
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 220 – 225

__

220

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Performance Enhancement of Cisc Microcontroller

Mr. K. Sai Krishna
1

 Department of Electronics and Communication

Engineering

Anurag Group of Institutions, Hyderabad, Telangana, India

saikrishnaece@cvsr.ac.in

Mr. G. Sreenivasa Raju
2

Department of Electronics and Communication

Engineering

Anurag Group of Institutions, Hyderabad, Telangana, India

srinivasrajuece@cvsr.ac.in

Abstract- Increase in the speed of the system always demands for a major alteration on the existing system, which result in overall cost of the

implementation of a system. Generally, CISC controllers are used for control operations, which have large number of instruction sets and take a

large amount for processing due to its multiple sizes. For very high speed of controlling these controllers may fail to operate properly. The

alternate solution is the RISC controllers, which are considerably faster than the normal CISC controllers. But these controllers have got various

limitations as less instruction operations, complex register operation, costlier than the CISC controller etc. The only solution to this problem is

the enhancement to the operational speed of a CISC controller, by enhancing the overall controller operation. Additionally, today’s controller

doesn’t support the floating-point operation for signal processing. The enhancement of existing CISC controller by pipelining the overall

operational flow of a CISC microcontroller and it includes the enhancement of UART. This research work is to be implemented using VHDL

language and simulated using Active-HDL tool for functional verification.

Keywords – CISC controller, RISC controller, VHDL.

__*****___

I. INTRODUCTION

1.1 The floating point unit (FPU) implemented during this

project, is a 32-bit processing unit which allows arithmetic

operations on floating point numbers. The FPU complies

fully with the IEEE 754 Standard.

The FPU supports the following arithmetic operations:

 1. Add 2. Subtract 3. Multiply 4. Divide

For each operation the following rounding modes are

supported:

 1. Round to nearest even 2. Round to zero 3. Round

up 4. Round down

The FPU was written in VHDL with top priority to be able

to run at approximately 100-MHz and at the same time as

small as possible. Meeting both goals at the same time was

very difficult and tradeoffs were made. In the following

sections I will explain the theory behind the FPU core and

describe its implementation on hardware.

The FPU core has the following features.

 Implements Single Precision (32-bit).

 Implements Floating point addition, subtraction

and multiplication

 Implements all four rounding modes, round to

nearest, round towards +inf, round towards -inf and

round to zero.

1.2. Floating-point numbers

The floating-point representation is one way to represent

real numbers. A floating-point number n is represented with

an exponent e and a mantissa m, so that:

n = b
e

× m, …where b is the base number (also

called radix)

So for example, if we choose the number n=17 and

the base b=10, the floating-point representation of

17 would be: 17 = 10
1
x 1.7

Another way to represent real numbers is to use fixed-point

number representation. A fixed-point number with 4 digits

after the decimal point could be used to represent numbers

such as: 1.0001, 12.1019, 34.0000, etc. Another way to

represent real numbers is to use fixed-point number

representation. A fixed-point number with 4 digits after the

decimal point could be used to represent numbers such as:

1.0001, 12.1019, 34.0000, etc.

Fig 1. Enhanced CISC controller with FPU

Both representations are used depending on the situation.

For the implementation on hardware, the base-2 exponents

are used, since digital systems work with binary numbers.

Using base-2 arithmetic brings problems with it, so for

example fractional powers of 10 like 0.1 or 0.01 cannot

exactly be represented with the floating-point format, while

with fixed-point format, the decimal point can be thought

away (provided the value is within the range) giving an

exact representation. Fixed-point arithmetic, which is faster

than floating-point arithmetic, can then be used. This is one

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 220 – 225

__

221

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

of the reasons why fixed-point representations are used for

financial and commercial applications.

The floating-point format can represent a wide

range of scale without losing precision, while the fixed-point

format has a fixed window of representation. So for example

in a 32-bit floating-point representation, numbers from 3.4 x

10
38

to 1.4 x 10
-45

can be represented with ease, which is one

of the reasons why floating-point representation is the most

common solution. Floating-point representations also

include special values like infinity, Not-a-Number (e.g.

result of square root of a negative number).

II. ALGORITHM

Enhancement of CISC microcontroller shown in figure

10. Here there are some extra features added to the general

CISC microcontroller, discussed in chapter 5. They are:

1. General Purpose Register file.

2. FPU (Floating-Point Unit).

3. UART (Universal Asynchronous Receiver

Transmitter).

Fig 2. Enhanced CISC Microcontroller

2.1 General Purpose Register File

The structure of General Purpose Register File has

16 general-purpose registers. They are numbered from R16

to R31. R31 instead of R0 to R15 due to 2 reason. Firstly,

immediate instructions like LDI can only address the upper

register. Secondly, the indirect Z-pointer shares the same

register as R30. The address bus connects the register file

and data RAM together. R30 can be used as either a general

register or the Z-pointer (ZP) to address the data RAM. The

working function of GPRF is discussed in chapter 6. The

instruction register is used store the fetched instructions and

connected to the GPRF. The instructions from the register

file passed to the ALU for evaluate the integer values and/or

the FPU for evaluate the floating-point values.

2.2 Floating Point Unit

The floating-point unit (FPU), is a 32-bit

processing unit that allows arithmetic operations on floating

point numbers. An ALU allowed evaluating only integer

arithmetic operations. Here decimal data is truncated and

outputs the integer data only. In this situation, the FPU is

used to evaluate the exponential operations also. The

working function of the FPU is discussed in chapter 9. The

input code (instructions) are taken from the GPRF and

evaluated results are stored into the status register.

2.3 UART

 UART stands for “universal asynchronous receiver

transmitter”. The basic principle of UART is described in

chapter8. Popular serial communication devices in

computers to interfacing low speed peripheral devices such

as the keyboard the mouse modems etc. It is an integrated

serial port means that it may very easily read and write

values to the serial port. If it were not for the integrated

serial port, writing a byte to a serial line would be a rather

tedious process-requiring turning on and of one of the I/O

lines in rapid succession to properly “clock out” each

individual bit, including start bits, stop bits, and parity bits.

Simple communitarian protocol, which can be implemented

on hard or software. Asynchronous communications operate

on independent clocks. Available as chip set software

module soft macro and Hard Macro.

2.3.1 input considerations:

The Design implemented consider a swapping

operation fed onto the Program memory as a test program as

given below:

mov a, #data (00)

mov direct (0), #data (64)

mov direct (64), #data (ff)

mov direct (01), #data (65)

mov direct (65), #data (88)

mov a,@r0

mov direct(48),a

mov a,@r1

mov @r0,a

mov a, direct(48)

mov @r1, a

 NOP

The program clears the content of accumulator by

loading Accumulator with 00. The memory location (00) of

the RAM is loaded with data 64 which indicate the address

location of the first operand. The first operand is then loaded

on to the location specified i.e. Location 64 is loaded with

FF. The memory location (01) of the RAM is loaded with

data 65 which indicate the address location of the second

operand. The second operand 88 gets loaded onto the

location 65. The two operand 88 and FF are then swapped

down via the accumulator. The swapping operation is

performed by indirect addressing mode where the content of

indirectly addressed location given by register 0 is stored

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 220 – 225

__

222

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

onto the accumulator i.e. value of location 64 (88) is stored

to the accumulator. This accumulator data is then passed to a

new memory location for temporary hold of data. This

makes the accumulator free to carry the data of location 65.

 The accumulator data is then passed down to

location 64, which is indirectly pointed by register 0. Finally

the data stored in temporary location is stored onto location

65 via accumulator. This performs the swapping of the two-

memory location via accumulator.

III. SIMULATION RESULTS

3.1 UART Results

Fig 3.1 Simulation results of UART

This is a simulation result of UART module. Here

TxDataT, Shift_ldf, clk, ResetF, clkEnbT, clk16xT are

inputs and DataRdyT, RxData are outputs.

In Transmitter section data transmits to the parallel

to serial. In Receiver section serial data converts into the

parallel data. Here I have used Finite State Machine. In FSM

I have used S0 to S10. Here state 0 is idle state when

transmitter is waiting for the data to be high on input lines.

Transmitter Section:

 Receiver Section:

Fig 3.2 FSM model of Transmitter Section

 Fig 3.3 FSM model of Receiver Section

Here input is TxDataT

ClkEnbT, Clk16xT, shift_LdF are control signals

RxData is output of the Receiver section.

Example:

Input TxDataT=58

if shift_Ldf = 1, ResetF=1, CLKEnbT=1

 then RxData=58

Parllel to Serial Converter

Fig 3.4 Simulation results of parallel to serial converter

 This is a simulation result of parallel to serial

converter. Here input is parallel, load is used for control

signal, shift_reg is inout and serial is an output.

 if load=’0’ then shift_reg <= parallel

elsif clock=’1’ then serial <= shift_reg(7)

shift_reg(7 downto 1) <= parallel(6 downto 0)

Example:

input: parallel data= 00111110

ouput: if load=0 then serial=0,shift_reg=00111110

 else serial=0,shift_reg=01111100

Serial to Parallel Converter

Fig 3.5 Simulation results of serial to parallel converter

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 220 – 225

__

223

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

This is a simulation result of serial to parallel

converter. Here input is si and po is output.

if (Clk'event and Clk='1') then

 tmp <= tmp(6 downto 0) & SI

PO <= tmp;

Example: input: si = 1: ouput: po =

00000001,00000011,00000111,00001111,00011111,001111

11,1111111,

 11111111

General-purpose register result

Fig 3.6 Simulation results of general-purpose register.

This is a simulation result of general-purpose register file.

Here inputs are c, wr_reg, inc_zp, dec_zp, rd, rr, dest, clk,

clrn and reg_rd, reg_rr, addrbus are outputs.

Example: if wr_reg=1,clrn=1 then reg_rd<=c

else reg_rd<=’0’

Floating Point Unit Result

This is a simulation result of addition & subtraction for

Floating Point Unit. Here inputs are opa, opb, and sum, co

are outputs.

Example:

Addition & Subtraction operation:

Inputs: opa=22 (in hex=16) opb=18 (in hex=12)

if add =’1’ then it takes addition operation

otherwise it will take subtraction

Output: sum= 40 (in hex=28) sub= 4 (in hex=4)

Fig 3.7 Simulation results of addition & subtraction for

FPU

Fig 3.8 Simulation results of multiplication and

division for FPU

This is a simulation result of multiplication and

division for Floating Point Unit. Here inputs are opa1,

opb1,opa,opb and prod, quo, remainder are outputs.

Example:

 Multiplication operation:

Inputs: opa1=6 (in hex=6);

opb1= 8 (in hex=8) ;

Output: prod= 48 (in hex=30)

Division operation:

 Inputs: opa = 12 (in hex=c) opb= 4 (in hex= 4) ;

Output: quo= 3 (in hex=3) Remainder =0

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 220 – 225

__

224

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

 Enhanced Microcontroller Results

 Fig 3.9. Simulation results of Enhanced

Microcontroller

This is a simulation result of the Top Level module

microcontroller. Here inputs are c, wr_reg, inc_zp, dec_zp,

rd, rr, dest, clk, clrn, TxDataT, Shift_ldf, clk, ResetF,

clkEnbT, clk16xT, opa, opb, opa1, opb1 are inputs and

reg_rd, reg_rr, addrbus, DataRdyT, RxData, sum co, prod

are outputs.

Example:

if wr_reg=1,clrn=1 then reg_rd<=c

else reg_rd<=’0’

Input TxDataT=cc

if shift_Ldf = 1, ResetF=1, CLKEnbT=1

 then RxData=cc

 Addition & Subtraction operation:

Inputs:

opa=22 (in hex=16)

opb=18 (in hex=12)

if add =’1’ then it takes addition operation

otherwise it will take subtraction

Output:

sum=40 (in hex=28)

sub=4 (in hex=4)

Multiplication Operation:

Inputs:

opa1=6 (in hex=6)

opb1=8 (in hex=8)

Output:

prod=48 (in hex=30)

IV CONCLUSION

The goal of the project is to design a Performance

Enhancement of CISC Microcontroller that is capable of

achieving high speed, low power consumption and reduced

cost. Today’s technology requires high speed for faster

computations; Microcontrollers designed using CISC

architecture has high speed than the normal microcontroller

architectures.

 In this project a low power, high-speed

microcontroller was designed based on the normal

microcontroller architecture. By executing powerful

instructions in a single clock cycle, the designed CISC

microcontroller achieves very high speed of operation. In this

project were also increased the number of blocks in the

microcontroller, which enhances the performance of CISC

architecture, and the instructions are executed directly

through the registers by reducing the storage time and

memory space usage.

The Salient features of the new approach blocks added to

the existing microcontroller are,

 General Purpose Register

 UART (Universal Asynchronous Receiver

Transmitter)

 FPU (Floating Point Unit)

 The key difference between normal microcontroller

and enhanced microcontroller and the

improvements are

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 220 – 225

__

225

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

 Enhancement to the operational speed of a CISC

controller, by enhancing the overall controller

operation by adding GPR, UART &FPU.

 Enhancement of existing Microcontroller by

pipelining the overall operational flow of a CISC

microcontroller.

 By adding FPU the compatibility and flexibility is

increased for floating point operations.

 More number of instructions can be developed for

this enhanced microcontroller.

 Efficiency of the microcontroller increased.

 Simple, and therefore manageable, with less

number of instructions.

 Using this effective design can do the more

complex accelerated computations.

This research was design flow allows the designer to

freely optimize each unit of the design. Users who need to

do real-time data acquisition would benefit by the

Combination of the high-speed performance capabilities

available today with the ability to transfer data. The HDL

code for the proposed system is completely developed in

VHDL language and logically verified on Active-HDL tool.

V. FUTURE SCENARIO

At first, the microcontroller does not contain any

data RAM. So the stack is implemented using hardware just

like controller and is only 4-level deep. Future works should

have the stack implemented in the data RAM using a stack

pointer. This will save up some area and more important, the

stack will be able to keep a few times more entry than the

original hardware stack.

There is only one indirect pointer, the Z-pointer in

this design. If memory access is frequent, more indirect

pointers would make the job easier. Future works should

also include the X-pointer and Y-pointer.

There are many more extra features available in the

CISC microcontroller family, such as the UART serial

interface, SPI serial interface, the 16-bit timer (with output

compare and input capture), etc. The work from this project

should be used as a platform to implement these features in.

REFERENCES

[1] Daniel Tabak, RISC Systems, Research Studies Press Ltd.:

Taunton, Somerset, England TA1 1HD, 1990

[2] M.Morris Mano, Computer System Architecture, Prentice Hall

inc.: Englewood Cliffs, New Jersey 07632, 1993.

[3] The 8051 Microcontroller and Embedded systems by

Muhammad Ali Mazadi, Janice Gillispie Mazadi; Pearson

Edition

[4] Randy H. Katz, Contemporary Logic Design, The

Benjamin/Cummings Publishing Company, Inc.: Redwood

City, California 94065, 1994.

[5] Douglas L. Perry, VHDL, McGraw-Hill Companies, Inc.:

Singapore, 1999.

[6] Jan Gray, Building a RISC system in an FPGA: Part 1,2 & 3,

Circuit Cellar Magazine (http://www.circuitcellar.com), 2000.

[7] J.Bhasaker, A VHDL Primer, Revised Edition, Englewood

Cliffs NJ: Prentice Hall 1995

[8] K. Hoganson, “Mapping Parallel Application Communication

Topology to Rhombic Overlapping-Cluster Multiprocessors”,

accepted for publication, to appear in The Journal of

Supercomputing, To appear 8/2000, Vol. 17, No. 1.

[9] Navabi, Zainalabedin, VHDL Analysis and Modeling of

digital Systems New York; McGrawHill 1993

Test books

[10] Unified Parallel System Modeling project, Directed Study,

Summer-Fall 2000

[11] IEEE computer society: IEEE Standard 754 for Binary

Floating-Point Arithmetic, 1985.

[12] David Goldberg: What Every Computer Scientist Should

Know About Floating-Point Arithmetic, 1991.

[13] W. Kahan: IEEE Standard 754 for Binary Floating-Point

Arithmetic, 1996.

