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Abstract—Cloud systems are currently one of the primary solutions used in the information technology (IT) domain, also known as cloud 

services. Cloud services are accessed via an identity authentication process. These authentication processes have become gradually vulnerable to 

aggressive attackers who may perform Denial of Service (DoS) attacks to keep cloud services inaccessible. Several strong authentication 

protocols have been employed to protect traditional network systems and verify the identity of the users. Nevertheless, these authentication 

protocols could cause a DoS threat when implemented in the cloud-computing system. This is because the comprehensive verification process 

may exhaust the clouds’ resources and shut their services down. In this work, we propose an enhanced cloud-based secure authentication 

protocol suite to operate as DoS resistance on multiple cloud layers. Our proposed solution utilizes multi-technique to prevent external and 

internal risks of DoS attacks. These techniques can distinguish legitimate a user’s requests from an attacker’s requests and then direct the 

legitimate user to the requested service(s).  The cloud’s servers in the proposed authentication process become imprint-free servers, and fully 

aware of DoS attacks. To validate the proposed solution, an experiment is conducted using state-of-the-art cloud simulation (GreenCloud). The 

experimental results verify that the proposed solution is practically applicable as a lightweight authentication protocol suite in multiple cloud 

layers in terms of reliability and scalability. 
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I. INTRODUCTION AND RELATED WORKS  

Cloud computing is an operation of software and hardware 

to deliver solutions to the end users throughout a networking 

system like the Internet. It consists of a collection of virtual 

machines that models actual computers and provides solutions 

such as software applications and operating systems. A cloud-

computing system has three layers: Software as a Service 

(SaaS), Platform as a Service (PaaS), and Infrastructure as a 

Service (IaaS) [1] (Fig. 1). SaaS offers clients with access to 

the application, PaaS provides clients accessibility to the 

operating systems to develop the applications, and IaaS gives 

access to physical components of the system [1]. 

 
Figure 1. Cloud Computing Architecture 

DoS attacks are serious security threats for cloud computing 

systems as cloud components are used by many consumers. A 

DoS attack focuses on cloud components and cloud services in 

order to make the cloud inaccessible by flooding the cloud's 

resources with significant amounts of forged requests. The 

purpose of DoS attacks is to exhaust the cloud's resources like 

network bandwidth, CPUs, memory, or storage systems to 

become unreachable to the end users. 

Handling DoS attacks in different cloud-computing layers 

is a difficult technique due to the process of differentiating 

valid user requests from an attacker’s requests [2]. In addition, 

DoS attacks in cloud-computing environments can be initiated 

externally or internally [3], as shown in Fig. 2. An external 

cloud-based DoS attack launches from outside the cloud system 

and focuses on the cloud's services to disturb the availability of 

these services. Therefore, an external DoS attack can affect the 

SaaS and PaaS layers. On the other hand, internal cloud-based 

DoS attack originates inside the cloud system, mainly in the 

IaaS and PaaS layers. Examples may present themselves in a 

number of different ways; for instance, an attacker can take 

advantage of free trial periods of some cloud services’ 

providers. Hence, an authorized client inside the cloud system 

may initiate a DoS attack to the targeted services internally. 

 

Figure 2. External and internal cloud-based DoS attacks 
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One of the most commonly implemented authentication 

protocols in cloud-computing systems is an OAuth 2.0 protocol 

[4]. This protocol conducts the access to a HTTP service 

through a third-party application. One implementation of 

OAuth 2.0 was developed by Google for web server 

applications [5]. This implementation allows web server 

frameworks and languages to use Google’s application 

program interface (API). The authorization process of this 

implementation starts, as shown in Fig. 3, when the web server 

application does token request. To request the token, web 

server application redirected user’s browser to Google’s 

uniform resource locator (URL) that includes some parameters 

such as the requested type of access. Google servers controls 

the authentication process and then sends the authorization 

code to the web server application. The webserver application 

will exchange the received authorization code and a user’s 

information with Google servers to obtain an access token or 

refresh token in a particular case. Consequently, the webserver 

application can access a Google API using the received token. 

In the case of “offline access”, the webserver application will 

exchange the authorization code with Google servers for a 

refresh token. For instance, in case that the user is not available 

on the browser during the process of issuing a new access 

token. Therefore, the refresh token will be provided to Google 

servers to get new access token. In this implementation of 

OAuth 2.0 for web server application, and in particular the 

“offline access” case, the webserver application is required to 

store the refresh token in long-term storage for future use. This 

refresh access token will be stored as long as the user does not 

revoke the granted access to the web server application [5]. 

Therefore, the attacker may take an advantage of this 

implementation to perform a DoS attack due to storage process 

as shown in sub-section 4.1. 

 

 
Figure 3. Authorization process of Google's OAuth 2.0 for web server 

application 

 

Host Identity Protocol (HIP) [6] is a type of authentication 

protocol that considers DoS attacks in traditional network 

systems. In spite of this, it is extremely hard to apply it in the 

cloud-computing system because it depends on the host identity 

of the network layers in the OSI reference model, and its 

configuration and management work at an operating system 

level. Furthermore, the use of any authentication protocol that 

is dependent on IP address verification (e.g., the IPSec 

protocol) makes it hard to hide the identity of the contributors. 

Several authentication protocols protect against DoS attack 

on cloud computing have been proposed. Choudhury et al. [7] 

have proposed an authentication protocol that is aware of DoS 

attacks for cloud-computing; they use a smart card reader as an 

additional physical device in the authentication process. Kim et 

al. [8] proposed a secure authentication protocol for hybrid 

cloud-computing architecture. Their proposed protocol relies 

on a 2-Factor authentication service with an existing remote 

authentication dial in user service (RADIUS) [9]. However, 

this protocol by itself is in risk to DoS attack because it 

depends on the IP address and the MAC address of the 

contributor. An attacker can easily forge an IP address as well 

as a MAC address. Therefore, the attacker can take advantage 

of this threat and send many forged requests to an external 

server.  

The Meadows cost-based model approach is an approach to 

analyze the computation process of an authentication protocol 

when it comes to its vulnerability to DoS attack [10]. This 

technique is designed to avoid DoS attacks through the 

authentication operation. This cost-based model relies on 

exhausted resources’ costs of the protocol's contributors. The 

cost-based model approach practically demonstrates the ability 

of the protocol in avoiding DoS attacks. In this approach, the 

computation cost is described as the overall resource 

consumption cost of the user and the server when they get 

involved in the authentication process. The cost is computed 

throughout the authentication process prior to the process of 

detecting DoS attacker and then prevented from completing the 

authentication process. The user's total cost is the total cost of 

every single operation in the authentication process from the 

user's part up until the authentication process completes. 

Additionally, the servers' total costs are the total cost of every 

single operation throughout the authentication process up until 

the user is set to appear either a legitimate user or an attacker. 

The following categorizations are proposed by Meadows [10] 

for an operation’s cost: expensive, medium, and inexpensive. 

The Meadows approach considers that the signature, a check 

signature, and exponential operations that are executed 

throughout the authentication process are expensive. The 

decryption, encryption, and pre-calculated exponential value 

operations have medium cost. Every other operation is 

inexpensive. 

In other work, we proposed a Cloud-based Secure 

Authentication (CSA) protocol suite [11] to authenticate the 

cloud user in a secure way and to prevent DoS attacks in an 

early stage on the SaaS layer. Due to its limitation, it is difficult 

to implement CSA protocol suite on PaaS and IaaS to defend 

against risks of internal cloud-based DoS attacks. Therefore, 

this work enhances our previously proposed CSA protocol suite 
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to work as an authentication protocol suite in different cloud 

layers including PaaS and IaaS. 

The rest of this paper is structured as follows. Section 2 

explains the research methodology of this work. Section 3 

describes the proposed Enhanced Cloud-based Secure 

Authentication (ECSA) protocol suite. Section 4 validates 

ECSA protocol suite. Section 5 discusses the proposed work. 

Finally, section 6 briefly summarizes the work. 

II. RESEARCH METHODOLOGY  

Due to the existing of cloud-based DoS attacks in both 

forms externally or internally, different cloud layers SaaS, 

PaaS, and IaaS are vulnerable to DoS attacks. This work 

proposes ECSA protocol suite that is aware of DoS risks in the 

different cloud layers; at the same time, it is able to securely 

authenticate cloud clients and identify their requests. ECSA 

forces the cloud user to do a high computation process while 

the cloud server does an inexpensive task. In addition, the 

cloud server is not required to store new additional records or 

to use extra physical devices during the authentication process.  

A well-known “Client puzzle” process is usually applied to 

achieve the cost-based model approach in authentication 

protocols [12]. This work considers a cryptographic knapsack 

[13] as a client puzzle for two reasons. First, it is infeasible 

one-way function since it is a type of a NP-complete problem 

[14]. Second, it can be adaptable so that the cloud server can 

adjust the difficulty level of solving the puzzle according to the 

required work from the participated user. The difficulty of the 

knapsack problem depends on the object capacity (quantity of 

its items) and on the subset size. Notice that when the number 

of objects is small, a comprehensive attempt to find a solution 

is functional. Also, when the subset size is small compared to 

the quantity of knapsack items, the puzzle can be solved in an 

acceptable time by applying dynamic programming algorithms. 

Thus, changing the quantity of knapsack items and the subset 

size identifies the complexity degree of the knapsack problem, 

and therefore the cost-based model approach can implemented 

in an adaptive way. 

A banker’s algorithm approach [15] is also implemented in 

this protocol to control the service allocation process and to 

prevent risk of internal DoS attack to a specific service host or 

specific VM.  

A GreenCloud simulator [16] is used as a tool to assess 

currently available technique, and the implementation of ECSA 

in terms of their venerability to DoS attacks. 

III. ENHANCED CLOUD-BASED SECURE AUTHENTICATION 

(ECSA) PROTOCOL SUITE  

This work proposes an enhanced cloud-based secure 

authentication (ECSA) protocol suite to prevent DoS attacks in 

different cloud-computing layers. In addition, it securely 

authenticates and identifies cloud users who wish to use cloud 

services. The ECSA protocol suite can be described in the 

following 4 phases, as shown in Fig.4. These phases progress 

consecutively such that each phase process begins based on the 

output of the previous phase. In the registration phase, the 

cloud user follows the registration process in the cloud server 

until the user has confirmed to be as a registered and activated 

user. Once the user is registered, the cloud server in the 

identification and authentication phase will determine whether 

the cloud user who requests a cloud service is a legitimate user 

or is a DoS attacker. Once the external DoS attack is prevented, 

the service management and allocation phase directs the cloud 

user to the requested service with awareness to risks of internal 

DoS attacks. Finally, once the legitimate user is directed to the 

host of the requested service, the host session and 

authentication phase authenticates the cloud user to access the 

requested service. 

 
Figure 4. The ECSA protocol suite phases 

The notations of the ECSA protocol suite are shown in Table 

1.  

TABLE I.  NOTATIONS IN THE ECSA PROTOCOL SUITE  

Notation Description 

cloud_user The cloud user/client 

cloud_server The cloud server/service provider 

v_service_host The virtual host of the requested service 

CUID Cloud user ID 

SVID Service ID 

ACL 

Access control list; an information set issued by 

cloud_serverto allow cloud_user access to the requested 

services 

UET 
Unique encrypted text, the key of which is known only 

by cloud_server 

SK Session key 

A A set of random integers of the server challenge function 

S A subset sum of the server challenge function 

B A vector representing the challenge function solution 

Rcloud_server The nonce generated by cloud_server 

T Time stamp 

KX Secret key of X 

MK Master secret key of cloud_server 

Tag 
An encryption of time stamp and cloud user ID by master 

secret key of cloud_server 

Tagv_service_host 
An encryption of time stamp and cloud user ID by secret 

key of v_service_host 

A. Registration phase 

In this phase, the cloud server registers and activates the 

cloud user in its own database. In addition, the cloud server will 

issue a UET for the cloud user to use it in future protocols’ 
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processes. Therefore, a user registration protocol is proposed so 

that both participants (cloud_user and cloud_server) 

communicate to share mandatory identification information in 

order to register cloud_user in the cloud_server’s database. To 

achieved this goal the user registration protocol is designed as 

the first protocol in ECSA protocol suite. 

 
Figure 5. User registration protocol 

In the first line of the user registration protocol, cloud_user 

initiates a request to cloud_server that includes cloud_user’s 

information, as shown in Fig 5. This information contains, but 

is not limited to, cloud_user’s name, phone number, email 

address, and other information that cloud_server should 

maintain in its database. Cloud_server stores the information 

within its database and then sends an email message to 

cloud_user to validate the email address as shown in the second 

line of the protocol. In the third line of the protocol, once 

cloud_user responds to the validation message, it is designated 

an activated user. On the other hand, if cloud_user does not 

respond to the message within a certain period, the cloud_user 

information is deleted from cloud_server. Cloud_server then 

issues cloud_user an identification, or ID (CUID), and a UET 

that is encrypted by its own master key (MK). 

In order to maintain a map between cloud_users and 

cloud_server that is aware of DoS attack, cloud_server 

generates a tag by encrypting the timestamp (T) and CUID by 

its own MK. Cloud_server then inserts the CUID and tag into 

its database, particularly in the cloud_user’s information table 

(called lookup table in this work), as shown in Fig. 6. Note that 

the number of entities in the lookup table depends on the 

number of confirmed registered cloud_users. Note also that 

cloud_server uses the tag to identify cloud_user based on the 

information in the lookup table and to avoid any risk of DoS 

attacks. 

 

 

Figure 6. Cloud_user (lookup) database table structure 

Then, cloud_server sends the CUID to cloud_user along 

with the UET and tag as shown in the fourth line of the 

protocol. This UET includes the CUID, last SK, last T and 

service request status, as shown in Fig. 7(a). In case that there 

were any services assigned to the cloud_user previously, the 

UET includes additionally other information required for other 

ECSA protocols such as direct and indirect accessible SVIDs 

list, as shown in Fig. 7(b). Note also that the UET was sent to 

cloud_user but was not saved on cloud_server. 

 

 
(a) 

(b) 

Figure 7. (a) UET structure with no service assigned to cloud_user 

(b) UET structure after at least one service assigned to cloud_user 

Both participants use a shared secret and a key derivation 

function in a very restricted, secure environment for a pre-

shared key (PSK) agreement. This agreement process is similar 

to those used in WPA2 and UMTS protocols [17]; cloud_server 

then stores the PSK in the lookup table. 

As a result, cloud_user in the registration phase has 

registered and activated in cloud_server; furthermore, 

cloud_server sent a UET to cloud_user. In the following phase, 

cloud_server will identify and authenticate the requester who 

uses the UET; at the same time, it will aware of external cloud-

based DoS attack. 

B. Identification and authentication phase  

The goal of the identification and authentication phase is to 

make the cloud_server be able to determine whether the 

requester is a legitimate cloud_user or not, and then 

authenticates the legitimate cloud_user. As such, an adaptive 

based identification and authentication protocol is proposed. In 

this protocol, cloud_server forces cloud_user to perform a 

computational process before cloud_server is involved in any 

computational power. 

 
Figure 8. Adaptive-based identification and authentication protocol 

 

As shown in Fig. 8, the steps of the adaptive-based 

identification and authentication protocol are as follows: 

1) Cloud_user sends an initial session request with the 

CUID and tag to cloud_server. 

Cloud_server prevents requests from the same CUID once 

the consecutive failures reach the maximum allowed (three) in 

a short timeframe. Cloud_server identifies the CUID by easily 
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looking it up in the lookup table on the database and then 

comparing the received tag to the stored tag value in the table. 

If they are not identical, the request is considered an 

illegitimate request; otherwise, the CUID is identified by 

cloud_server. Note that cloud_server is not required to decrypt 

the tag until the tag value validated in the lookup table. 

2) Cloud_server responds to the request by sending a 

puzzle challenge value S, sending a nonce (Rcloud_server), and 

requesting the UET from cloud_user. In addition, cloud_server 

generates a new tag value and updates the lookup table in the 

database. Note that the new tag generation process is repeated 

every time cloud_server checks for the tag value so that the 

refreshment property has achieved in this protocol. 

Cloud_server then sends the newly generated tag to 

cloud_user. To prove cloud_user’s sincere commitment, 

cloud_server requests the expected puzzle solution (vector B) 

along with the UET and tag from cloud_user. 

3) Cloud_user computes the puzzle solution (vector B) 

and sends it along with the S value, received nonce 

(Rcloud_server), CUID, and UET in conjunction with tag to 

cloud_server. 

4) Cloud_server validates the received tag and CUID by 

checking the lookup table. Cloud_server then verifies that 

vector B is identical to the result obtained by secure hashing 

(CUID, Rcloud_server, MK). Note that the MK size should not 

be short in order to avoid any possibility of using a brute-force 

attack to guess the MK. Once vector B is verified, cloud_server 

achieved the goal of identifying the legitimate cloud_user. On 

the other hand, if vector B is not verified, the request is rejected 

and assumed as a forgery. Cloud_server then decrypts the UET 

and checks the CUID registered in the UET. Furthermore, 

cloud_server issues a new tag, as mentioned in the second step 

of this protocol. After cloud_server authenticates cloud_user, 

both participants agree to the session key (SK) for future 

communications; therefore, cloud_server creates the SK and 

encrypts it using the stored PSK. It then adds it and the current 

T to the UET, and it sends this modified UET in conjunction 

with the new tag and the encrypted SK to cloud_user. 

5) To confirm receipt, cloud_user encrypts the current T 

using the SK and returns it and the received UET along with 

the received tag to cloud_server.  

6) Cloud_server validates the received tag and UET. 

Cloud_server then decrypts the UET to get the registered SK, 

which then is used to decrypt T. Note that in order to prevent a 

DoS attack on storage space, the UET is not stored in 

cloud_server at all. In addition, in this case, T is used instead of 

the nonce because cloud_server can verify cloud_user’s 

operation time. Furthermore, cloud_server can handle SK’s 

refreshment property for future communications by simply 

adding the new SK information to the UET and re-applying the 

last three steps of this protocol. 

Thus, cloud_server in the identification and authentication 

phases was able to prevent external DoS attacks. Additionally, 

it was able to identify and authenticate the legitimate 

cloud_user. Therefore, cloud_user in the next phase can request 

for available services in the cloud service provider. 

C. Service management and allocation phase  

One of the most common causes of the internal DoS attack 

is the misuse of cloud resources allocation. The service 

management and allocation phase in ECSA enables 

cloud_server to allocate the cloud_user to the requested 

available service(s) in a way that help prevent risks of internal 

cloud-based DoS attacks. To achieve these goals, this work 

proposes a service allocation protocol. In this protocol, 

cloud_server can organize multiple requests for a specific 

service so that deadlocks cannot occur, thus protecting the 

services from internal cloud-based DoS attacks. 

 
Figure 9. Service allocation protocol 

In the first line of the service allocation protocol, 

cloud_user sends the CUID and UET along with the tag to 

cloud_server as shown in Fig. 9, asking for available services 

(SVIDs). Cloud_server validates the received CUID by first 

comparing the received tag with the tag value registered in the 

lookup table. If the tag value is valid, cloud_server then 

decrypts the UET and validates the CUID; cloud_server also 

adds the “service requested” status to the UET. Cloud_server 

then checks for SVIDs available in the system and sends a list 

of available SVIDs to cloud_user along with the UET and a 

newly generated tag as shown in the second line of the 

protocol. In the third line of the service allocation protocol, 

cloud_user sends a request for a selected SVID from the 

received list along with the CUID and UET as well as the tag. 

Cloud_server denies any request that includes an invalid tag by 

comparing the received tag with one in the lookup table. If the 

CUID validated, the requested service may lead to a deadlock 

problem because many clients have multiple accesses to the 

requested service or other services through the requested 

service. Therefore, in order to avoid a deadlock problem and to 

prevent an internal DoS attack due to a huge number of forged 

requests for a specific service, cloud_server controls the service 

allocation process by applying a deadlock avoidance strategy. 

If the current request can lead to a deadlock problem by, for 

example, by flooding services with false requests, the request 

will denied. Hence, cloud_server prevents internal cloud-based 

DoS attack and achieves the phase’s goal. 

E(ACL, Kv_service_host), UET||Tagv_service_host

CUID, SVID, UET||Tag
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One approach for deadlock avoidance is to implement the 

banker’s algorithm [15], so that the “requested services” 

replace the “current processes”. Moreover, the “required 

resources” are those “directly and indirectly accessible 

services” that cloud_user needs, as shown in service request 

algorithm in Fig. 10(a) and safety algorithm in Fig. 10(b). 

 

Figure 10. (a) Service request algorithm for the user 

(b) Safety algorithm 

If the service can be allocated to cloud_user based on the 

result of the deadlock avoidance process, cloud_server issues 

an access control list (ACL) that is encrypted using the secret 

key of the service’s host and adds this additional information to 

the UET. The ACL contains information such as the CUID, the 

requested SVID with permissions, and all other SVIDs 

accessible through the requested service with permissions, as 

shown in Fig. 11. 

 
Figure 11. Access control list (ACL) structure 

Cloud_server also issues a new tag to access the virtual 

service host (v_service_host). However, this tag structure is 

different than the one used before because it will be used for 

identifying cloud_user to v_service_host. The new tag includes 

a timestamp (T) along with the CUID that are both encrypted 

by v_service_host’s secret key. Then, cloud_server sends the 

encrypted ACL, which is a modified UET in conjunction with 

new generated Tagv_service_host , to cloud_user as shown in 

the fourth line of the protocol. Hence, cloud_user received all 

required information to access the requested service after a 

lightweight authentication process by the service’s host. 

D. Host session and authentication phase  

The main goal of the host session and authentication phase 

is to authenticate the cloud_user by the host of the requested 

service in a lightweight process. To achieve this goal, this work 

proposes a service-host lightweight authentication protocol. In 

this protocol, cloud_user communicates internally with the 

required virtual service host. Consequently, cloud_user must be 

authenticated by v_service_host before accessing the requested 

service; however, this authentication is a lightweight 

authentication process to ensure that the requester is a 

legitimate authenticated cloud_user. As shown in Fig. 12, the 

service-host lightweight authentication protocol works as 

follows: 

 
Figure 12. Service-host lightweight authentication protocol 

1) Cloud_user sends a request that includes the CUID and 

Tagv_service_host to v_service_host. 

2) V_service_host maintains its own lookup table based on 

the received CUID and Tagv_service_host. V_service_host 

then validates cloud_user by decrypting the received tag 

and then comparing the CUID in Tagv_service_host with 

the received CUID. This authentication is a lightweight 

process because cloud_user is already authenticated by 

cloud_server. Once the CUID is identified, v_service_host 

acknowledges the request.  

3) Cloud_user then sends the encrypted ACL to 

v_service_host to decrypt it. Next, v_service_host allows 

cloud_user to access the requested service based on the 

registered information in the ACL. 

Hence, cloud_user is authenticated by the host of the 

requested service, and the phase’s goal has been achieved 

(a) algorithm service_request
input:
integer n: number of services
integer m: number of users
vector available[m]: available[j] = k means there are k instances of services type Sj available
matrix max[n,m]: max[i,j] = k means user Ui may request at most k instances of services type Sj

matrix allocation[n,m]: allocation[i,j]= k means user Ui is currently allocated k instances of Sj

matrix need[n,m]: need[i,j]= k means user Ui may need k more instances of Sj to complete its task
vector request[]: vector for user Ui, requesti[j] = k means user Ui wants k instances of service type Sj

output:
Determine the availability of the requested service

1. need[i,j] = max[i,j] – allocation[i,j]
2. if requesti [j]   needi then 

go to step 3 
else

error: user has exceeded maximum claim
3. if requesti    available, then 

go to step 4 
else

 user must wait, services are not available
4. available = available - requesti

allocationi = allocationi + requesti
needi = needi – requesti
if safe then

the services are allocated to user
if unsafe then

user must wait, and the old service allocation state is restored

(b) algorithm safety
input:
vector work[m]
vector finish[n]
output:
Determine the safety of the system

1. work = available
2. for i = 0 ... n

finish[i] = false 
3. for i = 0 ... n

if finish[i] = false AND needi   work then
go to step 4

else
go to step 5

4. work = work + allocationi

finish[i] = true
go to step 3

5. for i = 0 ... n
if finish[i] = true then

system is safe
else

system is unsafe

CUID

SVIDs

SVIDs that are directly accessible with permission

SVIDs

Related SVIDs that are indirectly accessible with permission

CUID, Tagv_service_host

Acknowledge the request

v_service_hostcloud_user

E(ACL, Kv_service_host)
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IV. ECSA PROTOCOL SUITE VALIDATION  

To validate the design of proposed ECSA protocol suite, 

two experiments have been conducted. The former evaluates 

the risk of DoS attacks using a data storage technique during 

the authentication process in the cloud-computing environment. 

The latter validates the effectiveness of ECSA protocols’ 

processes on the cloud computing system against DoS attacks. 

Both experiments are implemented using the GreenCloud 

simulator tool developed by Kliazovich et al. [16] as an 

extension of the network simulator Ns2 [18]. 

A. Evaluate a cloud-based authentication protocol with a 

storage process  

We have mentioned in section 1 above that insecure 

implementation of OAuth 2.0 could be vulnerable to DoS 

attack, in particular when storing data during the authentication 

process. In Google’s implementation of OAuth 2.0 for web 

server applications, the server should store the refresh tokens 

and keep accessing these stored tokens until they are revoked 

by a user request. Consequently, the server could be flooded by 

a huge number of stored refresh tokens’ requests until the 

server becomes unable to process legitimate users’ requests 

even if issuing the refresh token is limited to one token per 

user. Therefore, this experiment evaluates the effect of DoS 

attacks due to exhausted storage resources on a cloud 

computing system. 

We started our experiment by determining the actual size of 

the refresh token used among different vendors. Based on 

Google’s documentation for using OAuth 2.0 for web server 

applications [5], and based on Twitter’s documentation [19], 

the approximate size of the refresh token is 42 bytes. In 

Yahoo’s documentation for OAuth 2.0 [20], the approximate 

refresh token size is 52 bytes. Therefore, this experiment 

considers that the average expected refresh token size is 48 

bytes. 

This experiment involved a main server that run and 

manage one VM. The expected scenario is that the VM is 

sharing the resources of the main server with other VMs. 

Therefore, the expected specifications of the VM is a CPU 

processor with 4 cores, 4 GB of memory, and 100 GB hard disk 

drive. This experiment considers the web server has 1 million 

stored refresh tokens out of 1.5 million users who use social 

login monthly that is close to real example in industry [21]. 

Then, the experiment evaluates the performance of the virtual 

web server according to its load, its memory load, and its 

storage device load with stored tokens. We assume that 

reaching approximately 70% load of VM storage device during 

processing users’ requests exhausts the storage system. 

The charts in Fig. 13 show the experiment results of VM 

load, VM memory load, and VM storage load. We noted that 

virtual machine storage consumptions start dramatically 

increasing when processing approximately 300 requests/second 

up to 500 requests/second as shown in Fig.13(c). The web 

servers, in general, can handle up to 870 to 1230 

requests/second on heavy workload based on the web server 

specifications [22]. Note that this storage size (48 MB) is 

expandable because it depends on two factors: the number of 

stored refresh tokens and the size of the refresh token. 

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 13.  (a) VM load with multiple requests/second 

 (b) VM memory load with multiple requests/second 

 (c) VM storage load with multiple requests/second 
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This experiment shows that depending on the storage 

device during the authentication process can lead to 

vulnerability to DoS attacks. Therefore, ECSA protocol suites 

avoid this serious flaw and eliminate the need for storing any 

information during the authentication phase.  

To validate the effectiveness of the ECSA protocol suite 

against the risks of DoS during the authentication phase, the 

following sub-section shows the effect of the most expensive 

computation processes of ECSA protocols on the cloud server. 

B. Validate ECSA protocol suite  

The cloud_server in the proposed ECSA protocol suite 

involved in several processes. This experiment evaluates the 

effect of the most expensive computation processes of the 

ECSA protocol, including generating random numbers, 

encrypting plain text by a well-known key (consider AES256 

encryption), decrypting cipher text by a well-known key 

(consider AES256 decryption), and the hashing process 

(consider SHA2-512) on the cloud server. This experiment 

simulates these processes using the GreenCloud simulation 

tool by configuring the cloud server specification as the same 

as the specification of a virtual web server on the first 

experiment. This similarity is to compare the performance of 

our proposed ECSA protocol with the currently used cloud-

computing authentication protocol. In this experiment, we 

evaluated the effect of the most computationally expensive 

processes of the ECSA protocol on VM load, VM memory 

load, and VM storage load when executing 300 to 500 

requests/second.  

To obtain the properties of ECSA protocol’s processes 

and to use them in the simulation tool, we implemented a real 

virtual machine with four cores, 4 GB of memory, and 100 GB 

hard disk drive. We configured Linux OS onto this VM to 

benchmark these processes and to obtain their properties. This 

is because any process in GreenCloud simulator has its 

properties. These properties include million instructions per 

second (MIPS), input size, output size, and storage size that 

are used during process execution. To measure process’s 

MIPS, Linux OS has a CPU speed metric called bogoMIPS. 

Therefore, after the process is executed in the Linux OS, we 

calculated the MIPS of the process by multiplying the used 

CPU bogoMIPS by the process’s execution time [23]. Then, 

we obtained the information of the process’s file size before 

and after execution. Finally, we obtained the process’s storage 

size that was used during the process execution such as the key 

size of the AES-256 encryption process. 

After executing the four processes in Linux OS, we 

obtained the process’ properties, as shown in Table 2. These 

collected properties were then used in the GreenCloud 

simulation tool. 

 

 

TABLE II.  .PROCESS’ PROPERTIES THAT OBTAINED FROM LINUX OS 

BENCHMARK EXPERIMENT  

Process type 
AES-256 

encryption 

AES-256 

decryption 

SHA-512 

hashing 

Generating 

random 

numbers 

MIPS 3989 3826 3663 3582 

Input size 10000 bytes 10016 bytes 
10000 

bytes 
10 bytes 

Output size 10016 bytes 10000 bytes 149 bytes 5121 bytes 

Storage size 48 bytes 48 bytes 10 bytes 10 bytes 

 

The charts in Fig. 14 show the experiment results after 

simulating the four different processes: AES-256 encryption, 

AES-256 decryption, SHA2-512 hashing, and generating 

random numbers. 
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(a) AES encryption VM load (b) AES encryption VM memory load (c) AES encryption VM storage load 

   

(d) AES decryption VM load (e) AES decryption VM memory load (f) AES decryption VM storage load 

   

(g) SHA512 hashing VM load  (h)SHA512 hashing VM memory load (i) SHA512 hashing VM storage load 

 
 

 

(j) Generating random number VM load (k) Generating random number VM memory load (l) Generating random number VM storage load 

 

Figure 14.  VM load, VM memory load, and VM storage load of ECSA protocol processes with multiple requests/second 
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After that, we compared the effect of the computationally 

expensive processes of our proposed ECSA protocol on the 

VM to the effect of the implementation of OAuth2.0 

authentication protocol for web server’s processes that was 

simulated in our first experiment. Fig.15(a) shows that AES 

encryption and AES decryption are the most processes that 

affect VM load. However, all processes including AES 

encryption and AES decryption are executed without 

noticeable change between these processes’ loads on the VM. 

In addition, all processes are exacted with less than 45% of VM 

load. Similarly, Fig. 15(b) shows that all processes are executed 

in less than 40% load of VM memory without noticeable 

change between the processes’ loads on the VM memory. On 

the other hand, there is a significant change in the VM storage 

load between the proposed ECSA protocol’s processes and the 

simulated implementation of OAuth2.0 as shown in Fig. 15(c). 

This significant change is because of the 1,000,000 tokens that 

stored in the web server, and then they were used in the 

authentication process. Therefore, the web server can be 

vulnerable to DoS attack due to storing data during the 

authentication processes; this technique is avoided in the 

proposed ECSA protocol design 

V. DISCUSSION 

An enhanced cloud-based secure authentication protocol 

suite was proposed in this work in order to securely 

authenticate and identify a cloud user and to prevent external 

and internal risks of DoS attacks. This protocol suite described 

in four phases to prevent the risks of DoS attacks in multiple 

cloud-computing layers. In this technique, we combine a UET 

application, a client puzzle problem, and a deadlock avoidance 

algorithm to prevent security threats that allow attackers to 

perform cloud-based DoS attacks as stated in section 1. 

In this work, we integrated the proposed ECSA protocol 

suite with several techniques. We developed the protocol suite 

to identify and authenticate the legitimate users’ requests. 

Moreover, the protocol suite is developed to prevent external 

DoS attackers based on the theory of computational 

complexity. Therefore, a cloud-computing server can adjust the 

difficulty level of the client puzzle based on the sensitivity of 

the requested service(s) and thus protect the cloud server from 

external DoS attackers. Additionally, we implemented 

deadlock avoidance algorithm to allocate the requested 

service(s) to the authenticated cloud user with awareness to 

threats of internal DoS attacks. Furthermore, the ECSA 

protocol suite is developed so that the host of the requested 

service is able to authenticate the cloud user. 

The proposed ECSA protocol suite is practically applicable 

on different cloud-computing layers. This is because the 

protocol is developed based on basic software and hardware 

components of both participants. Our validation experiment 

demonstrates the applicability of implementing ECSA protocol 

on existing hardware and software. Additionally, the 

experiment shows the reliability of the proposed ECSA 

protocol suite because of two reasons. First, the processes of 

the protocol suite do not overload cloud’s resources. Second, 

the protocol suite controls the access to the cloud service(s) by 

implementing the deadlock problem with no cache process. 

Therefore, the cloud server does not allocate the cloud user to 

the requested service(s) if the number of maximum allowed 

accesses on the same time to these service(s) is achieved. 

 

(a) 

 

(b) 

 

(c) 

Figure 13.  (a) Comparison of VM load 

 (b) Comparison of VM memory load 

 (c) Comparison of VM storage load 
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Furthermore, the maximum number of allowed accesses to the 

cloud’s services is adaptive based on the properties of these 

services. As a result, the ECSA protocol suite is scalable as it 

can be expandable based on the size of the cloud-computing 

system without effect on the cloud computing resources. 

This work considers awareness of DoS attacks during 

authentication processes through different cloud-computing 

layers. However, this work does not consider an existing 

implementation of other firewall’s software/hardware or 

intrusion detection systems (IDS); this will be considered in 

future work. 

VI. CONCLUSION 

The usage of cloud-computing systems is increasing 

nowadays. In these systems, authenticating cloud users within 

different cloud layers (i.e., SaaS, PaaS and IaaS) is considered 

a security challenge. Because the communication processes 

between cloud users and a cloud server are considerable, 

attackers may take advantage of these processes to perform 

DoS attacks. Using an existing DoS-resistance authentication 

protocol in traditional network environments is inapplicable to 

prevent these types of attacks because the structures of cloud-

computing systems and traditional networks are extremely 

different. This work proposes an enhanced cloud-based secure 

authentication (ECSA) protocol suite to authenticate the cloud 

user securely through different cloud layers and to prevent DoS 

attacks. This protocol relies on an adaptive puzzle challenge 

technique and a deadlock avoidance technique to prevent 

external and internal cloud-based DoS attacks. At the same 

time, this protocol does not require third party devices for cloud 

users. The risk of DoS attacks in currently used cloud-based 

authentication protocols was assessed in this work. Finally, the 

ECSA protocols’ performance was analyzed using the 

GreenCloud simulation tool. This analysis shows that our 

proposed ECSA protocol suite is a lightweight authentication 

protocol suite in terms of reliability and scalability. In addition, 

the analysis of ECSA protocol suite shows that proposed 

protocol suite is aware of DoS attacks due to storage flaw and it 

can be implemented in multiple cloud-computing layers. 
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