
PHYSICAL REVIEW B 84, 205323 (2011)

Electron and hole gas in modulation-doped GaAs/Al1−xGaxAs radial heterojunctions
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We perform self-consistent Schrödinger-Poisson calculations with exchange and correlation corrections to
determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell
nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different
localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to
planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the
GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the
GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high
doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they
present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate
may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or
multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.
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I. INTRODUCTION

Semiconductor nanowires (NWs) are rapidly evolving into
functional nanomaterials,1,2 strongly motivated by applica-
tions in energy harvesting7–9 and electro-optical devices.10

One key direction is the demonstration of core-multi-shell
NWs (CSNWs), multilayered materials where free-standing
NWs, grown vertically on top of a semiconductor surface, are
used as a substrate for the radial overgrowth of multilayers.3–6

The resulting system is a radial heterostructure (as in Fig. 1),
grown radially and wrapped around the core. CSNWs brings
together the self-assembling, bottom-up, quasi-1D nature of
NWs and the flexible engineering of planar 2D heterostructures
(which opened up decades of astonishing developments in
fundamental physics and innovative applications). CSNWs
have the potential to bring the field of NW-based devices to
the level of a new key nanotechnology.

Critical steps have been taken in this direction. Long single-
crystal, defect-free, untapered GaAs NWs, the material class
of choice for quantum transport and high mobility, have been
recently grown.11,12 Epitaxial GaAs/AlGaAs multilayered
structures can be realized with high-quality interfaces,13 and
selective radial doping has been demonstrated.10 Self-catalytic
or catalyst-free growth protocols have been developed, thus
avoiding the use of Au, a source of deep trap formation.5

High-mobility and ballistic transport, similar to GaAs planar
structures, are therefore realistic targets in CSNWs in the short
run.

A typical geometry, as the one investigated in this paper,
is shown in Fig. 1. A GaAs NWs, which typically grows as
hexagonal crystals along the [111] direction exposing the six
{110} facets, is used as the core of the multilayer structure,
which consists of an epitaxial AlGaAs shell, possibly including
a doping layer, and a GaAs capping layer. Surface states
easily deplete the outer layers, and a 2D electron or hole gas
may localize at the inner GaAs/AlGaAs heterointerface. The

latter consists of six planar facets, several tens of nm wide,
interrupted by six edges. The confined electronic system has
the sixfold symmetry of the NW used as a substrate.

It should be noted that in a typical heterojunction the
electron gas extends into the GaAs layer by tens of nm,
due to the balance between kinetic and Coulomb energy
contributions. This is comparable to typical NWs diameters,
and the electron gas on opposite sides of the GaAs core
may strongly couple, as, e.g., in a double heterojunction.14

FIG. 1. (Color online) Schematics of a modulation-doped radial
heterojunction in CSNW system. A GaAs core NW is covered by a
AlGaAs shell, which is either n- or p-doped in the middle and capped
by an additional GaAs layer. Eventually, an electron or hole gas forms
in the core at the heterointerface with the AlGaAs shell. The two thin
lines highlight the facet-to-facet and edge-to-edge directions, which
will be specifically discussed in Sec. III [see also Eq. (9) and text
below].
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Therefore, the free electron gas formation in a CSNW is a
genuinely two-dimensional problem (we assume the CSNW
to be translationally invariant in one dimension). For example,
it is easy to infer that for large doping or size of the structure,
Coulomb energy will induce charge to localize along six
quasi-1D channels at the edges of the interface, to maximize
the average electron-electron distance.

Ab initio atomistic methods are computationally intensive
and therefore limited to very thin NWs, 1–2 nm in diameter.
Nonetheless, they can provide important informations on the
band-alignment and dopant properties.15–17 Modeling of larger
CSNWs is also limited. Recently, the single-particle properties
of a cylindrical electron gas have been simulated including
strong homogeneous and inhomogeneous magnetic fields18

and k · p effects.19 Due to the prismatic geometry of CSNWs,
cylindrical symmetry is broken, and localization at the edges
of the heterointerface may take place.20,21 Therefore, in NWs
with diameters in the tens of nm range, the electronic system
deviates substantially from the idealized cylindrical shape, and
the electron gas may behave as a set of quasi-1D systems,
rather than a uniform electron gas wrapped around the core.
However, the above simulations neglect electron-electron in-
teractions, and the confinement at the GaAs/AlGaAs interface
is assumed, as in a narrow radial quantum well. As mentioned
above, in doped structure the in-plane directions cannot be
disentangled and full calculations need to be performed where
the confinement is self-consistently included.22

In this paper, we discuss the formation of the electron and
hole gas in GaAs/AlGaAs core-shell NWs, which are either
n- or p-doped in the AlGaAs barriers. We will show that
remote charge density, which forms at the inner GaAs/AlGaAs
interface, may be tuned with doping and/or external gates
changing the symmetry and localization of the distribution.
The electron or hole gas has a mixed dimensionality, which
is locally 1D or 2D. From this point of view, remarkable
differences are found between electron and hole gases. We
finally show that the electron or hole gas can be easily
reshaped and tuned between 2D and 1D channels, which can
be individually depleted by a transverse electric field applied
by a back-gate, as in a field-effect-transistor (FET).

This paper is organized as follows. In Sec. II, the physical
and numerical modeling is sketched, and the self-consistent
procedure is described. In Sec. III, the results of our calcu-
lations are illustrated. First, we introduce the prototypical
structure that we investigate and the relevant simulative
parameters. Then, in subsections III B and III C, we report our
results for n- and p-doped systems, respectively. The origin of
the localization patterns is discussed in subsection III D, while
subsection III E deals with a CSNW in FET device. Finally, in
Sec. IV we draw our conclusions.

II. METHOD

The free electron or hole gas of a modulation-doped CSNW
is obtained within an envelope-function approach in a single-
band approximation, including carrier-carrier interaction at
a mean-field level. The coupled system of Schrödinger and
Poisson equations is solved by the usual self-consistent
approach. Assuming translational invariance along the NW
growth axis z, one obtains a 2D problem in the x,y plane. At

each iteration of the self-consitent cycle, the effective-mass
Schrödinger equations for electrons and holes,
{
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are solved on a 2D hexagonal domain representing the cross-
section of the CSNW. Here, r = (x,y) is the 2D coordinate.
me (mh) is the material-dependent effective masse of electrons
(holes), which is assumed isotropic in the x,y plane, and Ec(r),
Ev(r), and V (r) are, respectively, the local conduction-band
edge, the valence-band edge, and the electrostatic potential
generated by free carriers and fully-ionized dopants. The
above equations are numerically integrated to give the set of
eigenfunctions (eigenenergies) for electrons and holes φe(r)
(εe) and φh(r) (εh), respectively.

After the solution of Eqs. (1) and (2) have been determined,
the volumetric total charge density,

ρ(r) = e[nh(r) − ne(r) + ρD(r) − ρA(r)], (3)

is calculated. Here, ρD and ρA are the ionized donor and
acceptor densities, respectively. The densities of free electrons
and holes are
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Here, me (mh) is the effective electron (hole) mass along
the CSNW axial direction, which is in general different from
the in-plane mass of Eqs. (1) and (2). T is the temperature,
μ is the Fermi level, and Fk(x) = 1

�(k+1)

∫ ∞
0

tkdt
et−x+1 is the

complete Fermi-Dirac integral of order k, which results from
the integration of the parabolic dispersion along the growth
direction z.

The electrostatic potential V is computed from the total
charge density by solving the Poisson equation with a material-
dependent relative dielectric constant εr

∇r [εr (r)∇r V (r)] = −ρ(r)

ε0
. (6)

Dirichlet boundary conditions are used, with the potential
on the domain boundaries fixed to either an input value
representing the voltage of a metallic gate in that position
or zero. Several test simulations, with increasing domain size,
confirm that the electrostatic potential at the CSNW surface is
essentially zero when no gate is included.

The contribution due to exchange-correlation (XC) effects
is calculated, via a local density approximation from the
densities ne(r) and nh(r), and added to V , adopting the
well-known approximate expression reported in Refs. 23 and
24. In all the simulations presented in the following, XC effects
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turn out to be almost negligible.22 For the sake of brevity, here
we consider the XC contribution already included in V .

The procedure is iterated, with the new potential V inserted
in Eqs. (1) and (2). The self-consistent cycle is stopped when
the relative variation of the charge density is lower than a given
value Eρ at any position, i.e.,

Amax|ρ(r) − ρ ′(r)|∫
A

ρ(r)dr
< Eρ, (7)

is fulfilled, where A is the area of the simulation domain.
Once convergence is achieved, the linear charge density of

the NW can be calculated (we recall that the system is assumed
to be translationally invariant along z) by the area integration

ρlinear =
∫

A

ρ(r)dr. (8)

To compare the charge density at the heterointerface with a
planar system, we also define the effective sheet charge density,

ρsheet = 1

2

∫
L

ρ[r(l)]dl, (9)

where L is one of the two directions shown in Fig. 1, which
either joins two edges or two facets, and r(l) is a point on
one of these lines. ρsheet represents the sheet charge of an
equivalent planar heterojunction, with a uniform charge along
the interface. In our case, ρsheet is in general different in the two
directions, and is an indication of the preferential localization
of the free charge.

With regards to the numerical approach, the solutions of
Schrödinger and Poisson equations are obtained through a box
integration method25 on a symmetry compliant triangular grid
with hexagonal elements. This choice reproduces the shape
of the domain and the symmetry of the (unbiased) system,
and avoids numerical artifacts originated by discretization
asymmetries of the six domain boundaries, as would be
the case, e.g, using a rectangular grid. Formally, the partial
differential equations Eqs. (1), (2), and (6) are integrated
on each hexagonal element. By applying the divergence
theorem, the area integral is converted in a linear integral
of the flux along the hexagon boundary. A balance between
incoming and outgoing fluxes (obtained through a first-order
finite-differences scheme) of adjacent hexagons connects the
unknowns on different elements. This results in a symmetric
(Hermitian) sparse matrix for the Poisson (Schrödinger)
equation, whose dimension corresponds to the number of
hexagons, and with six nonzero elements on each row. The
matrix for the Schrödinger equation is diagonalized through
a Lanczos library algorithm26 while that for the Poisson
equation is solved, with the known term obtained from ρ,
via an efficient library routine.27 The Fermi-Dirac integral
is computed by using an efficient routine implementing
Chebyshev polynomial expansion.28

Stability of the self-consistent cycle for large and/or heavily
doped structures is delicate. A standard mixing procedure
using an under-relaxation parameter, α, is implemented. At
iteration i, the electrostatic potential at the current iteration V i

is substituted by

V i ← αV i + (1 − α)V i−1. (10)

TABLE I. Material parameters used in the simulations. 	Ec

and 	Ev are the conduction and valence band offsets at the
GaAs/Al0.3Ga0.7As interface.30 Ec and Ev are the conduction band
and valence band edges, respectively. me and me are the relative
electron effective masses in the x,y plane (orthogonal to the CSNW
axis) and along the axis direction, z, respectively. Analogously, mh

and mh are the hole masses. Note that the electron effective mass is
assumed isotropic, while hole effective mass is strongly anisotropic.

GaAs Al0.3Ga0.7As

Ec − Ev [eV] 1.43 1.858
	Ec [eV] 0.284
	Ev [eV] 0.144
me 0.067 0.092
me 0.067 0.092
mh 0.690 0.731
mh 0.105 0.124
εr 13.18 12.24

Although the Poisson and Schrödinger equations are solved on
the same discrete lattice, the charge density extends very little
into the AlGaAs barriers, due to the large depletion operated
by surface states. Typically, we require the wave functions
to vanish at the position of the doping layer. Therefore, the
Schrödinger equation needs to be solved only in a subset of
points of the entire lattice.

Holes are treated in a single-band approach, too. As we shall
discuss in subsection III C, the hole gas is mostly confined at
the GaAs/AlGaAs interfaces, which are directed along the six
{110} directions. The parabolic dispersion for heterostructures
grown along the [110] direction is given in Ref. 29 [Eq. (4.4a)].
The strongly anisotropic mass is heavy in the [110] direction
(roughly twice the mass along the widely used [100] direction)
and light along in-plane direction, here corresponding to the
vertical growth direction [111], as shown later in Table I.

III. RESULTS

A. Structure and simulation details

As a prototype structure (see Fig. 1), we simulate a device
similar to the one described in Ref. 6. A GaAs core 80 nm
wide is surrounded by a 50-nm-wide Al0.3Ga0.7As shell and
by a 10-nm-wide GaAs capping layer. The Al0.3Ga0.7As shell
is uniformly doped in the center with a 10-nm-wide layer at a
constant doping density ρD of donors and ρA of acceptors. Ma-
terial parameters are shown in Table I. μ is taken at the mid-gap
value of GaAs, and all calculations are performed at T = 20 K.

In this section we report results for n- and p-doped
structures. In both cases, the occupation probability of minority
carriers is negligible. Hence, we need to solve only the
relevant equation, among Eqs. (1) and (2). Schrödinger and
Poisson equations are solved on a 2D hexagonal domain,
discretized with a regular hexagonal tessellation. Our sim-
ulations typically use about 2 × 105 hexagonal elements.
The Schrödinger equation is solved on a subset of 5 × 104

elements, as explained in the previous section. The under-
relaxation parameter α = 0.05 and the maximum convergence
relative error allowed in the charge density Eρ = 10−3.
Convergence is typically achieved within 100–200 iterations
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FIG. 2. Top: Linear charge density of the free-electron gas (right) and free-hole gas (left) as a function of the donor density ρD . Bottom:
sheet charge density of the free-electron gas (right) and free-hole gas (left) calculated along the facet-to-facet and edge-to-edge directions
indicated in Fig. 1. Arrows indicate three different densities shown in Fig. 3 for electrons, and Fig. 5 for holes. As the doping density increases,
the free carriers tend to accumulate on the six CSNW edges and form six 1D channels. In the graphs for electrons, results of self-consistent
calculations neglecting XC contributions are also reported (dotted curve).

if the potential V at the first iteration is zeroed. The number of
iterations is substantially reduced by initializing the potential
with a suitable guess, as, e.g., the converged potential at a
slightly different doping density. Of course, converged results
do not depend on this choice.

B. Electron gas localization

We now consider an n-doped CSNW, where a free-electron
gas is eventually formed in the GaAs core or at the inner
heterointerface. Specifically, we investigate the free electron
gas formation as a function of the doping density ρD . Figure 2
(top-left panel) shows the linear free-electron density vs. ρD .
At a threshold density ∼1.4 × 1018 cm−3 the NW starts to be
populated, in qualitative agreement with Refs. 10 and 6. The
linear density is a fraction of ∼107 cm−1 and increases linearly
with doping. Note the tiny difference between the calculations
with and without the XC potential. All the results reported in
the rest of the paper include the XC potential.

The charge density maps reported in Fig. 3 show that the
free-electron gas is localized in the GaAs core, as expected.
Indeed, at sufficiently large doping, the conduction band bends
down from the surface value until the Fermi level (zero in the

right energy scale of the right plots of Fig. 3), which is pinned to
the middle of the gap at the CSNW surface. This is in complete
analogy to the formation of an inversion layer in a remotely
doped planar heterojunction. However, here the localization
is not homogeneous along the heterointerface, and its pattern
strongly depends on the doping density, as we discuss next.

In Fig. 2 (bottom-left panel) we show the sheet charge
density given by Eq. (9) on facets and on edges. At small
doping the two densities are equal, while at larger doping the
edge population becomes dominant. This evolution is made
more clear in the charge density maps of Fig. 3, which refer
to the three densities labeled (a), (b), and (c) in Fig. 2, namely
1.44, 1.5, and 1.65 × 1018 cm−3. At the lowest doping, shown
in Fig. 3(a), the GaAs core starts to be populated, and the
charge is distributed deep into the core. The distribution is
only slightly modulated (right panels) crossing the core along
either the facet-to-facet or edge-to-edge directions, and slightly
depleted in the center of the core. Furthermore, the distribution
is almost circularly symmetric. Accordingly, the two sheet
charge densities in Fig. 2 are equal.

As the doping is increased [Fig. 3(b)] the charge depletion
in the center is more pronounced, and the charge moves
toward the interfaces. The 2D map (left panel) shows that
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FIG. 3. (Color online) Spatial distribution of the free-electron gas
for the three values of the doping density ρD indicated as (a), (b), and
(c) in Fig. 2 (bottom-left panel). ρD values are reported on the right
graphs. For each density we show (left) the 2D map of the charge,
with the GaAs/AlGaAs interface indicated as a solid line, and (right)
the charge density profile (thin line, left axis, units of 1016 cm−3)
and the self-consistent conduction-band profile (thick line, right axis,
units of eV, μ = 0) along the edge-to-edge direction (right, top) and
along the facet-to-facet direction (right, bottom). Note the different
scales for different doping densities.

the distribution is starting to develop a sixfold symmetry, and
the sheet charge density along the edge-to-edge direction is
starting to dominate. For large doping [Fig. 3(c)], the charge
is strongly localized at the edges. This can be seen in the 2D
map (left panel) as well as, more quantitatively, in the two
profiles (right panels). In this regime the charge density has
fully developed the sixfold symmetry and resembles a set of
coupled quantum wires more than a 2DEG: most of the charge
is confined in relatively narrow channels at the edges, while
only a minor part of the charge sits at the facets.

The charge density is obtained from the occupation of
an increasing number of energy subbands. The evolution of
subband energies against the doping density is shown in Fig. 4
with respect to the Fermi energy. As the doping increases,
subbands fall more and more below the Fermi level. Due to the
sixfold symmetry, these states are singly or doubly degenerate,
as indicated.

1.4 1.45 1.5 1.55 1.6 1.65 1.7

−10

−5

0

5

10

Doping density (1018/cm3)

E
ne

rg
y 

(m
eV

)

non degenerate

Fermi energy

doubly degenerate

FIG. 4. Electron subband energy vs. doping density ρD . Each
bullet represents the subband edge resulting from the self-consistent
calculation. The lines (thinner for nondegenerate subbands, thicker
for doubly degenerate subbands) are a guide to the eyes.

C. Valence band holes

Nanowires are easily p-doped. For example, Si is ampho-
teric for GaAs.31 In this section, we discuss the formation of the
hole gas in the same structure of the previous section. We use
a parabolic band approximation with the appropriate effective
masses, as discussed in Sec. II and reported in Table I. Due to
the parabolic approximation, the difference between electron
and hole gases to be discussed below reside only in the much
heavier effective mass of holes.

Figure 2 shows the free-charge density of holes as a function
of the doping level. Similar to the electron gas, there is a
threshold doping density, ∼1.4 × 1018 cm−3, below which no
free charge is obtained. Above this threshold, the linear charge
density (top-right panel) increases linearly, as for conduction
electrons. The equivalent sheet charge density (bottom-right
panel of Fig. 2) along the edge-to-edge and facet-to-facet
directions of the structure also behaves similar to the case
of electrons. In particular, at low doping the two densities are
similar, with the sheet charge density at the edges taking over
when the doping increases.

However, it turns out that holes have a very different
localization pattern with respect to conduction electrons, in
particular at low and intermediate doping. Figure 5 shows the
free-hole density profiles at the three densities (a), (b), and (c)
indicated in Fig. 2 (bottom-right panel), namely 1.45, 1.55,
and 1.65 ×1018 cm−3. Although the sheet charge density is
nearly equal in the two directions at the lowest density, the hole
density is peaked at the facets, while the distribution along the
edge-to-edge direction is low at the edges and broader toward
the core. This is in sharp contrast to conduction electrons,
where at low doping the charge forms a cylindrical distribution
in the core.

At intermediate densities [Fig. 5(b)], the gap between the
facets is filled, and the hole gas is uniformly distributed at

205323-5



BERTONI, ROYO, MAHAWISH, AND GOLDONI PHYSICAL REVIEW B 84, 205323 (2011)

0

1

2

-40 -20 0 20 40
0

1

2

0

5

10

-40 -20 0 20 40
0

5

10

0

10

20

-40 -20 0 20 40
position (nm)

0

10

20

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

ρA= 1.45 x 10
18

cm
-3

ρA= 1.55 x 10
18

cm
-3

ρA= 1.65 x 10
18

cm
-3

(b)

(c)

(a)

FIG. 5. (Color online) Spatial distribution of the free-hole gas for
the three values of the doping density ρA, indicated as (a), (b), and
(c) in Fig. 2 (bottom-right panel). ρA values are reported on the right
graphs. For each density we show (left) the 2D map of the charge,
with the GaAs/AlGaAs interface indicated as a solid line, and (right)
the charge density profile (thin line, left axis, units of 1016 cm−3) and
the self-consistent valence-band profile (thick line, right axis, units
of eV, μ = 0) along the edge-to-edge direction (right, top) and along
the facet-to-facet direction (right, bottom). At the lowest doping (a),
the free holes are localized mainly along the facets, contrary to the
electron case. At intermediate doping (b), the free holes form an
hexagonal ring, a regime which has no counterpart for conduction
electrons.

the GaAs/AlGaAs interfaces. Only weak modulations are
present along the interface going around the core in this very
interesting intermediate regime. Therefore, in this case the
hole gas indeed resembles a 2D hole gas, which is sixfold bent
around the wire. This regime has no counterpart for conduction
electrons. Finally, at the largest density [Fig. 5(c)], instead, the
charge is concentrated at the edges.

The evolution of the hole subbands with doping density
ρA, not shown here, is similar to that of conduction electrons,
except for a larger density of levels due to the heavier mass.
Typical energy splittings are a small fraction of an meV.

D. Origin of localization patterns

To rationalize the behavior of electrons and holes vs. dop-
ing, in particular at low density, we can consider the following

three energy contributions. (1) Repulsive Coulomb energy
between like particles, which requires maximization of the
average interparticle distance and therefore favors localization
at the edges of the inner GaAs/AlGaAs interface. (2) Vertical
localization energy, which is the kinetic energy required to
localize charge at the GaAs/AlGaAs interfaces, similar to a
planar heterojunction. (3) Lateral localization energy, which
is the energy required to localize parallel to the interface, along
a facet or at an edge, the latter being clearly larger.

At low density, when the Coulomb contribution is small,
conduction electrons distribute over the core, since vertical
localization energy is large. Lateral localization would be
also dominant over the small Coulomb energy in this regime.
Hence, the isotropic cylindrical symmetry. The charge gets
localized near the GaAs/AlGaAs interfaces only if the density
and the average Coulomb energy is so large that localization
at the edges is energetically favorable. Indeed, in this regime
the small additional cost in lateral localization energy at the
edges with respect to facets is overcompensated by gain in
Coulomb energy due to interedge repulsion. However, for
holes, the small kinetic energy (one order of magnitude smaller
than for conduction electrons) makes it easier to localize at
the accumulation layer near the interface, even at very low
densities. Since the Coulomb energy is always small in this

FIG. 6. (Color online) Linear electron density integrated over the
three domains of the NW illustrated in the inset, as a function of
the gate voltage. Solid blue lines are used for the domain labeled
as R1, dashed red lines for R2, and dotted yellow lines for R3. The
total electron density is also plotted in thick solid black lines. Two
densities of n-dopants are represented: (a) 1.4 × 1018 cm−3 and (b)
1.64 × 1018 cm−3.
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regime, hole density may localize at the facets rather than at the
edges, where the lateral confinement energy would be larger.

We finally note that the localization depends essentially on
the amount of free charge, which in the present calculation is
tuned by the doping density. Alternatively, one could fix the
doping density to a large value and deplete the electron (hole)
gas by using an external gate around the wire. The different
localization regimes shown above can be obtained using a
proper voltage applied to it. We have explicitly calculated
the charge evolution by simulating an all-around gate and
indeed recovered results (not shown) very similar to the
doping-modulated structures. In the next section, we will show
instead what happens by application of a back-gate to a NW.

E. Biased system

Transport properties of NWs can be measured by integrat-
ing them in planar FETs.32,33 In such devices, a NW is placed
on a substrate covered by a dielectric layer, which separates
the wire from another layer acting as a global back gate. The
applied gate voltage depletes or populates the NWs depending

FIG. 7. (Color online) Spatial distribution of the free-electron
gas in two CSNWs with doping densities 1.4 × 1018 cm−3 (left) and
1.64 × 1018 cm−3 (right) at four selected values of the gate voltage.
Depending on the sign of the voltage, the free electrons tend to localize
near the top or bottom parts of the wire.

on its sign. Thus, it can be used to modulate the conductance
between the source and drain electrodes. We next simulate the
effect of such a back gate, assuming that it is in remote contact
with one of the external facets of the NW, hereafter referred
to as the bottom facet (see inset in Fig. 6). The potential is
set to V = −eVg on the basis edge, where Vg is the applied
electrode voltage in the range Vg = ±1 V. Since the boundary
of our simulation domain corresponds to the CSNW surface
and it is at least 60 nm distant from the free carriers, we assume
that the possible modulations of V along the edges have little
influence on the carrier localization in the core.

In Fig. 7 we show the electron charge density profiles at four
selected gate voltages for two NWs with a low (left) and high
(right) density of dopants. As anticipated, the charge density
no longer shows the symmetric distributions obtained at zero
voltage and tends to accumulate at the top and bottom of the
wire section for negative and positive voltages, respectively.
Interestingly, for the NW with higher density of dopants we
observe how the six quasi-1D channels obtained at zero voltage
can be switched to four and two channels by tuning the voltage

FIG. 8. (Color online) Spatial distribution of the free-hole gas
in two CSNWs with doping densities 1.45 × 1018 cm−3 (left) and
1.65 × 1018 cm−3 (right) at four selected values of the gate voltage.
New charge arrangements are observed not present in the electron-gas
case, e.g., the charge accumulation at the three top facets of the wire
(Vg = 0.05 V).
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to Vg = −0.1 V and Vg = ±0.4 V. Also, note the different
localization for negative voltages at low or high doping, where
charge is distributed in a broad channel or in two narrower
channels, respectively.

The quantitative effect of the gate voltage can be observed in
Fig. 6, where we represent the linear charge density obtained by
integrating the volume charge density over the three domains
depicted in the inset, as a function of the applied voltage. The
total linear charge density is also plotted (black solid line).
Clearly, the three curves coincide at zero bias due to symmetry.
A positive gate voltage does not deplete the top regions of the
wire in favor of a larger electronic concentration in the bottom
of the wire. Instead, the charge density raises quasilinearly in
all regions. This increase is much pronounced in the bottom
regions R1 and R2, while in region R3 the charge remains
nearly constant at the zero bias value. On the other hand, the
evolution of the charge density is not linear when the NW
becomes depleted by applying negative voltages. This fact can
be associated with the smaller density of subbands to populate
at such low-density regimes. Finally, we notice that at high
positive voltages both systems reach the same density regime
with the electrons concentrated at the two bottom edges of the
wire (see, e.g., bottom plots in Fig 7), despite the different
density of dopants.

Figures 8 and 9 show the corresponding results for hole
populated NWs with two different densities of dopants, lower

FIG. 9. (Color online) Linear hole density integrated over the
three domains of the NW illustrated in the inset, as a function of the
gate voltage. Solid blue lines are used for the domain labeled as R1,
dashed red lines for R2, and dotted yellow lines for R3. The total
hole density is also plotted in thick solid black lines. Two densities
of p-dopants are represented: (a) 1.45 × 1018 cm−3 and (b) 1.65 ×
1018 cm−3.

on the left, higher on the right. Clearly, the applied voltage
induces the opposite effect than in the electronic system,
increasing (decreasing) and localizing the charge density at
the bottom (top) of the NW at negative (positive) voltages.
In parallel with the result obtained at zero voltage, the NW
with higher density of p-dopants shows qualitatively the same
behavior as its n-doped counterpart. Thus, in the right panels
of Fig. 8, it can be seen that a NW with two and four quasi-1D
hole channels can be attained by properly tuning the applied
voltage. Nevertheless, the trend of the hole density to localize
in the facets at low-density regimes enables the observation of
new voltage-induced charge arrangements when the density
of dopants is lower. For instance, at Vg = 0.05 V the charge
density is concentrated in the center of the three top facets,
while at Vg = −0.3 V a 2D hole gas is clearly formed over the
bottom facet.

To conclude, in Fig. 9 we show the effect of the gate voltage
on the linear hole density integrated over the three regions of
the NW. The results are equivalent to the electronic case, with
the role of the three regions reversed due to the opposite sign
of the carriers, and can be rationalized along the same lines.

IV. CONCLUSIONS

We have determined the properties of an electron and hole
gas in a realistic model of radial heterojunctions formed in
a modulation-doped GaAs/AlGaAs CSNW. Different local-
ization and symmetry regimes can be realized as a function
of the doping level and/or by a back-gate. Contrary to
planar heterojunctions, conduction electrons do not form a
2DEG well localized at the GaAs/AlGaAs interface but rather
show transitions between different charge distributions across
the section of the CSNWs. For conduction electrons, these
are similar to phases predicted in GaN/AlGaN CSNWs.22

Specifically, we find (i) a cylindrical charge distribution deep
in the GaAs core, and (ii) a set of six tunnel-coupled quasi-1D
channels at the edges of the interface, at low doping and
high doping levels, respectively. For p-doped structures, the
heavier effective mass results in additional phases for the hole
gas, which have no counterpart for conduction electrons. In
particular, with increasing doping levels it is possible to form
(i) six separated planar 2DEGs at the GaAs/AlGaAs interfaces,
(ii) a quasi-uniform sixfold bent 2DEG, (iii) six tunnel-coupled
quasi-1D channels at the edges.

In general, however, our results show that the electron and
hole gases in these structures deviate substantially from an
isotropic distribution at the GaAs/AlGaAs heterointerfaces.
Depending on the doping density and, possibly, the applied
gate potential, the charge density reshapes between quasi-1D
and quasi-2D distributions and moves between facets and
edges localization. This might also have an impact on the
effectiveness of different scattering mechanisms in different
regimes.
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