
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 383 – 387

383

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Dynamic Checkpointing of Composite Web Services

Vani Vathsala A

Dept of CSE, CVR College of Engineering, Hyderabad, India

e-mail: atlurivv@yahoo.com

 Tel.: +919866586106

Abstract Web services provide services to their consumers in accordance with terms and conditions laid down in a document called as Service

Level Agreement (SLA). Web services have to abide by these terms and conditions failing which, SLA faults result. Fault handling of web

services is a key mechanism using which SLA faults can be avoided. We propose fault handling of choreographed web services using

checkpointing and recovery. We propose checkpointing in three stages: design, deployment and dynamic checkpointing. We have presented

first two stages of checkpointing in our earlier publications. In this paper we discuss the need for dynamic checkpointing and, various factors to

be considered while revising checkpoint locations dynamically. We also propose a framework for implementing dynamic checkpointing.

Keywords- web service, web service, checkpointing, Service level Agreement

__*****___

I. INTRODUCTION

A web service is a piece of software that provides a service

and is accessible over Internet. If a web service provides a

service without invoking another web service, then it is called

as an atomic web service. Otherwise it is called as a composite

web service. Participating services (or participants) of a

composite service exchange messages according to the

sequence specified in a document, called as choreography

document, and the composite service is called as

choreographed service.

A business application to be developed as a

composite web service is engineered in the following three

stages: Design, development & deployment, and execution.

Design: List of roles of various participating services, actions

to be performed by them, Sequence of interactions (message

exchanges) among the participating services and, details of

data items exchanged are specified in a document called as

Choreography document.

Development and Deployment: When a web service is

installed on its web server and is ready to accept requests, the

web service is said to be deployed. Web services advertise

their Quality of Service (QoS) attributes like response time,

cost of service etc at the time of deployment. These advertised

QoS values aid service consumers in selection of suitable

services.

Execution: When a service consumer invokes a composite

web service, all the constituent services are executed in the

sequence given in the design document.

Web services need to be equipped with a fault handling

mechanism to provide reliable services. Checkpointing is a

time tested technique that has been used in several areas like

databases, distributed computing etc for handling faults [7].

Checkpointing is a proactive technique which prescribes to

save the state of an application so as to enable its recovery in

case of any failure of the application at a later time. A failed

application rolls back to a previously checkpointed state and

continues its execution from there on.

We have not come across any work on policy-based

checkpointing of composite web services to ensure efficient

handling of faults and subsequently avoid SLA faults. Any

web service checkpointing scheme has to consider the

following important characteristics of web services [9]:

1. Composite nature of web services and non repeatability of

actions. 2. Compliance to SLA. 3. Dynamic selection of

constituent web services. 4. Dynamic nature of the Internet

and web server environments. Considering the above

characteristics of web services, we propose the following three

stage checkpointing strategy, refer to Figure 1:

 Figure 1. Three Stage Checkpointing of a Composite Web Service

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 383 – 387

384

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

In the first stage, called design stage[1], we propose

checkpointing locations using choreography document. In this

stage checkpoints are placed in such a way that web services

performing non repeatable actions are not invoked again in the

event of failure of the invoking web service.

In second stage of checkpointing done at deployment time

called as time and cost aware checkpointing [2], we propose

checkpointing locations in a composite web service such that

time and cost deadlines as specified in SLA are met even in

case of transient failures and subsequent recovery.

Web services advertise their Quality of Service attribute

values in order to aid consumers in selecting web services that

suit their requirements. We use these advertised values in

deciding checkpoint locations. These checkpoints and

checkpoints generated at design time are inserted into web

services in their code before they are deployed on their

servers.

For certain web services, actual QoS values tend to deviate

from advertised QoS values (particularly response time

values). For certain other composite web services, some of the

constituent web services are selected dynamically. In such

cases, there is a need to revise checkpointing locations at run

time for efficient execution of web services. Hence, in this

paper we propose dynamic checkpointing which revises

checkpointing locations in a composite web service at run

time. It uses predicted response time values to decide on

checkpoint locations.

This paper is organized as follows: Section II presents a study

on contemporary work in the field of dynamic checkpointing

and urges the need for checkpointing web services at run time.

Section III elucidates the need for dynamic checkpointing, and

section IV explains the propounded run time checkpointing

strategy. Section V presents the framework designed to

perform dynamic checkpointing, section VI presents

conclusion and future work.

II. RELATED WORK

In this section we present a survey on dynamic checkpointing

strategies proposed in web services and related areas.

Authors of [3] propose an adaptive algorithm named

MeanFailureCP+ that deals with checkpointing of grid

applications with execution times that are unknown apriori.

The algorithm modifies its parameters, based on dynamically

collected feedback on its performance. MeanFailureCP+

monitors dynamically the number of jobs processed during a

monitoring interval of predefined length and based on this

feedback modifies subsequent job length estimates in such a

way that the checkpointing overhead is minimized without

significantly penalizing the system fault-tolerance. The

approach allows for periodic modification of checkpointing

intervals at run-time, when additional information becomes

available.

This algorithm increases checkpointing interval by a value

given by the end user when remaining execution time is lesser

than average failure interval. Else, if job failure interval is

lesser than remaining execution time, it reduces checkpoint

interval by a value given by end user. In modified version of

the algorithm it does not ask the user to give exact job length

value, but estimates it from current number of requests. If

number of jobs in last interval >= number of jobs in current

interval, it reduces the job length by 0.1%, otherwise increases

it by 0.1%.

In [4], authors propose an adaptive task checkpointing based

job scheduling scheme for grid environments; Whenever a

grid resource broker has tasks to schedule on grid resources, it

makes use of the fault index (No of jobs not successfully

completed gives fault index). They propose to maintain and

update the fault index of all available resources of the grid.

The fault index of the grid resource will suggest its

vulnerability to faults (i.e., higher the fault index, higher is the

failure rate). The Fault Tolerant Schedule Manager

(FTScheduleManager) maintains fault index history. A

centralized checkpoint manager CPManager maintains

information of partially executed tasks by the grid resources.

It maintains details of last successful checkpoints taken by

jobs. Grid resource broker allocates jobs to resources based on

fault index.

H.E.Mansour and T.Dillon [5] propose a service oriented

reliability model that dynamically calculates the reliability of a

composite web service and places checkpoints in the

composite web service using expected recovery time.

Work proposed in [6] uses predicted server load to adjust

checkpoint frequency for high throughput data services. The

authors present programming and runtime support called

SLACH for building multi-threaded high-throughput persistent

services. In order to keep in-memory objects persistent,

SIACH employs application-assisted logging and

checkpointing for log-based recovery while maximizing

throughput and concurrency. SIACH adaptively adjusts

checkpointing frequency based on log growth and throughput

demand to balance between runtime overhead and recovery

speed.

We propose a holistic approach to decide on checkpoint

locations which considers 1) dynamic QoS values of all the

invoked web services 2)failure rate variations of the web

service to be checkpointed and 3) provision of dynamic

composition of the web service to be checkpointed.

III. NEED FOR DYNAMIC CHECKPOINTING

Revision of checkpoint locations is required for those web

services for which the following conditions hold good: 1.

Actual response time varies largely from the advertised

response time. 2. Dynamic composition of constituent web

services of Ɛ at run time is facilitated. 3. Failure rate of Ɛ

deviates significantly from the projected failure rate at

deployment.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 383 – 387

385

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

 In the following subsections we detail upon these three

scenarios.

A. Actual Vs advertised response time values

Deployment checkpointing proposed in [2], makes use of

response time of the invoked services in deciding

checkpointing locations for a composite web service Ɛ. The

considered response times are either advertised by providers or

measured by the service requesters/ consumers. In any case,

response time value considered at deployment time represents

an average of a set of values collected under varied conditions.

However, at run time, response times vary from the considered

average values. At times, this difference may be considerable

due to variations in the underlying network traffic and

computing environment.

In case there is a significant difference between the considered

average response time values and the actual values at run time

of a constituent web service of Ɛ, revising checkpoint locations

in Ɛ would improve its performance. There are two important

scenarios to be considered here:

1. Actual Response time of a web service is significantly

greater than its advertised average response time. This

scenario demands addition of checkpoint locations to satisfy

constraints on execution time even when an instance of Ɛ fails

and recovers.

2. Actual Response time of a web service is significantly lesser

than its advertised average response time. In this scenario,

removal of some checkpoint locations results in improved

execution time of failure free instances of Ɛ.

Hence to improve performance of a checkpointed composite

web service we propose to revise checkpointing locations at

run time. In the following subsection we state another reason

which urges for dynamic revision of checkpoint locations.

B. Dynamic composition

Certain composite web services allow for dynamic selection of

some of their constituent web services. Dynamic composition

can be done 1) either from a list SD of statically discovered (at

deployment time) web services or 2) from a dynamically

discovered and selected web services. In both the cases, it’s

not known at deployment time which web service would be

selected at run time. Hence in first case, we have proposed to

use the worst case advertised QoS values (maximum value in

case of response time and cost, and minimum value in case of

reliability) of the web services which are in the static list SD.

In case of discovery of a service dynamically, we would not

even have a list of shortlisted web services at deployment time

and hence we propose to use maximum permissible QoS

values.

In both the cases, there would be large differences in

QoS values considered at deployment and those considered at

run time. Hence checkpoint locations have to be revised

dynamically to allow for better performance of the composite

web service Ɛ.

C. Change in failure rate

After deployment, there may be changes in the failure rate of

the composite web service Ɛ. If difference between the new

failure rate and the failure rate projected at deployment is

significant, there would be considerable differences in

recovery overhead of each of the recovery components. Hence

to tune the performance of Ɛ accordingly, checkpoint locations

have to be revised.

We advocate revision of checkpoint locations dynamically,

due to the above specified reasons. In the following section we

describe the proposed strategy for revision of checkpoint

locations

IV. RUN TIME CHECKPOINTING STRATEGY

In this section, we present our proposed Run time

checkpointing Strategy. In our work proposed in [2], we

introduced deployment time checkpoint locations in a

composite web service Ɛ by making use of advertised QoS

values of Ɛ and also those of web services invoked by Ɛ.

Ideally, actual response times of web services should

be used for dynamic checkpointing. But, actual response time

of a web service can be obtained only after its invocation.

Hence predicted response time which would be almost

equivalent to actual value is used. Response times of web

services differ from time to time; at peek business hours

response time may increase due to heavy traffic, leading to

slow message flow.

We have proposed a traffic aware response time

prediction strategy in [8] that considers equi-length time

intervals (of length t time units). Each interval characterizes a

network condition. Here, for discussion, we have considered

10mins time interval. In practice, the interval can be decided

considering a day long traffic patterns. If t=10mins, then each

hour would be divided into 6 intervals making up to a total of

144 time intervals per day. At the beginning of each time

interval, response time of each of the web services invoked by

Ɛ is predicted.

Since predicted response time values remain same in an

interval, run time checkpointing algorithm is to be run at the

beginning of every time interval to adjust checkpoints in Ɛ. If

the web service Ɛ is dynamically composed from a statically

discovered set SD of services, then we predict response time

of each of the web services in the set SD. If service provider Ɛr

in a component s of Ɛ is dynamically selected from a static list

SDs where SDs is in SD, then instead of using maximum value

of the advertised response times of the probable web services

SDs we propose to use maximum value of the predicted

response times for computation of recovery time overhead for

the component s. Other QoS values (Reliability and Cost of

service) of Ɛr are same as those taken at deployment.

If Ɛ is dynamically composed from a set of services discovered

at run time, there would be no list of probable web services at

our disposal and hence we cannot predict any response time

values. Hence, in this case, we propose to use maximum

permissible values initially at the beginning of each time

interval. When actual execution of Ɛ takes place and actual

response time of a dynamically selected constituent service of

Ɛ becomes available, we propose to adjust checkpoint

locations in the remaining components to be executed. This

strategy is not to be included in run time checkpointing

algorithm which is run at the beginning of each time interval,

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 383 – 387

386

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

but is instrumented into the code of web service Ɛ. Current

failure rate of Ɛ is also considered for revision of checkpoints

to decide whether revision of checkpoints is to be carried out

or not.

V. FRAMEWORK FOR REVISION OF CHECKPOINTS

In this section, we describe the proposed framework required

for introducing checkpoints at run time in a composite web

service Ɛ.

Three main components of this framework are: Prediction

Middleware (PM), Failure rate Measurement Module (FMM)

and Dynamic Checkpointing Module (DCM). Figure 2 depicts

the framework required for revision of checkpoints at runtime.

Prediction Middleware (PM) predicts response time values

of web services invoked by Ɛ. At the beginning of each time

interval T, PM would predict response time values for each of

the web services possibly invoked by Ɛ, according to the given

choreography. PM mainly consists of two modules: Black

Box Module and White Box Module.

Figure 2: Framework for Revision of Checkpoints

If a web service Ɛr , invoked by Ɛ does not reveal its

implementation details (internal structure of the web service,

web server environment details like average waiting time in a

given time interval), then PM uses black box approach to

predict response time of Ɛr . If a web service Ɛr , invoked by Ɛ

does reveal its implementation details, then PM uses white box

approach to predict response time of Ɛr. The prediction results

are made available in the form of tuples called as prediction

tuples and are stored in the database at Ɛ. These predicted

values are used for checkpointing decisions made during the

time interval t.

Each prediction tuple pt is represented as (t, Ɛr, ta, tprt)

where

t is the time interval.

Ɛr is the invoked web service.

ta is the type of approach used. ta=1 for black box approach

and ta=2 for white box approach.

tprt is the predicted response time in msecs.

If white box approach is used for predicting response time of a

web service Ɛr for each time interval t, as many predictions

would be done as there are equivalence classes for input vector

of Ɛr (All input vector values that result in same execution

path are grouped under one equivalence class. Each

equivalence class results in different response time.) But

maximum predicted response time value among them for t

would be used to represent the predicted response time of Ɛr

for the time interval t.

The latest expected failure rate λt of Ɛ would also be made

available by a module called as Failure Management

Module (FMM) at the beginning of each time interval t. We

do not discuss here, about the approaches to be used for

computing λt , any of the classic approaches may be used to

determine λt .

Dynamic Checkpointing Module (DCM) takes up the task of

revising checkpoint locations at run time by invoking Run

time checkpointing algorithm. DCM invokes the algorithm at

the beginning of every time interval t, after prediction tuples

are made available by PM. DCM finally updates the

components with modified C-points (Checkpoints), and stores

them in the database. When an instance of Ɛ starts executing, it

saves its state at all places where C-points are set.

VI. CONCLUSION AND FUTURE SCOPE

In this paper we have argued upon the need to checkpoint a

composite web service Ɛ dynamically, the reasons being:

difference in actual and advertised response times of web

services invoked by Ɛ, failure rate variation of Ɛ at run time

and provision of dynamic composition of Ɛ.

We have also presented a framework that mainly

consists of three modules: prediction module, dynamic

checkpointing module and failure rate management module.

As part of future work, we propose to develop the run time

checkpointing algorithm that revises checkpoints in a

composite web service at run time.

REFERENCES

[1] Vani Vathsala A, HrushikeshaMohanty, “Interaction patterns

based checkpointing of choreographed web services”. In the

Proceedings of the 6th International Workshop on Principles of

Engineering Service Oriented and Cloud Systems (PESOS

2014),Hyderabad, India, pp 28–37,2014.

[2] Vani Vathsala A, HrushikeshaMohanty, “Time and cost aware

checkpointing of choreographed web services”, In the

Proceedings of the 11th International Conference on Distributed

Computing and Information Technology (ICDCIT 2015), India,

pp 207–219,2015.

[3] Chtepen M, Dhoedt B, De Turck F, Demeester P, Claeys F,

Adaptive checkpointing in dynamic grids for uncertain job

durations. In the Proceedings of the 31st International

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 383 – 387

387

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Conference on Information Technology Interfaces, (ICITI) pp

585–590, 2009.

[4] Nazir, Qureshi, and Manuel. Nazir B, Qureshi K, Manuel P, “

Adaptive checkpointing strategy to tolerate faults in economy

based grid”. The Journal of Supercomputing, Vol.50, Issue 1, pp

1–18, 2009

[5] HE Mansour, TDillon, “Dependability and rollback recovery for

composite web services”. IEEE Transactions on Services

Computing Vol 4, Issue 4,pp 328–339,2011.

[6] Zhou J, Zhang C, Tang H, Wu J, Yang T, “Programming

support and adaptive checkpointing for high-throughput data

services with log-based recovery”, In the Proceedings of

IEEE/IFIP International Conference on Dependable Systems and

Networks pp 91–100, 2010.

[7] Chandy KM, Lamport L, “Distributed snapshots: determining

global states of distributed systems”. ACM Transactions on

Computer Systems Vol 3, Issue 1, pp 63–75, 1985.

[8] Vani Vathsala and Hrushikesha Mohanty, “Using hmm for

predicting response time of web services”, In the Proceedings of

the CUBE International Conference, Pune, India, pp 520–525,

2012.

[9] Vani Vathsala A, HrushikeshaMohanty, “A Survey on

checkpointing web services”. In the Proceedings of the 6th

International Workshop on Principles of Engineering Service

Oriented and Cloud Systems (PESOS 2014),Hyderabad, India,

pp 11–17,2014.

