time

Above tables shows the comparisons of all algorithms whether

single or hybrid. The Table3 data represents that the main server

has 8 busy threads whereas server 1 has only 2 threads that means

the threads are not equally distributed.

Table4 represents the least load algorithm, which shows that as

compared to round robin, least load algorithm is much better.

Fig:3 is the hybrid of the two which gives the better result as

proved by Rashmi Saini.et al. Table4 and Fig:3 shows the

efficiency of WRR algorithm.

To improvise faster and efficient processing in Distributed and

Cloud computing environment, we have election algorithm so

called Bully algorithm. The Bully algorithm used in distributed

computing system for dynamically leader election based on process

ID. The highest process ID number is elected as the leader or

coordinator.

The aim of an election Algorithm execution is selecting the leader

that all processes agree with it. In other words, electing a process

with the highest priority or highest ID number as a leader or

coordinator without other processes contradicting this decision.

Assumptions

 Each process knows the process ID and address of every other

process

 Communication is reliable

 A process initiates an election if it just recovered from failure

or it notices that the coordinator has failed

 Three types of messages: Election, OK, Coordinator

 Several processes can initiate an election simultaneously

 Need consistent result

Bully Algorithm Model

 Any process P can initiate an election.

 P sends Election messages to all process with higher process

IDs and awaits the response.

 The response is called OK message

 When there is no “OK” message, then P becomes coordinator

and sends Coordinator messages to all processes with lower

process IDs.

 If it receives an OK message, it drops out and waits for the

Coordinator’s message

 If a process receives an Election message, immediately sends

Coordinator message if the process has highest process IDs

 Otherwise, returns an OK message, and starts the election

 If a process receives a Coordinator message, then it treats the

sender as the coordinator.

Electing a leader is a classical problem in distributed computing

system. Synchronization between processes often requires one

process acting as a coordinator. If an elected leader node fails, then

the other nodes of the system need to elect another leader without

wasting the time. The bully algorithm is a classical approach for

electing a leader in a synchronous distributed computing system,

which is used to determine the process with highest priority

number as the coordinator. In this scenario, we have discussed the

limitations of Bully algorithm and proposed a simple and efficient

method for the Bully algorithm which reduces the number of

messages during the election. Our analytical mockup shows that,

the proposed algorithm is more efficient than the Bully algorithm.

II MOTIVATION

The fundamental disadvantage of Bully algorithm is that, it has

more number of message passing and do not have fault tolerant. As

it is specified, before message passing it has the order O(n2). It

increases network traffic due to five stages to decide next leader.

Hence, it would waste lot of time for the process to continue their

normal execution process.

Fig4: Stages of Bully Election Algorithm

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

13
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

Fig:4 explains the various stages of Bully leader election

algorithm. Let us consider, there are 7 groups of processes and 4th

process identifies as the leader process and failed, due to not

having the response from the leader.

 Process 4 sends ELECTION message to its higher processes.

That is processes 5, 6 and 7.

 Process 5 and 6 respond by sending OK messages, telling

process 4 that they would take over the execution of electing

the leader.

 Process 5 and 6 holds an election individually leading to two

simultaneous elections.

 The reply of OK message from process 6 to process 5 tells

that it would continue the process of electing the leader.

 Process 6 waits for a clock slice time for a reply from process

7. Since process 7 does not send the reply due to failure,

process 6 will be declared as leader and inform to the rest of

all processes as coordinator.

 After the timeout, process 7 wins the election and informs to

all the processes by sending the COORDINATOR message

and terminates the election algorithm.

Advantages and limitations

The advantages of Bully algorithm are that this algorithm is a

distributed method with simple implementation. [5] [2] [11]

This technique requires at most five phases and the likelihood of

recognizing a crashed process. During the execution of algorithm,

it is lowered in contrast to other algorithms. Therefore, other

algorithms impose heavy traffic in the network in contrast to Bully

algorithm [10]. The major advantage of this algorithm is that only

the processes with higher priority number respect to the priority

number of process, that detects the crash coordinator will be

involved in election, but not all the processes are involved.

However, the two major limitations of Bully algorithm are the

number of stages to decide the new leader and the huge number of

messages exchanged due to the broad-casting of election and OK

messages [1]

Improved Bully Algorithm:

Generally, in fault-tolerant distributed systems the leader node

must perform some specific controlling tasks and this node is well

known to the other nodes. This node does not necessarily possess

any extra processing feature to become elected, but having the

highest process id. Election algorithms need a special mechanism

to elect the leader. After crash failure of the leader node, it is

urgently needed to reorganize the existing active nodes to call for

an election and to elect a leader to continue the operation of the

entire system.

Besides having all the assumptions of the existing algorithm, we

assume that

 All processes hold an election flag

 If the flag is true election cannot be initiated by any process.

 All processes have a variable to store coordinator information.

Step1

Initially all election flags are set to false. When a process, P,

notices that the coordinator crashed, it initiates an election

algorithm

 P sends an ELECTION message to all nodes.

 All processes set their election flag to true, so that no other

process can start parallel election until current election

reaches the end.

 Coordinator variable reset to zero.

 If nobody responds, P wins the election and becomes a

coordinator.

Step2

Once the process receives ELECTION message from one of the

processes with lower numbered:

 The receiver sends an OK message back to the sender to show

that it is alive and will assume control.

 The sender P separate process ID of beneficiary and store it in

coordinator variable. Only process IDs greater than the stored

ID can override the coordinator ID value.

 Finally, all processes responded higher process ID among

them is stored in coordinator variable value.

 The sender P gather coordinator ID from variable and

educated it (coordinator process ID) as coordinator.

 The elected coordinator process cross check with its higher

processes, if any higher process is alive then it will take over

the control, else as of now currently elected process will be

the coordinator.

 The new coordinator declares its victory by sending a

message to all processes, letting them know, it is the new

coordinator.

 All processes set the coordinator ID in coordinator variable

and reset election flag to false.

Step3

Immediately after the process with higher number compare to

coordinator is up, bully algorithm is run.

Fig:5 shows the steps involved in modified Bully election

algorithm.

 Process 4 holds an election

 Process 5 and 6 responds, informing 4 about their presence in

the system by OK message.

 Processes 4 informs 6 to become coordinator.

 Process 6 checks with process 7 if it comes back.

 Since no reply from process 7, process 6 wins and broadcasts

the Coordinator Message to all the processes.

Advantages and limitations

Improved Bully algorithm is having all advantages like fail-safe

mechanism, no parallel election and reduced number of messages

over the network.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

14
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

How long the election initiator should wait to get response from all

higher processes. If we keep a timer then the limitation could be the

timeout value. Higher timeout will raise performance issue and

lower timeout may miss responses from higher processes due to

busy network traffic. However fail-safe mechanism will be very

helpful in this case.

Fig. 5 : Improved Bully Algorithm

Bully Algorithm Procedure

Selecting start node (green) and recognizing coordinator node by

changing the color (red). Election message send from 4 to 5 and

waits till to receive the Message. Once received the response sends

election message to next node viz., 6. Again waits for response. In

this way each should respond then only first round of election is

complete. But this procedure should continue to be remaining all

node.

Fig:6 Bully Algorithm Simulation

Then only can decide which node is to be acted as Coordinator.

Once the Coordinator identified, then the Coordinator sends

message to all nodes as the leader it self. If 10 nodes process

started then the total message count will be 51.

Fig:6(a) and Fig:6(b) shows that, process ID 4 identifies the

absence of the leader and initiates the election by sending the

election message to its higher IDs namely to processes 5, 6, …, 10.

All these processes in turn start their own election and concludes

the election by the coordinator message where process ID 10 is the

new leader. These activities are depicted in Fig:6(c) and Fig:6(d).

In the modified Bully algorithm, a message sent from a node to all

remaining nodes and do not wait for their response. All the

remaining nodes either respond or not. Non-responding nodes are

changed to non-performing mode. Those who are responded are

active nodes and decides the Coordinator node among these nodes.

Once the Coordinator identified, the Coordinator itself sends

message to all nodes as the leader. If the same 10 node cluster

procedure starts from node 4, then the total message count will be

25

Fig:7 Improved Bully Algorithm

The mockup of Bully algorithm is presented in Fig:7(a) and

Fig:7(b) shows that, process ID 4 identifies the absence of the

leader and initiates the election by sending the election message to

its higher ups namely to processes 5, 6, …, 10. Unlike the Bully

algorithm, all these processes reply to the initiator process 4

instead of starting their own election. in Fig:7 (c) and Fig:7(d)

shows that process 4 decides the new coordinator (which is 10 in

our simulation) and informs process 10 to take over and the

election gets concluded by the broadcast of coordinator message

where process ID 10 is the new leader.

Message Comparison

Table5 shows the comparison for both algorithms. In this table we

represent the message growth following by corresponding number

of processes in the distributed network. Table shows that number

of messages are increasing drastically in the Bully algorithm

compare to the modified Bully algorithm.

Processes

Messages Count

Bully Algorithm
Modified Bully

Algorithm

5 24 13

10 99 28

15 224 43

20 399 58

25 624 73

TABLE5: MESSAGE COMPARISON OF BULLY AND MODIFIED BULLY

ALGORITHMS

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

15
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

Fig:8 shows a comparison graph where both Bully and modified

Bully are highlighted in different colors. Graph presents the

comparison where number of nodes represented by X- axis and

number of messages represented by Y- axis. Graph shows that

Bully is having curve shape that describe O(n2) and modified Bully

algorithm is having linear growth described by a straight line with

the complexity of O(n).

Fig:8 Number of messages used during the election

Simulation Result

Our simulation result shows that modified election algorithm is

more efficient as it reduces the number of messages, also avoided

any parallel election process. The comparative results are well

explained by simulation logs, comparison graph and table.

Analytical Comparison

If only one process detects crashed coordinator

N: The number of processes

P: The priority number of processes that find out the crashed

coordinator

Tm: The number of messages passing between processes when

the Pth member detects the crashed Coordinator.

In bully modified algorithm the number of massages passing

between processes for performing election is obtained from the

following formula:

Tm = 2 * (N − P) + N (1)

Which has Order O(n). In the worst case that is P = 1 (process

with lowest priority number finds out crashed coordinator):

T1 = 2 * (N - 1) + 1 = 3N – 1 (2)

Whereas the number of massages passing between processes in

the Bully algorithm for performing election is obtained from the

following formula:

Tm = (N − P + 1) (N – P) + N – 1 (3)

In the worst case that is P = 1 (process with lowest priority

number detects crashed coordinator):

T1 = N2 – 1 (4)

Which has Order O(n2). Number of messages in proposed bully

algorithm will be equal to 3n −1, hence the modified Bully

algorithm is better than bully algorithm.

Now assume that the set of processes in S = {P1, P2, P3, ... Pn}

from processes find out the crashed coordinator concurrently (P1 is

the lowest process).

In Bully algorithm, considering worst case and assuming lowest

process start election, then:

 Total number of election message sent to set (S) of n

processes ({P1, P2, P3… Pn}) are (n - 1).

 Total response message received by P1 is (n - 1)

 Now P2 will send election message to n – 2 processes.

 Total response message received by P2 is (n - 2).

 Similarly, for P3, P4… and Pn.

 Finally, Pn informing to every process by sending coordinator

message is again (n - 1) message.

The number of message passing between processes for performing

election is obtained from the following formula:

Tm = (n – 1) + (n - 2) + (n - 3) + …+ (n – n - 3) + (n – n – 2)

+ (n + n - 1) + (n - 1)

Simplifying the above formula, we get

Tm = n (n + 1) / 2 (5)

which is of O(n2)

In our modified algorithm, considering worst case and assuming

lowest process start election, then:

 Total number of election message sent to set (S) of n

processes ({P1, P2, P3…Pn}) are (n - 1).

 Total response message received is (n - 1).

 Informing to coordinator and coordinator to check with past

coordinator involve two messages

 Finally all the processes i.e. (n-1) are received a message from

the coordinator message.

The number of messages passing between processes for performing

election is obtained from the following formula:

Tm = (n – 1) + (n - 1) + 1 + 1 + (n - 1), or

Tm = 3n – 1 or 3n (6)

 which is of O(n).

III CONCLUSION

In this paper, we discussed the drawbacks of Bully algorithm and

then we presented an optimized method for the Bully algorithm

called modified bully algorithm. Modified Bully algorithm shows

improved performance than the Bully algorithm. The additional

advantages of modified Bully algorithm are that it is very simple,

having fail-safe mechanism, no parallel election, and reduced

number of messages.

Our analytical simulation shows that our algorithm is more

efficient rather than the Bully algorithm, in both number of

message passing and the number of stages, and when only one

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 09 – 16

16
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

process runs the algorithm message passing complexity decreased

from O(n2) to O(n). In this analysis we consider the worst case in

modified algorithm. Result of this analysis clearly shows that

modified algorithm is better than bully algorithm with fewer

message passing in less number of stages.

REFERENCES:

[1] Sung-Hoon-Park,“A Probablistically Correct Election

Protocol in Asynchronous Distributed System “, APPT,

LNCS 2834, pp.177-183, 2003. 13

[2] Chang Ben Ari, “Principles of Concurrent and

Distributed Prog ramming,” Pearson Education, 2nd

edition, 2006. 10

[3] Rashmi Saini and Ashish Bisht,” A Hybrid Algorithm for

Load Balancing” International Journal of Advanced

Research in Computer Science and Software Engineering

5(7), July- 2015, pp. 1-6

[4] Cardellini, Colajanni, and Philip S. Yu, ―Dynamic Load

balancing on web-server systems, published in IEEE

internet Computing, vol. 3, no. 3, pp 28-39, 1999.

[5] H.Garcia-Molina, “Elections in Distributed Computing

System,” IEEE Transaction Computer, vol.c.310, pp.48-

59, 1982. 9

[6] C. Lin, S. Lu, X. Fei et al., “A reference architecture for

scientific workflow management systems and the VIEW

SOA solution,” IEEE Transactions on Services

Computing, vol. 2, no. 1, pp. 79– 92, 2009.

[7] Daniel A. Menascé, George Mason University “Trade-

offs in Designing Web Clusters” IEEE Internet

Computing1089- 7801/ 02 ©2002 IEEE.

[8] O.K. Tonguz and E. Yanmaz, ―On the Theory of

Dynamic Load Balancing, in Proc. IEEE Global

Telecom. Conf. (GLOBECOM’03), vol. 7, pp. 3626-

3630, Dec. 2003.

[9] D. Chitra Devi and V. Rhymend Uthariaraj,” Load

Balancing in Cloud Computing Environment Using

Improved Weighted Round Robin Algorithm for

Nonpreemptive Dependent Tasks”, Hindawi Publishing

Corporation, The Scientific World Journal, Volume

2016, Article ID 3896065, 14 pages.

[10] G. Le Lan, “Distributed System – Towards a Formal

Approach,” Information Processing, B. Gilchrist,

Ed.Amsterdam, The netherlands: North-Holland, pp.155-

160, 1977. 12

[11] Andrew S and Tanenbaum, “Distributed Systems

Principles and Paradigms,” Beijing: Tsinghua University

Press, 2008. 11

[12] Harikesh Singh, Dr. Shishir Kumar “Dispatcher Based

Dynamic Load Balancing on Web Server System,

International Journal of Grid and Distributed Computing,

Vol. 4, No. 3, September 2011.

