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ABSTRCT- Support Vector Machine is a powerful classification technique based on the idea of Structural risk minimization. Use of a kernel 

function enables the curse of dimensionality to be addressed. However, a proper kernel function for a certain problem is dependent on the 

specific dataset and till now there is no good method on how to choose a kernel function. In this paper, the choice of the kernel function was 

studied empirically and optimal results were achieved for multi-class SVM by combining several binary classifiers. The performance of the 

multi-class SVM is illustrated by extensive experimental results which indicate that with suitable kernel and parameters better classification 

accuracy can be achieved as compared to other methods. The experimental results of three datasets show that Gaussian kernel is not always the 

best choice to achieve high generalization of classifier although it often the default choice. 

__________________________________________________*****_________________________________________________ 

I. INTRODUCTION 

In the past two decades valuable work has been carried out 

in the area of text categorization [10],[11], optical character 

recognition [13], intrusion detection [14], speech 

recognition [18], handwritten digit recognition [20] etc. All 

such real-world applications are essentially multi-class 

classification problems. Multi-class classification is 

intrinsically harder than binary classification problem 

because the classification has to learn to construct a greater 

number of separation boundaries or relations. Classification 

error rate is greater in multi-class problem than that of 

binary as there can be error in determination of any one of 

the decision boundaries or relations.  

There are basically two types of multi-class classification 

algorithms. The first type deals directly with multiple values 

in the target field i.e.  K- Nearest Neighbor, Naive Bayes, 

classification trees in the class etc... Intuitively, these 

methods can be interpreted as trying to construct a 

conditional probability density for each class, then 

classifying by selecting the class with maximum a posteriori 

probability. For data with high dimensional input space and 

very few samples per class, it is very difficult to construct 

accurate densities. While the other approaches decompose 

the multi -class problem into a set of binary problems and 

then combining them to make a final multi-class classifier. 

This group contains support vector machines, boosting and 

more generally, any binary classifier. In certain settings the 

later approach results in better performance then the 

multiple target approaches.  

Support Vector Machines (SVMs) originally designed for 

binary classification are based on statistical learning theory 

developed by Vapnik [5][19]. Larger and more complex 

classification problems have subsequently been solved with 

SVMs. How to effectively extend it for multi-class 

classification is still an ongoing research issue [16]. The 

most common way to build a k class SVM is by 

constructing and combining several binary classifiers [9]. In 

designing machine learning algorithms, it is often easier to 

first devise algorithms to distinguish between two classes.  

SVMs are learning machines that transform the training 

vectors into a high-dimensional feature space, labeling each 

vector by its class.  It classifies data by determining a set of 

support vectors, which are members of the set of training 

inputs that outline a hyperplane in feature space [19]. It is 

based on the idea of Structural risk minimization, which 

minimizes the generalization error. The number of free 

parameters used in the SVM depends on the margin that 

separates the data points and not on the number of input 

features. SVM provides a generic technique to fit the surface 

of the hyperplane to the data through the use of an 

appropriate kernel function. Use of a kernel function enables 

the curse of dimensionality to be addressed, and the solution 

implicitly contains support vectors that provide a description 

of the significant data for classification [17]. The most 

commonly kernel functions are polynomial, gaussian and 

sigmoidal functions. Although in literature, the default 

choice of kernel function for most of the applications is 

gaussian. In training a support vector machine we need to 

select kernel function and its parameters, and value of 

margin parameter C. The choice of kernel function and 

parameters to map dataset well in high dimension may 

depend on specific datasets. There is no method to 

determine how to choose a appropriate kernel function and 

its parameters for a given dataset to achieve high 

generalization of classifier. The main modeling freedom 

consists in the choice of the kernel function and the 

corresponding kernel parameters, which influences the 

speed of convergence and the quality of results. 

Furthermore, the choice of the regularization parameter C is 

vital to obtain good classification results. 

In this paper, we have studied the choice of the kernel 

function empirically and optimal results were achieved for 

multi-class SVM using three benchmark datasets of UCI 

repository of Machine Learning Databases [1]. This paper is 

organized as follows. Section 2 briefly reviews the basic 

theory of SVM. In section 3, we demonstrates the 

experiments of multi-class SVM (one against all) using 

different kernel functions on few datasets of UCI repository 

and provides the comparative result of classifier accuracy of 

multi-class SVM for different kernel functions. We also 
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compare the accuracy with the available results for different 

datasets. We conclude and discuss scope of future work in 

section 4. 

1. SUPPORT VECTOR MACHINES 

A. Theory of Support Vector Machines 

This section briefly introduces the theory of SVM. Let {(x1, 

y1),…,(xm, ym)} R
n
 }1,1{   be a training set. The SVM 

classifier finds a canonical hyperplane {x   R 
n
 :   w

T
x + b 

= 0, w }, RR  bn , which maximally separates given two 

classes of training samples in R
n
. The corresponding 

decision function }1,1{: nf R  is then given by  f (x) 

= sgn( w
T
x + b). For many practical applications, the 

training set may not be linearly separable. In such cases, the 

optimal decision function is found by solving the following 

quadratic optimization problem: 

 

Minimize: J(w, 
2

1
)   w

T
w + C 



l

i
i

1
  

                                                   Subject to 

                                                yi ( w
T
xi + b) ,1 i    

mii ,...,2,1,0                         (1) 

    

where i is a slack variable introduced to relax the hard-

margin constraints and the regularization constant 0C  

determines the trade-off between the empirical error and the 

complexity term. The generalized optimization is based on a 

theorem about the VC dimension of canonical hyperplanes. 

It was shown that if the hyperplane is constructed under the 

constraint ||w|| A  then the VC- dimension of the class H 

is bounded by 1),22min(  nARh [19], where R is the 

radius of the smallest sphere around the data. Thus, if we 

bound the margin of a function class from below, say by 

2/A, we can control its VC dimension and hence apply the 

SRM principle. 

 

Applying the Karush-Kuhn Tucker complimentarily 

condition [7] which gives optimal solution of a non-linear 

programming problem, we can write w =


m

i 1

yi i  xi  after 

minimizing (1). This is called the dual representation of w. 

A xi with nonzero i  is called a support vector. The 

coefficients i can be found by solving the dual problem of 

(1): 
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1

1




l

i
i  



l

ji
ji

1,
 yi yj xixj 

                                             Subject to
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(2) 

 

Let S be the index set of support vectors, then the optimal 

decision function becomes 

                    f (x) = sgn (
Si

yi i x
T

 xi  + b )                                                       

(3) 

 

The above equation gives an optimal hyperplane in R
n
. 

However, more complex decision surfaces can be generated 

by employing a nonlinear mapping  nR: F while at the 

same time controlling their complexity and solving the same 

optimization problem in F. It can be seen from (2) that xi 

always appears in the form of inner product  xi
T 

xj . This 

implies that there is no need to evaluate the nonlinear 

mapping   as long as we know the inner product in F for a 

given xi,
 
xj  .nR  So, instead of defining  nR:  F  

explicitly, a function RnRnR :K is introduced to 

define an inner product in F. The only requirement on the 

kernel K (x, y ) is to satisfy Mercer’s condition, which states: 

There exists a mapping   and an expansion  

K (x, y) =  
i

iyix )(.)(  

 if and only if, for any g (x) such that 

 g (x)
2
 d x   is finite 

 then  

 K (x, y) g (x) g ( y) dx dy  0 . 

 

Substituting K (xi , xj) for  xi
T

  xj  in  (3) produces a new 

optimization problem: 

 

Maximize    L(α ) = j
ji

i

m

i
i  




 1,2

1

1
yi yj K (xi , xj) 

                                           Subject to 

 miCi ,.....,1,0   

   and   



m

i
iyi

1
0                                                                                  

(4) 

 

Solving it for α  gives a decision function of the form 

                   f (x) = sgn ( 


m

i
iiy

1
 K (xi , xj) + b)                                                  

(5) 

 

Whose decision boundary is a hyperplane in F, and 

translates to nonlinear boundaries in the original space. 

B. Multi-class Support Vector Machines 

All real world classification problems often involve more 

than two classes. Therefore, binary SVMs’ are usually not 

enough to solve the whole problem. The most common way 

to build a k-class SVM is by constructing and combining 

several binary classifiers. To solve multi-class classification 

problems, we divide the whole pattern into a number of 

binary classification problems. The two representative 

ensemble schemes are One against All (1-vs-many) and One 
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against One (1-vs-1) [12]. One against All is also known as 

“one against others.” It trains k binary classifiers, each of 

which separates one class from the other )1( k  classes. 

Given a point X  to classify, the binary classifier with the 

largest output determines the class of X . One against One 

constructs 2/)1( kk  binary classifiers. The outputs of the 

classifiers are aggregated to make the final decision. 

Decision tree formulation is a variant of One against All 

formulation based on decision tree. Error Correcting output 

code is general representation of One against All or One Vs 

One formulation, which uses error correcting codes for 

encoding outputs [dietterich].The One against All approach, 

provides better classification accuracy in comparison to 

others [16]. Consequently, we have applied One against All 

approach in our experiments.  

Commonly used kernels for decision functions of a binary 

SVM classifier such as polynomial, Gaussian and sigmoid 

may not be suitable for binary classification to map every 

dataset well in high dimensional space. There can be other 

functions, which satisfy Mercer’s condition and can enhance 

classifier accuracy by appropriate transformation in high 

dimensional space. Few kernel functions [2] used in our 

experiment are shown in Table I. 

 

Table I:  Kernel Functions 

 

 

 

II. EXPERIMENTAL RESULTS 

1.    Dataset 

In this section, we evaluated the performance of multi-class 

SVM using different kernel functions on datasets of UCI 

repository of Machine Learning [1], Statlog 

collection[].From the UCI Repository we choose the 

following datasets: iris, wine, glass and vowel. From Statlog 

collection we choose all multiclass datasets: vehicle, 

segment, satimage, letter, shuttle. The iris dataset records 

the physical dimensions of three different classes of Iris 

flowers. There are four attributes in the Iris dataset. The 

class Setosa is linearly separable from the other two classes, 

whereas the latter two are not linearly separable from each 

other. The Wine dataset was obtained from chemical 

analysis of wines produced in the same regions of Italy but 

derived from three different cultivars. There are 13 attributes 

and 178 patterns in this wine dataset. There are three classes 

corresponding to the three different cultivars. The 

collections of the Glass dataset were for the study of 

different types of glass, which was motivated by 

criminological investigations. At the scene of crime, the 

glass left can be used as evidence if it is correctly identified. 

The Glass dataset contains 214 cases. There are nine 

attributes and six classes in the Glass Dataset. The Vehicle 

dataset contains 846 cases. There are eighteen attributes and 

four classes. Segment dataset has total 2310 samples with 

seven class labels and total 19 attributes. Vowel dataset 

contains 528 cases with 10 attributes and 11 classes. We 

give problem Statistics in table II 
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2
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Guassian_polynomial 
2

i |xx| 
e * )*1( ixx 2

 

Polynomial )*1( ixx 2
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Table II 

Problem Statistics 

 

Problem #training data #testing data #class #attributes Statlog rate 

Iris 150 0 3 4  

Wine 178 0 3 13  

Glass 214 0 6 9  

Vowel 528 0 11 10  

Vehicle 846 0 4 18  

Segment 2310 0 7 19  

Satimage 4435 2000 6 36 90.6 

Letter 15000 5000 26 16 93.6 

Shuttle 43500 14500 7 9 99.99 

 

III.  Experimental Setup 

The generalization performance is evaluated via a ten-fold 

cross-validation for each dataset. We have considered One 

against All method for designing a multi-class SVM using 

SVM Light. 

 

Results 

For a k-class problem, we have developed multi-class SVM 

by combining k-binary SVM with the same value of C and  

and tested the performance for different choices of kernel 

functions on predefined datasets. The most important criterion 

for evaluating the performance of multi-class. The 

experiments were performed on different datasets using other 

kernel functions. We observed that multi-class SVM with 

genetic programming demonstrates better accuracy for certain 

value of C and . 

 

The best and average cross-validation accuracy are shown in 

Table III with their optimal parameters C and . For 

comparison with multi-class SVM, we have also applied 

decision tree construction algorithm C4.5 [15] on the same 

datasets for determining the best and average cross-validation 

accuracy. It can be observed that the best and average cross-

validation accuracy using multi-class SVM is same or better 

than obtained by C4.5 for all datasets. Similarly, Table IV 

compares the accuracy of multi-class SVM classifier with 

results obtained by C4.5 and available results [9] [20].  The 

best results in each category are indicated in bold. From Table 

IV, It can be observed that our results are better in each 

category.

Table III 

A comparison of classifier accuracy using different kernel functions 

 

Dataset 

Kernel 

 Gauss Cauchy Laplace 
Hyper 

Secant 

Squared 

Sinc 

Symmetri

c 

Triangle 

Polyno

mial 

Guass_

poly         C4.5 

Iris 

Best 
100   

(24,2-5) 
100        

(28,2-10) 
100      (23,2-

5) 
100         

(26,2-3) 
100      

(22,2-1) 
100      

(28,2-1) 

100 

(all 

values 
of C & 

) 

100 

(23, 2-2) 

      100 

Average 
98    (24,2-

5) 

96.667  

(28,2-10) 

96.667 (23,2-

5) 

98            

(26,2-3) 

97.333  

(22,2-1) 

96.667  

(28,2-10) 

100  

      94 

Wine 

Best 
94.444  

(25,2-10) 

94.444        

(29,2-10) 

100      (29,2-

10) 

100         

(212,2-9) 

100      

(212,2-8) 

100      

(212,2-10) 

100 

(all 

values 

of C & 

) 

89.47 
(all 

values 

of C, 2-

11) 

      100 

Average 
82.778 
(25,2-10) 

81.111  
(29,2-10) 

81.667 (29,2-

10) 
94.444            
(212,2-9) 

96.111  
(212,2-9) 

82.222  
(212,2-10) 

100 

(all 

values 
of C & 

) 

 

         92.222 

Glass 

 

Best 
86.364  
(2-1,2-4) 

77.2727        
(24,21) 

81.818     
(22,21) 

86.364        
(20,20) 

86.364    
(20,20) 

81.818      
(20,2-1) 

  

         81.818 

Average 
69.091 

(20,21) 

71.818  

(21,22) 

70.909 

(20,20) 

70.909            

(2-1,21) 

70.455 

(2-1,21) 

69.546  

(20,20) 

  

       71.818 

Vowel Best     

100 

(all values 

of C & ) 
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Average     

100 

(all values 

of C & ) 

 

  
 

 

Vehicle 

Best     

100 

 (all C &  

values) 

 

  
 

 

Average     

100 

(all C &  

values) 

 

  
 

 

Segment 

Best 100 
(all values 

of C & ) 
       

          

Satimage 

Best 91.95 

 

92.8 

 

 

92.65 
 

 

92.75 
 

100 

(all values 

of C & ) 

 

92.5 
 

 

------ 

 

91.6 

 

 

 

Average 
50.458 

 

87.296 

 

77.406 

 

75.197 

 

100 
(all values 

of C & ) 

59.307 

 

 
------- 

 
48.458 

 

 

 

Letter 

Best 
97.84 
 

97.9 

 
97.84 
 

97.82 
 

100 
(all values 

of C & ) 

97.62 
 

 
---- 

97.64 
 

 
 

Average 
92.39333 

 

95.14976 

 

92.2252 

 

78.20952 

 

100 

 

79.29786 

 

 

----- 

81.764

27 
 

 

Shuttle 

Best 

 

99.85 
 

99.88 

 

99.9 

 

99.91 

 

100 

 
99.93 

 

 84.46 

  

Average 
97.95143 

 

99.73214 

 

98.83688 

 

98.419 

 

100 

(all values 

of C & ) 

96.96186 

 

 38.662

57 

 
 

 

Table IV 

A comparison of classifier accuracy using different methods for  multi-class 

 

Dataset 

 

Different 

Methods 

One against 

one    
DAG 

One against 

all  
C & S 

[20] 

Ours 

[9] One against all 

Iris 

 

Accuracy 

(C, γ) 97.333 

(212,2-9) 

 96.667 

(212,2-8) 

 96.667 

(29,2-3) 

 97.333 

(210,2-7) 

 97.333 

(212,2-8) 
100 

(Gauss,28,2-3) 

Wine 

Accuracy 

(C, γ) 99.438 

(27,2-10) 

98.876 

(26,2-9) 

98.876 

(27,2-6) 

98.876 

(21,2-3) 

98.876 

(20,2-2) 
100 

(poly,all values of C & γ) 

Glass 

Accuracy 

(C, γ) 71.495 

(211,2-2) 

73.832 

(212,2-3) 

71.963 

(211,2-2) 

71.963 

(24,21) 

71.028 

(29,2-4) 
86.364 

(HyperSec,20,20) 

Vowel 

Accuracy 

(C, γ) 99.053 

(24,20) 

98.674 

(22,22) 

98.485 

(24, 21) 

98.674 

(21 ,23) 

98.485 

(23, 20) 
100 

(sq. sinc, all values of C & γ) 

Vehicle 

Accuracy 

(C, γ) 86.643 

(29,2-3) 

86.052 

(211,2-3 ) 

87.470 

(211, 2-4) 

86.761 

(29, 2-4) 

86.998 

(210, 2-4) 
100 

(sq. sinc. , all values of C & γ) 

Segment 

Accuracy 

(C, γ) 97.403 

(26,20) 

97.359 

(211,2-3) 

97.532 

(27,20) 

97.316 

(20,23) 

97.576 

(25,20) 
100 

(sq. sinc. , all values of C & γ) 

Dna 

Accuracy 

(C, γ) 95.447 

(23,2-6) 

95.447 

(23,2-6) 

95.784 

(22,2-6) 

95.869 

(21,2-6) 

95.616 

(24,2-6) 
100 

(sq. sinc. , all values of C & γ) 

Satimage 

Accuracy 

(C, γ) 91.3 

(24,20) 

91.25 

(24,20) 

91.7 

(22,21) 

92.35 

(22,22) 

91.25 

(23,20) 

100 

(sq. sinc, all values of C & 
γ) 
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Letter 

Accuracy 

(C, γ) 97.98 

(24,22) 

97.98 

(24,22) 

97.88 

(22,22) 

97.68 

(23,22) 

97.76 

(21,22) 
97.9 

 

Shuttle 

Accuracy 

(C, γ) 99.924 

(211,23) 

99.924 

(211,23) 

99.910 

(29,24) 

99.938 

(212,24) 

99.910 

(29,24) 

100 

(sq. sinc, all values of C & 
γ) 

 

 

IV. CONCLUSION 

The experimental results of three datasets show that 

Gaussian kernel is not always the best choice to achieve 

high generalization of classifier although it often the default 

choice. We exhibit the dependency of classifier accuracy on 

the different kernel functions of the multi-class SVM using 

different dataset. With the choice of kernel function and 

optimal values of parameters C and γ, it is possible to 

achieve maximum classification accuracy for all datasets.  It 

will be interesting and practically more useful to determine 

some method for determining the kernel function and its 

parameters based on statistical properties of the given data.  

Then the proposed method in conjunction with multi-class 

SVM can be tested on application domains such as image 

processing, text classification, intrusion detection etc. We 

are also examining the possibility of integrating fuzzy 

approach in the multi-class SVM classifier. 
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