
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

485

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

An Enhanced Cloud-Based Secure Authentication (ECSA) Protocol Suite for

Prevention of Denial-of-Service (DoS) Attacks

Marwan Darwish

Department of Electrical and Computer Engineering,

University of Western Ontario, London, Canada

mdarwis3@uwo.ca

Dr. Abdelkader Ouda

Department of Electrical and Computer Engineering,

University of Western Ontario, London, Canada

aouda@uwo.ca

Abstract—Cloud systems are currently one of the primary solutions used in the information technology (IT) domain, also known as cloud

services. Cloud services are accessed via an identity authentication process. These authentication processes have become gradually vulnerable to

aggressive attackers who may perform Denial of Service (DoS) attacks to keep cloud services inaccessible. Several strong authentication

protocols have been employed to protect traditional network systems and verify the identity of the users. Nevertheless, these authentication

protocols could cause a DoS threat when implemented in the cloud-computing system. This is because the comprehensive verification process

may exhaust the clouds’ resources and shut their services down. In this work, we propose an enhanced cloud-based secure authentication

protocol suite to operate as DoS resistance on multiple cloud layers. Our proposed solution utilizes multi-technique to prevent external and

internal risks of DoS attacks. These techniques can distinguish legitimate a user’s requests from an attacker’s requests and then direct the

legitimate user to the requested service(s). The cloud’s servers in the proposed authentication process become imprint-free servers, and fully

aware of DoS attacks. To validate the proposed solution, an experiment is conducted using state-of-the-art cloud simulation (GreenCloud). The

experimental results verify that the proposed solution is practically applicable as a lightweight authentication protocol suite in multiple cloud

layers in terms of reliability and scalability.

Keywords-Cloud computing; DoS; Security; Authentication; Protocol

__*****___

I. INTRODUCTION AND RELATED WORKS

Cloud computing is an operation of software and hardware

to deliver solutions to the end users throughout a networking

system like the Internet. It consists of a collection of virtual

machines that models actual computers and provides solutions

such as software applications and operating systems. A cloud-

computing system has three layers: Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a

Service (IaaS) [1] (Fig. 1). SaaS offers clients with access to

the application, PaaS provides clients accessibility to the

operating systems to develop the applications, and IaaS gives

access to physical components of the system [1].

Figure 1. Cloud Computing Architecture

DoS attacks are serious security threats for cloud computing

systems as cloud components are used by many consumers. A

DoS attack focuses on cloud components and cloud services in

order to make the cloud inaccessible by flooding the cloud's

resources with significant amounts of forged requests. The

purpose of DoS attacks is to exhaust the cloud's resources like

network bandwidth, CPUs, memory, or storage systems to

become unreachable to the end users.

Handling DoS attacks in different cloud-computing layers

is a difficult technique due to the process of differentiating

valid user requests from an attacker’s requests [2]. In addition,

DoS attacks in cloud-computing environments can be initiated

externally or internally [3], as shown in Fig. 2. An external

cloud-based DoS attack launches from outside the cloud system

and focuses on the cloud's services to disturb the availability of

these services. Therefore, an external DoS attack can affect the

SaaS and PaaS layers. On the other hand, internal cloud-based

DoS attack originates inside the cloud system, mainly in the

IaaS and PaaS layers. Examples may present themselves in a

number of different ways; for instance, an attacker can take

advantage of free trial periods of some cloud services’

providers. Hence, an authorized client inside the cloud system

may initiate a DoS attack to the targeted services internally.

Figure 2. External and internal cloud-based DoS attacks

Datacenter (Location 2)Datacenter (Location 1)

User

Virtual Datacenter

(IaaS)

Applications

(SaaS)

Virtual Machines

(PaaS)

External

DoS

attack

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

486

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

One of the most commonly implemented authentication

protocols in cloud-computing systems is an OAuth 2.0 protocol

[4]. This protocol conducts the access to a HTTP service

through a third-party application. One implementation of

OAuth 2.0 was developed by Google for web server

applications [5]. This implementation allows web server

frameworks and languages to use Google’s application

program interface (API). The authorization process of this

implementation starts, as shown in Fig. 3, when the web server

application does token request. To request the token, web

server application redirected user’s browser to Google’s

uniform resource locator (URL) that includes some parameters

such as the requested type of access. Google servers controls

the authentication process and then sends the authorization

code to the web server application. The webserver application

will exchange the received authorization code and a user’s

information with Google servers to obtain an access token or

refresh token in a particular case. Consequently, the webserver

application can access a Google API using the received token.

In the case of “offline access”, the webserver application will

exchange the authorization code with Google servers for a

refresh token. For instance, in case that the user is not available

on the browser during the process of issuing a new access

token. Therefore, the refresh token will be provided to Google

servers to get new access token. In this implementation of

OAuth 2.0 for web server application, and in particular the

“offline access” case, the webserver application is required to

store the refresh token in long-term storage for future use. This

refresh access token will be stored as long as the user does not

revoke the granted access to the web server application [5].

Therefore, the attacker may take an advantage of this

implementation to perform a DoS attack due to storage process

as shown in sub-section 4.1.

Figure 3. Authorization process of Google's OAuth 2.0 for web server

application

Host Identity Protocol (HIP) [6] is a type of authentication

protocol that considers DoS attacks in traditional network

systems. In spite of this, it is extremely hard to apply it in the

cloud-computing system because it depends on the host identity

of the network layers in the OSI reference model, and its

configuration and management work at an operating system

level. Furthermore, the use of any authentication protocol that

is dependent on IP address verification (e.g., the IPSec

protocol) makes it hard to hide the identity of the contributors.

Several authentication protocols protect against DoS attack

on cloud computing have been proposed. Choudhury et al. [7]

have proposed an authentication protocol that is aware of DoS

attacks for cloud-computing; they use a smart card reader as an

additional physical device in the authentication process. Kim et

al. [8] proposed a secure authentication protocol for hybrid

cloud-computing architecture. Their proposed protocol relies

on a 2-Factor authentication service with an existing remote

authentication dial in user service (RADIUS) [9]. However,

this protocol by itself is in risk to DoS attack because it

depends on the IP address and the MAC address of the

contributor. An attacker can easily forge an IP address as well

as a MAC address. Therefore, the attacker can take advantage

of this threat and send many forged requests to an external

server.

The Meadows cost-based model approach is an approach to

analyze the computation process of an authentication protocol

when it comes to its vulnerability to DoS attack [10]. This

technique is designed to avoid DoS attacks through the

authentication operation. This cost-based model relies on

exhausted resources’ costs of the protocol's contributors. The

cost-based model approach practically demonstrates the ability

of the protocol in avoiding DoS attacks. In this approach, the

computation cost is described as the overall resource

consumption cost of the user and the server when they get

involved in the authentication process. The cost is computed

throughout the authentication process prior to the process of

detecting DoS attacker and then prevented from completing the

authentication process. The user's total cost is the total cost of

every single operation in the authentication process from the

user's part up until the authentication process completes.

Additionally, the servers' total costs are the total cost of every

single operation throughout the authentication process up until

the user is set to appear either a legitimate user or an attacker.

The following categorizations are proposed by Meadows [10]

for an operation’s cost: expensive, medium, and inexpensive.

The Meadows approach considers that the signature, a check

signature, and exponential operations that are executed

throughout the authentication process are expensive. The

decryption, encryption, and pre-calculated exponential value

operations have medium cost. Every other operation is

inexpensive.

In other work, we proposed a Cloud-based Secure

Authentication (CSA) protocol suite [11] to authenticate the

cloud user in a secure way and to prevent DoS attacks in an

early stage on the SaaS layer. Due to its limitation, it is difficult

to implement CSA protocol suite on PaaS and IaaS to defend

against risks of internal cloud-based DoS attacks. Therefore,

this work enhances our previously proposed CSA protocol suite

Google Servers

 Request token

 Authorization code

 Exchange code for token

 Token response

 Use token to call Google API

 User login & consent

User Web server application

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

487

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

to work as an authentication protocol suite in different cloud

layers including PaaS and IaaS.

The rest of this paper is structured as follows. Section 2

explains the research methodology of this work. Section 3

describes the proposed Enhanced Cloud-based Secure

Authentication (ECSA) protocol suite. Section 4 validates

ECSA protocol suite. Section 5 discusses the proposed work.

Finally, section 6 briefly summarizes the work.

II. RESEARCH METHODOLOGY

Due to the existing of cloud-based DoS attacks in both

forms externally or internally, different cloud layers SaaS,

PaaS, and IaaS are vulnerable to DoS attacks. This work

proposes ECSA protocol suite that is aware of DoS risks in the

different cloud layers; at the same time, it is able to securely

authenticate cloud clients and identify their requests. ECSA

forces the cloud user to do a high computation process while

the cloud server does an inexpensive task. In addition, the

cloud server is not required to store new additional records or

to use extra physical devices during the authentication process.

A well-known “Client puzzle” process is usually applied to

achieve the cost-based model approach in authentication

protocols [12]. This work considers a cryptographic knapsack

[13] as a client puzzle for two reasons. First, it is infeasible

one-way function since it is a type of a NP-complete problem

[14]. Second, it can be adaptable so that the cloud server can

adjust the difficulty level of solving the puzzle according to the

required work from the participated user. The difficulty of the

knapsack problem depends on the object capacity (quantity of

its items) and on the subset size. Notice that when the number

of objects is small, a comprehensive attempt to find a solution

is functional. Also, when the subset size is small compared to

the quantity of knapsack items, the puzzle can be solved in an

acceptable time by applying dynamic programming algorithms.

Thus, changing the quantity of knapsack items and the subset

size identifies the complexity degree of the knapsack problem,

and therefore the cost-based model approach can implemented

in an adaptive way.

A banker’s algorithm approach [15] is also implemented in

this protocol to control the service allocation process and to

prevent risk of internal DoS attack to a specific service host or

specific VM.

A GreenCloud simulator [16] is used as a tool to assess

currently available technique, and the implementation of ECSA

in terms of their venerability to DoS attacks.

III. ENHANCED CLOUD-BASED SECURE AUTHENTICATION

(ECSA) PROTOCOL SUITE

This work proposes an enhanced cloud-based secure

authentication (ECSA) protocol suite to prevent DoS attacks in

different cloud-computing layers. In addition, it securely

authenticates and identifies cloud users who wish to use cloud

services. The ECSA protocol suite can be described in the

following 4 phases, as shown in Fig.4. These phases progress

consecutively such that each phase process begins based on the

output of the previous phase. In the registration phase, the

cloud user follows the registration process in the cloud server

until the user has confirmed to be as a registered and activated

user. Once the user is registered, the cloud server in the

identification and authentication phase will determine whether

the cloud user who requests a cloud service is a legitimate user

or is a DoS attacker. Once the external DoS attack is prevented,

the service management and allocation phase directs the cloud

user to the requested service with awareness to risks of internal

DoS attacks. Finally, once the legitimate user is directed to the

host of the requested service, the host session and

authentication phase authenticates the cloud user to access the

requested service.

Figure 4. The ECSA protocol suite phases

The notations of the ECSA protocol suite are shown in Table

1.

TABLE I. NOTATIONS IN THE ECSA PROTOCOL SUITE

Notation Description

cloud_user The cloud user/client

cloud_server The cloud server/service provider

v_service_host The virtual host of the requested service

CUID Cloud user ID

SVID Service ID

ACL

Access control list; an information set issued by

cloud_serverto allow cloud_user access to the requested

services

UET
Unique encrypted text, the key of which is known only

by cloud_server

SK Session key

A A set of random integers of the server challenge function

S A subset sum of the server challenge function

B A vector representing the challenge function solution

Rcloud_server The nonce generated by cloud_server

T Time stamp

KX Secret key of X

MK Master secret key of cloud_server

Tag
An encryption of time stamp and cloud user ID by master

secret key of cloud_server

Tagv_service_host
An encryption of time stamp and cloud user ID by secret

key of v_service_host

A. Registration phase

In this phase, the cloud server registers and activates the

cloud user in its own database. In addition, the cloud server will

issue a UET for the cloud user to use it in future protocols’

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

488

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

processes. Therefore, a user registration protocol is proposed so

that both participants (cloud_user and cloud_server)

communicate to share mandatory identification information in

order to register cloud_user in the cloud_server’s database. To

achieved this goal the user registration protocol is designed as

the first protocol in ECSA protocol suite.

Figure 5. User registration protocol

In the first line of the user registration protocol, cloud_user

initiates a request to cloud_server that includes cloud_user’s

information, as shown in Fig 5. This information contains, but

is not limited to, cloud_user’s name, phone number, email

address, and other information that cloud_server should

maintain in its database. Cloud_server stores the information

within its database and then sends an email message to

cloud_user to validate the email address as shown in the second

line of the protocol. In the third line of the protocol, once

cloud_user responds to the validation message, it is designated

an activated user. On the other hand, if cloud_user does not

respond to the message within a certain period, the cloud_user

information is deleted from cloud_server. Cloud_server then

issues cloud_user an identification, or ID (CUID), and a UET

that is encrypted by its own master key (MK).

In order to maintain a map between cloud_users and

cloud_server that is aware of DoS attack, cloud_server

generates a tag by encrypting the timestamp (T) and CUID by

its own MK. Cloud_server then inserts the CUID and tag into

its database, particularly in the cloud_user’s information table

(called lookup table in this work), as shown in Fig. 6. Note that

the number of entities in the lookup table depends on the

number of confirmed registered cloud_users. Note also that

cloud_server uses the tag to identify cloud_user based on the

information in the lookup table and to avoid any risk of DoS

attacks.

Figure 6. Cloud_user (lookup) database table structure

Then, cloud_server sends the CUID to cloud_user along

with the UET and tag as shown in the fourth line of the

protocol. This UET includes the CUID, last SK, last T and

service request status, as shown in Fig. 7(a). In case that there

were any services assigned to the cloud_user previously, the

UET includes additionally other information required for other

ECSA protocols such as direct and indirect accessible SVIDs

list, as shown in Fig. 7(b). Note also that the UET was sent to

cloud_user but was not saved on cloud_server.

(a)

(b)

Figure 7. (a) UET structure with no service assigned to cloud_user

(b) UET structure after at least one service assigned to cloud_user

Both participants use a shared secret and a key derivation

function in a very restricted, secure environment for a pre-

shared key (PSK) agreement. This agreement process is similar

to those used in WPA2 and UMTS protocols [17]; cloud_server

then stores the PSK in the lookup table.

As a result, cloud_user in the registration phase has

registered and activated in cloud_server; furthermore,

cloud_server sent a UET to cloud_user. In the following phase,

cloud_server will identify and authenticate the requester who

uses the UET; at the same time, it will aware of external cloud-

based DoS attack.

B. Identification and authentication phase

The goal of the identification and authentication phase is to

make the cloud_server be able to determine whether the

requester is a legitimate cloud_user or not, and then

authenticates the legitimate cloud_user. As such, an adaptive

based identification and authentication protocol is proposed. In

this protocol, cloud_server forces cloud_user to perform a

computational process before cloud_server is involved in any

computational power.

Figure 8. Adaptive-based identification and authentication protocol

As shown in Fig. 8, the steps of the adaptive-based

identification and authentication protocol are as follows:

1) Cloud_user sends an initial session request with the

CUID and tag to cloud_server.

Cloud_server prevents requests from the same CUID once

the consecutive failures reach the maximum allowed (three) in

a short timeframe. Cloud_server identifies the CUID by easily

 New request includes cloud_user information

 Request confirmation data

 Response to confirmation data

 UET||Tag, CUID

cloud_servercloud_user

Tag = E (T + CUID, MK)CUID PSK Other cloud_user s information

CUID Last SK Last T
Service

request status

CUID Last SK Last T Direct accessible SVIDs list Indirect accessible SVIDs list
Service

request status

Session request, CUID, Tag

 S, Rcloud_server, Tag, request UET

CUID, UET||Tag, vector B, S, Rcloud_server

 E(SK, PSK), UET||Tag

cloud_servercloud_user

UET||Tag

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

489

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

looking it up in the lookup table on the database and then

comparing the received tag to the stored tag value in the table.

If they are not identical, the request is considered an

illegitimate request; otherwise, the CUID is identified by

cloud_server. Note that cloud_server is not required to decrypt

the tag until the tag value validated in the lookup table.

2) Cloud_server responds to the request by sending a

puzzle challenge value S, sending a nonce (Rcloud_server), and

requesting the UET from cloud_user. In addition, cloud_server

generates a new tag value and updates the lookup table in the

database. Note that the new tag generation process is repeated

every time cloud_server checks for the tag value so that the

refreshment property has achieved in this protocol.

Cloud_server then sends the newly generated tag to

cloud_user. To prove cloud_user’s sincere commitment,

cloud_server requests the expected puzzle solution (vector B)

along with the UET and tag from cloud_user.

3) Cloud_user computes the puzzle solution (vector B)

and sends it along with the S value, received nonce

(Rcloud_server), CUID, and UET in conjunction with tag to

cloud_server.

4) Cloud_server validates the received tag and CUID by

checking the lookup table. Cloud_server then verifies that

vector B is identical to the result obtained by secure hashing

(CUID, Rcloud_server, MK). Note that the MK size should not

be short in order to avoid any possibility of using a brute-force

attack to guess the MK. Once vector B is verified, cloud_server

achieved the goal of identifying the legitimate cloud_user. On

the other hand, if vector B is not verified, the request is rejected

and assumed as a forgery. Cloud_server then decrypts the UET

and checks the CUID registered in the UET. Furthermore,

cloud_server issues a new tag, as mentioned in the second step

of this protocol. After cloud_server authenticates cloud_user,

both participants agree to the session key (SK) for future

communications; therefore, cloud_server creates the SK and

encrypts it using the stored PSK. It then adds it and the current

T to the UET, and it sends this modified UET in conjunction

with the new tag and the encrypted SK to cloud_user.

5) To confirm receipt, cloud_user encrypts the current T

using the SK and returns it and the received UET along with

the received tag to cloud_server.

6) Cloud_server validates the received tag and UET.

Cloud_server then decrypts the UET to get the registered SK,

which then is used to decrypt T. Note that in order to prevent a

DoS attack on storage space, the UET is not stored in

cloud_server at all. In addition, in this case, T is used instead of

the nonce because cloud_server can verify cloud_user’s

operation time. Furthermore, cloud_server can handle SK’s

refreshment property for future communications by simply

adding the new SK information to the UET and re-applying the

last three steps of this protocol.

Thus, cloud_server in the identification and authentication

phases was able to prevent external DoS attacks. Additionally,

it was able to identify and authenticate the legitimate

cloud_user. Therefore, cloud_user in the next phase can request

for available services in the cloud service provider.

C. Service management and allocation phase

One of the most common causes of the internal DoS attack

is the misuse of cloud resources allocation. The service

management and allocation phase in ECSA enables

cloud_server to allocate the cloud_user to the requested

available service(s) in a way that help prevent risks of internal

cloud-based DoS attacks. To achieve these goals, this work

proposes a service allocation protocol. In this protocol,

cloud_server can organize multiple requests for a specific

service so that deadlocks cannot occur, thus protecting the

services from internal cloud-based DoS attacks.

Figure 9. Service allocation protocol

In the first line of the service allocation protocol,

cloud_user sends the CUID and UET along with the tag to

cloud_server as shown in Fig. 9, asking for available services

(SVIDs). Cloud_server validates the received CUID by first

comparing the received tag with the tag value registered in the

lookup table. If the tag value is valid, cloud_server then

decrypts the UET and validates the CUID; cloud_server also

adds the “service requested” status to the UET. Cloud_server

then checks for SVIDs available in the system and sends a list

of available SVIDs to cloud_user along with the UET and a

newly generated tag as shown in the second line of the

protocol. In the third line of the service allocation protocol,

cloud_user sends a request for a selected SVID from the

received list along with the CUID and UET as well as the tag.

Cloud_server denies any request that includes an invalid tag by

comparing the received tag with one in the lookup table. If the

CUID validated, the requested service may lead to a deadlock

problem because many clients have multiple accesses to the

requested service or other services through the requested

service. Therefore, in order to avoid a deadlock problem and to

prevent an internal DoS attack due to a huge number of forged

requests for a specific service, cloud_server controls the service

allocation process by applying a deadlock avoidance strategy.

If the current request can lead to a deadlock problem by, for

example, by flooding services with false requests, the request

will denied. Hence, cloud_server prevents internal cloud-based

DoS attack and achieves the phase’s goal.

E(ACL, Kv_service_host), UET||Tagv_service_host

CUID, SVID, UET||Tag

 CUID, UET||Tag

List of available services (SVIDs), UET||Tag

cloud_servercloud_user

cloud_server

considers

deadlock

algorithm

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

490

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

One approach for deadlock avoidance is to implement the

banker’s algorithm [15], so that the “requested services”

replace the “current processes”. Moreover, the “required

resources” are those “directly and indirectly accessible

services” that cloud_user needs, as shown in service request

algorithm in Fig. 10(a) and safety algorithm in Fig. 10(b).

Figure 10. (a) Service request algorithm for the user

(b) Safety algorithm

If the service can be allocated to cloud_user based on the

result of the deadlock avoidance process, cloud_server issues

an access control list (ACL) that is encrypted using the secret

key of the service’s host and adds this additional information to

the UET. The ACL contains information such as the CUID, the

requested SVID with permissions, and all other SVIDs

accessible through the requested service with permissions, as

shown in Fig. 11.

Figure 11. Access control list (ACL) structure

Cloud_server also issues a new tag to access the virtual

service host (v_service_host). However, this tag structure is

different than the one used before because it will be used for

identifying cloud_user to v_service_host. The new tag includes

a timestamp (T) along with the CUID that are both encrypted

by v_service_host’s secret key. Then, cloud_server sends the

encrypted ACL, which is a modified UET in conjunction with

new generated Tagv_service_host , to cloud_user as shown in

the fourth line of the protocol. Hence, cloud_user received all

required information to access the requested service after a

lightweight authentication process by the service’s host.

D. Host session and authentication phase

The main goal of the host session and authentication phase

is to authenticate the cloud_user by the host of the requested

service in a lightweight process. To achieve this goal, this work

proposes a service-host lightweight authentication protocol. In

this protocol, cloud_user communicates internally with the

required virtual service host. Consequently, cloud_user must be

authenticated by v_service_host before accessing the requested

service; however, this authentication is a lightweight

authentication process to ensure that the requester is a

legitimate authenticated cloud_user. As shown in Fig. 12, the

service-host lightweight authentication protocol works as

follows:

Figure 12. Service-host lightweight authentication protocol

1) Cloud_user sends a request that includes the CUID and

Tagv_service_host to v_service_host.

2) V_service_host maintains its own lookup table based on

the received CUID and Tagv_service_host. V_service_host

then validates cloud_user by decrypting the received tag

and then comparing the CUID in Tagv_service_host with

the received CUID. This authentication is a lightweight

process because cloud_user is already authenticated by

cloud_server. Once the CUID is identified, v_service_host

acknowledges the request.

3) Cloud_user then sends the encrypted ACL to

v_service_host to decrypt it. Next, v_service_host allows

cloud_user to access the requested service based on the

registered information in the ACL.

Hence, cloud_user is authenticated by the host of the

requested service, and the phase’s goal has been achieved

(a) algorithm service_request
input:
integer n: number of services
integer m: number of users
vector available[m]: available[j] = k means there are k instances of services type Sj available
matrix max[n,m]: max[i,j] = k means user Ui may request at most k instances of services type Sj

matrix allocation[n,m]: allocation[i,j]= k means user Ui is currently allocated k instances of Sj

matrix need[n,m]: need[i,j]= k means user Ui may need k more instances of Sj to complete its task
vector request[]: vector for user Ui, requesti[j] = k means user Ui wants k instances of service type Sj

output:
Determine the availability of the requested service

1. need[i,j] = max[i,j] – allocation[i,j]
2. if requesti [j] needi then

go to step 3
else

error: user has exceeded maximum claim
3. if requesti available, then

go to step 4
else

 user must wait, services are not available
4. available = available - requesti

allocationi = allocationi + requesti
needi = needi – requesti
if safe then

the services are allocated to user
if unsafe then

user must wait, and the old service allocation state is restored

(b) algorithm safety
input:
vector work[m]
vector finish[n]
output:
Determine the safety of the system

1. work = available
2. for i = 0 ... n

finish[i] = false
3. for i = 0 ... n

if finish[i] = false AND needi work then
go to step 4

else
go to step 5

4. work = work + allocationi

finish[i] = true
go to step 3

5. for i = 0 ... n
if finish[i] = true then

system is safe
else

system is unsafe

CUID

SVIDs

SVIDs that are directly accessible with permission

SVIDs

Related SVIDs that are indirectly accessible with permission

CUID, Tagv_service_host

Acknowledge the request

v_service_hostcloud_user

E(ACL, Kv_service_host)

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

491

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

IV. ECSA PROTOCOL SUITE VALIDATION

To validate the design of proposed ECSA protocol suite,

two experiments have been conducted. The former evaluates

the risk of DoS attacks using a data storage technique during

the authentication process in the cloud-computing environment.

The latter validates the effectiveness of ECSA protocols’

processes on the cloud computing system against DoS attacks.

Both experiments are implemented using the GreenCloud

simulator tool developed by Kliazovich et al. [16] as an

extension of the network simulator Ns2 [18].

A. Evaluate a cloud-based authentication protocol with a

storage process

We have mentioned in section 1 above that insecure

implementation of OAuth 2.0 could be vulnerable to DoS

attack, in particular when storing data during the authentication

process. In Google’s implementation of OAuth 2.0 for web

server applications, the server should store the refresh tokens

and keep accessing these stored tokens until they are revoked

by a user request. Consequently, the server could be flooded by

a huge number of stored refresh tokens’ requests until the

server becomes unable to process legitimate users’ requests

even if issuing the refresh token is limited to one token per

user. Therefore, this experiment evaluates the effect of DoS

attacks due to exhausted storage resources on a cloud

computing system.

We started our experiment by determining the actual size of

the refresh token used among different vendors. Based on

Google’s documentation for using OAuth 2.0 for web server

applications [5], and based on Twitter’s documentation [19],

the approximate size of the refresh token is 42 bytes. In

Yahoo’s documentation for OAuth 2.0 [20], the approximate

refresh token size is 52 bytes. Therefore, this experiment

considers that the average expected refresh token size is 48

bytes.

This experiment involved a main server that run and

manage one VM. The expected scenario is that the VM is

sharing the resources of the main server with other VMs.

Therefore, the expected specifications of the VM is a CPU

processor with 4 cores, 4 GB of memory, and 100 GB hard disk

drive. This experiment considers the web server has 1 million

stored refresh tokens out of 1.5 million users who use social

login monthly that is close to real example in industry [21].

Then, the experiment evaluates the performance of the virtual

web server according to its load, its memory load, and its

storage device load with stored tokens. We assume that

reaching approximately 70% load of VM storage device during

processing users’ requests exhausts the storage system.

The charts in Fig. 13 show the experiment results of VM

load, VM memory load, and VM storage load. We noted that

virtual machine storage consumptions start dramatically

increasing when processing approximately 300 requests/second

up to 500 requests/second as shown in Fig.13(c). The web

servers, in general, can handle up to 870 to 1230

requests/second on heavy workload based on the web server

specifications [22]. Note that this storage size (48 MB) is

expandable because it depends on two factors: the number of

stored refresh tokens and the size of the refresh token.

(a)

(b)

(c)

Figure 13. (a) VM load with multiple requests/second

 (b) VM memory load with multiple requests/second

 (c) VM storage load with multiple requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 lo
ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 m
e

m
o

ry
 lo

ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 s
to

ra
ge

 lo
ad

Number of requests/second

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

492

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

This experiment shows that depending on the storage

device during the authentication process can lead to

vulnerability to DoS attacks. Therefore, ECSA protocol suites

avoid this serious flaw and eliminate the need for storing any

information during the authentication phase.

To validate the effectiveness of the ECSA protocol suite

against the risks of DoS during the authentication phase, the

following sub-section shows the effect of the most expensive

computation processes of ECSA protocols on the cloud server.

B. Validate ECSA protocol suite

The cloud_server in the proposed ECSA protocol suite

involved in several processes. This experiment evaluates the

effect of the most expensive computation processes of the

ECSA protocol, including generating random numbers,

encrypting plain text by a well-known key (consider AES256

encryption), decrypting cipher text by a well-known key

(consider AES256 decryption), and the hashing process

(consider SHA2-512) on the cloud server. This experiment

simulates these processes using the GreenCloud simulation

tool by configuring the cloud server specification as the same

as the specification of a virtual web server on the first

experiment. This similarity is to compare the performance of

our proposed ECSA protocol with the currently used cloud-

computing authentication protocol. In this experiment, we

evaluated the effect of the most computationally expensive

processes of the ECSA protocol on VM load, VM memory

load, and VM storage load when executing 300 to 500

requests/second.

To obtain the properties of ECSA protocol’s processes

and to use them in the simulation tool, we implemented a real

virtual machine with four cores, 4 GB of memory, and 100 GB

hard disk drive. We configured Linux OS onto this VM to

benchmark these processes and to obtain their properties. This

is because any process in GreenCloud simulator has its

properties. These properties include million instructions per

second (MIPS), input size, output size, and storage size that

are used during process execution. To measure process’s

MIPS, Linux OS has a CPU speed metric called bogoMIPS.

Therefore, after the process is executed in the Linux OS, we

calculated the MIPS of the process by multiplying the used

CPU bogoMIPS by the process’s execution time [23]. Then,

we obtained the information of the process’s file size before

and after execution. Finally, we obtained the process’s storage

size that was used during the process execution such as the key

size of the AES-256 encryption process.

After executing the four processes in Linux OS, we

obtained the process’ properties, as shown in Table 2. These

collected properties were then used in the GreenCloud

simulation tool.

TABLE II. .PROCESS’ PROPERTIES THAT OBTAINED FROM LINUX OS

BENCHMARK EXPERIMENT

Process type
AES-256

encryption

AES-256

decryption

SHA-512

hashing

Generating

random

numbers

MIPS 3989 3826 3663 3582

Input size 10000 bytes 10016 bytes
10000

bytes
10 bytes

Output size 10016 bytes 10000 bytes 149 bytes 5121 bytes

Storage size 48 bytes 48 bytes 10 bytes 10 bytes

The charts in Fig. 14 show the experiment results after

simulating the four different processes: AES-256 encryption,

AES-256 decryption, SHA2-512 hashing, and generating

random numbers.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

493

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

(a) AES encryption VM load (b) AES encryption VM memory load (c) AES encryption VM storage load

(d) AES decryption VM load (e) AES decryption VM memory load (f) AES decryption VM storage load

(g) SHA512 hashing VM load (h)SHA512 hashing VM memory load (i) SHA512 hashing VM storage load

(j) Generating random number VM load (k) Generating random number VM memory load (l) Generating random number VM storage load

Figure 14. VM load, VM memory load, and VM storage load of ECSA protocol processes with multiple requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

A
ES

 e
n

cr
yp

ti
o

n
 V

M
 l

o
ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

A
ES

 e
n

cr
yp

ti
o

n
 V

M
 m

e
m

o
ry

 lo
ad

Number of requests/second

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

A
ES

 e
n

cr
yp

ti
o

n
 V

M
 s

to
ra

ge
 lo

ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

A
ES

 d
e

cr
yp

ti
o

n
 V

M
 l

o
ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

A
ES

 d
e

cr
yp

ti
o

n
 V

M
 m

e
m

o
ry

 lo
ad

Number of requests/second

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

A
ES

 d
e

cr
yp

ti
o

n
 V

M
 s

to
ra

ge
 lo

ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

SH
A

-5
1

2
 h

as
h

in
g

V
M

 l
o

ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

SH
A

-5
1

2
 h

as
h

in
g

V
M

 m
e

m
o

ry
 lo

ad

Number of requests/second

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

SH
A

-5
1

2
 h

as
h

in
g

V
M

 s
to

ra
ge

 lo
ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

R
an

d
o

m
 n

u
m

b
e

r
ge

n
e

ra
ti

o
n

 V
M

 l
o

ad

Number of requests/second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

R
an

d
o

m
 n

u
m

b
e

r
ge

n
e

ra
ti

o
n

 V
M

 m
e

m
o

ry
 lo

ad

Number of requests/second

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

R
an

d
o

m
 n

u
m

b
e

r
ge

n
e

ra
ti

o
n

 V
M

 s
to

ra
ge

 lo
ad

Number of requests/second

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

494

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

After that, we compared the effect of the computationally

expensive processes of our proposed ECSA protocol on the

VM to the effect of the implementation of OAuth2.0

authentication protocol for web server’s processes that was

simulated in our first experiment. Fig.15(a) shows that AES

encryption and AES decryption are the most processes that

affect VM load. However, all processes including AES

encryption and AES decryption are executed without

noticeable change between these processes’ loads on the VM.

In addition, all processes are exacted with less than 45% of VM

load. Similarly, Fig. 15(b) shows that all processes are executed

in less than 40% load of VM memory without noticeable

change between the processes’ loads on the VM memory. On

the other hand, there is a significant change in the VM storage

load between the proposed ECSA protocol’s processes and the

simulated implementation of OAuth2.0 as shown in Fig. 15(c).

This significant change is because of the 1,000,000 tokens that

stored in the web server, and then they were used in the

authentication process. Therefore, the web server can be

vulnerable to DoS attack due to storing data during the

authentication processes; this technique is avoided in the

proposed ECSA protocol design

V. DISCUSSION

An enhanced cloud-based secure authentication protocol

suite was proposed in this work in order to securely

authenticate and identify a cloud user and to prevent external

and internal risks of DoS attacks. This protocol suite described

in four phases to prevent the risks of DoS attacks in multiple

cloud-computing layers. In this technique, we combine a UET

application, a client puzzle problem, and a deadlock avoidance

algorithm to prevent security threats that allow attackers to

perform cloud-based DoS attacks as stated in section 1.

In this work, we integrated the proposed ECSA protocol

suite with several techniques. We developed the protocol suite

to identify and authenticate the legitimate users’ requests.

Moreover, the protocol suite is developed to prevent external

DoS attackers based on the theory of computational

complexity. Therefore, a cloud-computing server can adjust the

difficulty level of the client puzzle based on the sensitivity of

the requested service(s) and thus protect the cloud server from

external DoS attackers. Additionally, we implemented

deadlock avoidance algorithm to allocate the requested

service(s) to the authenticated cloud user with awareness to

threats of internal DoS attacks. Furthermore, the ECSA

protocol suite is developed so that the host of the requested

service is able to authenticate the cloud user.

The proposed ECSA protocol suite is practically applicable

on different cloud-computing layers. This is because the

protocol is developed based on basic software and hardware

components of both participants. Our validation experiment

demonstrates the applicability of implementing ECSA protocol

on existing hardware and software. Additionally, the

experiment shows the reliability of the proposed ECSA

protocol suite because of two reasons. First, the processes of

the protocol suite do not overload cloud’s resources. Second,

the protocol suite controls the access to the cloud service(s) by

implementing the deadlock problem with no cache process.

Therefore, the cloud server does not allocate the cloud user to

the requested service(s) if the number of maximum allowed

accesses on the same time to these service(s) is achieved.

(a)

(b)

(c)

Figure 13. (a) Comparison of VM load

 (b) Comparison of VM memory load

 (c) Comparison of VM storage load

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 lo
ad

Number of requests/second

Token storage AES Encryption AES Decryption SHA512 hashing Generating random number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 m
e

m
o

ry
 lo

ad

Number of requests/second

Token storage AES Encryption AES Decryption SHA512 hashing Generating random number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

V
M

 s
to

ra
ge

 lo
ad

Number of requests/second

Token storage AES Encryption AES Decryption SHA512 hashing Generating random number

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

495

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Furthermore, the maximum number of allowed accesses to the

cloud’s services is adaptive based on the properties of these

services. As a result, the ECSA protocol suite is scalable as it

can be expandable based on the size of the cloud-computing

system without effect on the cloud computing resources.

This work considers awareness of DoS attacks during

authentication processes through different cloud-computing

layers. However, this work does not consider an existing

implementation of other firewall’s software/hardware or

intrusion detection systems (IDS); this will be considered in

future work.

VI. CONCLUSION

The usage of cloud-computing systems is increasing

nowadays. In these systems, authenticating cloud users within

different cloud layers (i.e., SaaS, PaaS and IaaS) is considered

a security challenge. Because the communication processes

between cloud users and a cloud server are considerable,

attackers may take advantage of these processes to perform

DoS attacks. Using an existing DoS-resistance authentication

protocol in traditional network environments is inapplicable to

prevent these types of attacks because the structures of cloud-

computing systems and traditional networks are extremely

different. This work proposes an enhanced cloud-based secure

authentication (ECSA) protocol suite to authenticate the cloud

user securely through different cloud layers and to prevent DoS

attacks. This protocol relies on an adaptive puzzle challenge

technique and a deadlock avoidance technique to prevent

external and internal cloud-based DoS attacks. At the same

time, this protocol does not require third party devices for cloud

users. The risk of DoS attacks in currently used cloud-based

authentication protocols was assessed in this work. Finally, the

ECSA protocols’ performance was analyzed using the

GreenCloud simulation tool. This analysis shows that our

proposed ECSA protocol suite is a lightweight authentication

protocol suite in terms of reliability and scalability. In addition,

the analysis of ECSA protocol suite shows that proposed

protocol suite is aware of DoS attacks due to storage flaw and it

can be implemented in multiple cloud-computing layers.

ACKNOWLEDGMENT

This work was partially supported by King Abdulaziz

University through the Cultural Bureau of Saudi Arabia in

Canada. This support is greatly appreciated.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud

Computing,” 2011.

[2] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, “A

survey on security issues and solutions at different layers of

Cloud computing,” The Journal of Supercomputing, vol. 63, no.

2, pp. 561–592, Oct. 2013.

[3] M. Darwish, A. Ouda, and L. F. Capretz, “Cloud-based DDoS

Attacks and Defenses,” in International Conference on

Information Society (i-Society), 2013, pp. 67–71.

[4] D. Hardt, “The OAuth 2.0 Authorization Framework,” Rfc 6749,

no. 6749, p. 85, 2012.

[5] Google Developers, “Using OAuth 2.0 for Web Server

Applications - Google Accounts Authentication and

Authorization,” 2014. [Online]. Available:

https://developers.google.com/accounts/docs/OAuth2WebServer

?hl=de. [Accessed: 05-Apr-2015].

[6] R. Moskowits and P. Nikander, “Host Identity Protocol (HIP)

Architecture,” Rfc 4423, no. 4423, p. 24, 2006.

[7] A. J. Choudhury, P. Kumar, M. Sain, H. Lim, and H. Jae-Lee,

“A Strong User Authentication Framework for Cloud

Computing,” in IEEE Asia-Pacific Services Computing

Conference, 2011, pp. 110–115.

[8] J. Kim and J. Moon, “Approach of Secure Authentication

System for Hybrid Cloud Service,” in Advances in Computer

Science and its Applications, vol. 279, H. Y. Jeong, M. S.

Obaidat, N. Y. Yen, and J. J. Park, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2014, pp. 543–550.

[9] C. Rigney, A. Rubens, W. Simpson, and S. Willens, “Remote

Authentication Dial In User Service (RADIUS),” Rfc 2865, no.

2865, p. 76, 1997.

[10] C. Meadows, “A Cost-Based Framework for Analysis of Denial

of Service in Networks,” Journal of Computer Security, vol. 9,

no. 1–2, pp. 143–164, Jan. 2001.

[11] M. Darwish, A. Ouda, and L. F. Capretz, “A cloud-based secure

authentication (CSA) protocol suite for defense against Denial of

Service (DoS) attacks,” Journal of Information Security and

Applications, vol. 20, pp. 90–98, Jan. 2015.

[12] A. Juels and J. Brainard, “Client Puzzles: A Cryptographic

Countermeasure Against Connection Depletion Attacks,” in

Network and Distributed System Security Symposium (NDSS),

1999, pp. 151–165.

[13] A. Salomaa, Public-Key Cryptography, 2nd ed. Berlin: Springer,

1996.

[14] U. Manber, Introduction to Algorithms: A Creative Approach,

1st ed. Addison-Wesley, 1989.

[15] E. W. Dijkstra, Cooperating sequential processes. Springer,

2002.

[16] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: A

packet-level simulator of energy-aware cloud computing data

centers,” Journal of Supercomputing, vol. 62, no. 3, pp. 1263–

1283, 2012.

[17] E. Southern, A. Ouda, and A. Shami, “Wireless security:

securing mobile UMTS communications from interoperation of

GSM,” Security and Communication Networks, vol. 6, no. 4, pp.

498–508, Apr. 2013.

[18] K. Fall and K. Varadhan, “The network simulator (ns-2),” 2007.

[Online]. Available: http://www.isi.edu/nsnam/ns. [Accessed:

05-Apr-2015].

[19] Twitter, “Tokens from dev.twitter.com,” Twitter, Inc., 2015.

[Online]. Available:

https://dev.twitter.com/oauth/overview/application-owner-

access-tokens. [Accessed: 21-Apr-2015].

[20] Yahoo, “Yahoo OAuth 2.0 Guide,” Yahoo Developer Network,

2015. [Online]. Available:

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 485 – 496

496

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

https://developer.yahoo.com/oauth2/guide/index.html.

[Accessed: 21-Apr-2015].

[21] LoginRadius, “EasyToBook: Simple Registration and Boosted

User Engagement,” 2015. [Online]. Available:

http://www.loginradius.com/easytobook-simplify-registration-

and-boost-user-engagement. [Accessed: 12-Jul-2015].

[22] Parallels, “Delivering Extraordinary Density for Cloud Service

Providers,” 2010.

[23] E. Pacini, M. Ribero, C. Mateos, A. Mirasso, and C. G. Garino,

“Simulation on cloud computing infrastructures of parametric

studies of nonlinear solids problems,” in Advances in New

Technologies, Interactive Interfaces and Communicability, vol.

7547, F. Cipolla-Ficarra, K. Veltman, D. Verber, M. Cipolla-

Ficarra, and F. Kammüller, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 58–70.

