
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 364 – 369

364
IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Automated Network Diagnosis Prevent Problems

1
S.B.AjaiVigneshwar,

M. Phil Scholar, Department Of

Computer Science,

Selvamm Arts and Science College

(Autonomous)

Namakkal (Tk) (Dt) – 637003.

2
Mrs. K.V. SUMATHI,

MCA.,M.Phil,
Assistant Professor Department Of

Computer Science,

Selvamm Arts and Science College

(Autonomous)

Namakkal (Tk) (Dt) – 637003.

3
Mrs.K.K.Kavitha, M.C.A., M.Phil.,

SET., (Ph.D).,
Vice Principal, Head of the

Department of Computer Science,

Selvamm Arts and Science College

(Autonomous)

Namakkal (Tk) (Dt) – 637003.

Abstract: Software that performs well in one environment may be unusably slow in another, and determining the root cause is time-consuming

and error-prone, even in environments in which all the data may be available. End users have an even more difficult time trying to diagnose

system performance, since both software and network problems. Diagnosing performance degradation in distributed systems is a complex and

difficult task.The source of performance stalls in a distributed system can be automatically detected and diagnosed with very limited information

the dependency graph of data flows through the system, and a few counters common to almost all data processing systems. An automated

approach for diagnosing performance stalls in networked systems. Flow Diagnoser requires as little as two bits of information per module to

make a diagnosis: one to indicate whether the module is actively processing data, and one to indicate whether the module is waiting on its

dependents. Flow Diagnoser is implemented in two distinct environments: an individual host’s networking stack, and a distributed streams

processing system.

__*****___

I. INTRODUCTION

Failure diagnosis is one of the major challenges

that home users and network administrators face today. The

problem is more so because there are so many different

components which collaborate to realize a particular service

and these components belong to different functional

domains as well as physical locations. With increasing

number of such services, it is important to design systems

which enable easy diagnosis of problems encountered and

allow determining the root cause of the failures. To diagnose

network problems, this paper proposes a system called

DYSWIS (“Do you see what I see”). DYSWIS leverages

distributed resources in the network. It treats each node as a

potential source of network management information,

gathering data about network functionality. The state of the

network is observed by topologically dispersed nodes in the

network. Each node has its own view of the network.

Multiple views of different parts of the network are

aggregated to get an overall view of the network. Failures

seen by different nodes in the network are correlated, along

with historical failure information. Once a diagnosis node

has gathered insights on whether other systems are

experiencing similar problems, it then combines this

information with local knowledge and tries to estimate root

causes.

Underlying Model for DYSWIS Approach

A medical diagnosis of a patient by a doctor where

the patient experiences certain symptoms of an illness, but

the cause of these symptoms must be identified by a trained

doctor through a methodology which may involve certain

diagnostic tests to isolate or confirm possible causes, in

addition to leveraging knowledge .Similarly, to find the root

cause of a service failure in multimedia services, it requires

an understanding of the network and network components

that embody these services and dynamic relationships

among the networking components and having the right

tools and methodology to find the root cause from the

known or observed symptoms (failures). It also involves

leveraging knowledge about other failures in the network

(past failures) and historical information obtained by

conducting diagnostic tests.

Steps in DYSWIS Diagnosis

The DYSWIS approach relies on the peer nodes to

determine the root cause of the failure. Upon encountering a

failure a node asks its peer nodes if they are also observing

the failure. The peer nodes, based on their past experience

with the same service or based on a probe, conclude that that

failure is local to the node. In some cases, the failure can be

local to a subnet, access switch, access point or the domain.

In other words, locality of failure can extend from node

itself to the entire domain. The diagnosis infrastructure may

request multiple peer nodes about a particular service to

localize the problem.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 364 – 369

365
IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Figure 1.1 : Flow diagram of diagnostic process

The architecture of the proposed fault diagnosis

framework consists of the following major functional

components: Detection infrastructure and reporting of

failures, pre-diagnostic processing and diagnostic test

selection and finally diagnostic tests, result analysis and

storing historical results. The first step in diagnostic process

is detection and reporting of failures. The fault diagnosis

framework reports user detected and automatically

programmatically) detected failures for analysis to the fault

diagnosis system.

Example Diagnosis Flow

To explain how our DYSWIS system works,

consider a VoIP system (Figure 4). A failure seen by a user,

e.g., a call set up failure, can be because of access network

failure, mis behaving NAT or failure on SIP proxy server or

STUN server authentication failure. Each of

these failures could be caused by mis-configuration,

software bugs, server or network overloading or other

transient problems in the network. Additionally, there is a

complete set of supporting services in the network such as

DHCP, ARP, and DNS.

Figure 1.2 Different network components interacting

Consider a user alice@example.com tries to make a

call to another user bob@destination.com and the call does

not go through. The end point which tried to make

a call to the remote end point triggers the DYSWIS system

to perform diagnosis which takes the following steps:

 The diagnosis node queries if any other node from

caller’s location has made a call to the user

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 364 – 369

366
IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

bob@destination.com. In this case, the location

could mean from the same subnet, VLAN, access

switch/access point or domain.

 The response can be that other nodes have recently

made a call to same destination address or to the

destination domain, not to same destination address

or no node have made any call to destination

address or destination domain. It should be noted

that historical success or failure information is

queried taking into account location of observed

failure (hence using the topology) along with

functional dependencies.

 Based on the response, the diagnosis node may

request another node to send a SIP OPTION

message to the destination address or it may request

to make a call to the test node in the

Figure 1. 3 Call failure diagnosis

The call failure diagnosis involves call signaling

diagnosis which in turn involves testing of remote SIP end

point, local proxy server, STUN server and DNS server.

These may further trigger diagnosis of network connectivity

and availability of supporting protocols (services). The

reports are stored and used to decide the order of queries for

future failures. For example, if a call failure to the same

destination is reported and diagnosis was already done for

that failure, no more tests will be done.

Even well-written software such as the Apache web

server can experience sudden spikes in request latency due

to head-of-line blocking for disk accesses, contending for

shared resources,disk writes, or database queries. Whether

these stalls in progress are due to bugs, inefficient locking

mechanisms, or calls to backend database servers, they

prevent the application software from responding to requests

in a timely manner. Another common source of performance

stalls is network congestion. A 2011 study of user-facing

network traffic at two Google data centers found that packet

loss and retransmissions are fairly common: 2.5–5.6% of all

user-facing TCP connections retransmit packets.

Stalls are hard to diagnose

Many systems exist for monitoring and analyzing

the performance of distributedapplications. Some require

invasive changes to instrument software source code and

track individual messages as they are sent throughout the

system.

While this can help developers and operators to

track down subtle bugs and performance problems, the

required code changes create a high barrier to entry,

especially when monitoring a third-party system for which

no source code is available. Other approaches analyze per-

packet network captures to try to infer the states of

important system elements.

 While packet captures can be taken without

affecting the performance or source code of the monitored

system, they are too expensive to run and analyze

continuously, and by nature have little information when a

system stops transmitting data. When traffic ceases, it could

be that the software has stalled, every transport-layer (TCP)

connection has detected network congestion and backed off

its retransmissions, or the system has completed all of its

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 364 – 369

367
IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

current work. Without monitoring the end hosts, it is

difficult to reliably distinguish between cause and effect.

Many sophisticated monitors aggregate data from

throughout the network to detect systemic problems. These

systems are able to locate and detect a wide range of

network, software, and system misbehaviors, but mostly rely

on complicated analyses that are difficult to recreate, and are

of little use for a single host or end user. Another common

approach is to perform protocol-specific analysis to detect

performance problems exhibited by specific network

technologies. These analyses can be invaluable for tracking

down difficult and nuanced problems in modern systems of

systems. However, applying these protocol-specific insights

to new problem domains is not straightforward.

Goals

The goal of this research is to create an approach to

messaging performance diagnosis that is efficient enough to

run constantly, can automatically detect and report

performance stalls using as little information as possible,

and is general enough to apply across application domains.

It also will enable the following:

 An end user will be able to tell whether their web

browser, network connection, or a single TCP stream

is causing their performance problems.

 Individual hosts in a distributed system will be able to

detect software, connection-specific, or more

widespread network problems and report them manner

to a monitoring service for cross-correlation and

analysis. Such reports will also provide evidence to

help pinpoint the root cause of the stall, such as a

faulty network interface.

 System administrators and developers will be able to

monitor the health of communication in a distributed

system, to find which processes or subsystems are

preventing progress overall.

 Subject matter experts will apply the basic principles

of the Flow Diagnoser approach to finding

performance stalls in their own systems.

Overview

Flow Diagnoser approach for locating the source of

performance stalls in distributed systems. Flow Diagnoser

first constructs a dependency graph, a directed graph that

represents the movement of messages between modules of

the system. Rather than trace specific messages to see where

they are getting dropped or hung up, Flow Diagnoser

periodically monitors a few basic counters exported by each

node, and performs an abstract analysis of the modules’

behavior to make a diagnosis. Once Flow Diagnoser has

constructed the dependency graph, diagnosis proceeds in

three steps:

1. Periodically snapshot the message counters from

each module.

2. Use the counters to infer the module’s (in)activity

state.

3. Perform a dependency analysis, relating one

module’s state to that of its dependents and

neighbors, to determine whether the module is

misbehaving.

The resulting diagnosis is a set of annotations

applied to the original graph, with each module labeled to

indicate whether it was healthy, blocked by another module,

stalled and preventing other modules’ progress, or its

performance can safely be ignored. In addition to the

automated diagnosis, Flow Diagnoser provides several

visualizations and summary reports which explain which

modules were behaving well, which ones stalled progress,

and show the changes in counter values over time. These

reports and visualizations also help an expert user to

determine if the diagnosis was correct, given the how the

counters in the system change over time.

Synthetic benchmarks and instrumentation of real

applications show that Streams Diagnoser is 93% accurate in

attributing the source of performance stalls lasting more than

two snapshot periods. As Flow Diagnoser monitors a system

over time, it develops a series of diagnosis results which are

assigned to each module in the system. a low-cost, general

approach for detecting and diagnosing transient performance

stalls in networked and distributed applications. This

approach is:

 Automatic and requires no user intervention

 Efficient as it relies only on commonly available

counters, with little access to historical data.

 Accurate at diagnosing the source of transient

performance stalls before they result in higher-

level timeouts.

 General : it is useful for detecting performance

stalls in both an end host’s networking stack and

modern streams-processing systems. Flow

Diagnoser is the first performance diagnosis

system that provides a general, automated

approach that applies to both network-related

performance and distributed system messaging,

and specifies the minimum amount of information

required for diagnosis.

The Flow Diagnoser Approach

Flow Diagnoser approach to finding performance stalls

in networked and distributed systems. It consists of three

parts,

1. Obtain the dependency graph which describes the

movement of messages through the system

2. Periodically snapshot counters for each module in

the graph to determine each

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 364 – 369

368
IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

module’sbehavior.

3. After each snapshot, perform a dependency

analysis over the graph and counters to diagnose

performance problems.

The Dataflow and Dependency Graphs

In the Flow Diagnoser model, a system can be

viewed as a dataflow graph, where nodes represent modules

that process messages, and directed edges identify flows of

messages between modules. Each edge is a lossless, finite-

capacity pipe with exactly one module at each end. Each

module has a finite work queue of messages that it must

process; during processing it may transmit messages to other

modules. Messages enter the system via sources (which

have no incoming edges) and leave the system via sinks

(which have no outgoing edges).

A depends on B for messaging service, which in

turn depends on C and D. A system may be either push-

oriented or pull-oriented. In the former, dataflow is driven

by the source modules. A source module A connected to

module B will produce messages and attempt to write them

to the pipe that connects it to B. Since this pipe has finite

capacity, A’s write may block; in this case, B is requiredto

read messages from the pipe (depositing them into its own

work queue) before A can write further messages. In a push-

oriented system, if sources are not producing messages, then

the system is idle, but this is not necessarily a problem. In

pull oriented systems, dataflow is initiated by sinks. A sink

module A connected to B will try to read messages from the

pipe that connects the two. If B fails to produce data for A,

then A will block. In a pull-oriented system, if sinks are not

trying to read messages, then they have no need of data so it

need not be provided.

Module Counters

Once Flow Diagnoser has derived the dependency

graph, it diagnoses the system’s behavior by periodically

snapshotting (up to) three counters associated with each

module, total_msgs counts the cumulative number of

messages that a module has processed (and thus it increases

monotonically);

 wait_time counts the cumulative time (increasing

monotonically) a module has spent blocked

waiting on its dependents to produce a message

for it to read (in a pull-oriented system) or to

consume messages it has produced (in a push-

oriented system);

 queued_msgs tracks the length of the module’s

work queue.

For total_msgs and wait_time counters, Flow

Diagnoser considers the difference between the current

snapshot’s value and the prior snapshot’s value, denoted as

#total_msgs and #wait_time. These differences indicate

whether the module was active (a nonzero #total_msgs) or

was blocked waiting for service (a nonzero #wait_time). It

uses the current snapshot value of the module’s work queue

(!queued_msgs) to determine whether the module still had

work to do when the period ended.

II. LITERATURE REVIEW

INTRODUCTION

The automated diagnosis involves two major steps:

(a) Image classification and (b) Image segmentation. Image

classification is the technique of categorizing the abnormal

images into different groups based on some similarity

measure. The accuracy of this abnormality detection

technique must be significantly high since the treatment

planning is based on this identification. The second step is

image segmentation which is used to extract the abnormal

portion necessary for volumetric analysis. This volumetric

analysis determines the effect of the treatment on the patient

which can be judged from the extracted size and shape of

the abnormal portion. Many research papers with different

approaches for image classification and segmentation are

reported in the literature. This chapter provides an extensive

survey of existing methods for abnormality detection in

brain images.

LITERATURE SURVEY ON IMAGE PRE-

PROCESSING

Image pre-processing is one of the preliminary

steps which are highly required to ensure the high accuracy

of the subsequent steps. The raw MR images normally

consist of many artifacts such as intensity in homogenities,

extra cranial tissues, etc. which reduces the overall accuracy.

Several researches are reported in the literature to minimize

the effects of artifacts in the MR images. An analysis on

filtering techniques with Gabor filters for noise reduction is

performed by Nicu et al (2000). These primitive methods

along with reducing the noise blur the important and

detailed structures necessary for subsequent steps.

Chunyan et al (2004) have implemented the colour

ray casting method to differentiate the region of interest

from the background. But this technique is image dependent

and not applicable for gray level images. Expectation

Maximization Segmentation (EMS) software package is

used by Hayit et al (2006) for image pre-processing. The

main advantage of this technique is that it is a fully

automatic technique. Diffusion filtering combined with

simple non-adaptive intensity thresholding is used by Yong

et al (2006) to enhance the region of interest.

III. CONCLUSION AND FUTURE WORK

In proposed DYSWIS system to automatically

diagnose network failures and determine the root cause of

failures and presented a reference implementation for a

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 364 – 369

369
IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

VoIP system. DYSWIS system can be implemented for any

kind of network as long as probes can be defined, queries

can be implemented and an expert can define the

dependency rules based on existing probes and queries. As

a part of this work, we came up with requirement for a rule-

based language which would meet the goals of a rule

language for network diagnosis. Our framework uses SIP

event notification framework for sending requests and

receiving responses. The initial results were obtained by

inducing failures manually and observing how DYSWIS

triggers diagnostic processing. DYSWIS diagnoses complex

end-user’s network problems using end-user collaboration.

It provide a new framework for collaborative

approach and diagnosis strategies for various fault scenarios.

We provide a detailed design to discover and communicate

with collaborating nodes. Also, provide a framework for

administrators and developers to participate to contribute to

expand the diagnostic system. To implemented a prototype

of the DYSWIS framework and present how easily the

participants add new rules and modules on top of the

framework in order to diagnose several common network

faults. We set up these scenarios with real network devices

and diagnosed them using those rules and modules we have

created. While local probing with traditional diagnosis tools

fail to point out the cause of

these fault scenarios, our evaluation presents that DYSWIS

can effectively narrow down the problematic regions and

pinpoint the root causes.

Future Work

In implementation, encoded dependency

relationship as rules in the form of queries and probes;

however, with networks growing in terms of components,

services and protocols, there is a need to generate the

dependency relation automatically using statistical

mechanisms and using temporal correlation among failures

detected. Secondly, need instrumentation of applications to

detect and report failures in order to trigger diagnosis. To

detect failures without requiring software upgrade would

require us to detect network failures using traffic analysis.

This in turn would require specifying protocol details using

a rule language to the traffic analyzer.

To identified requirement of a rule language for

failure diagnosis. One of the tradeoffs in developing a rule

language for diagnosis is simplicity vs. capability. An expert

must be able to specify rules with ease without requiring

much knowledge about a programming language. However,

this limits the functionality that can be expressed in a rule.

The system needs to provide mapping between functionality

of the system vs. the tools available to the expert. Providing

a fixed mapping reduces the enhance-ability of the diagnosis

system for new probes. A more scripting-based approach

gives more flexibility but more complexity to the expert. A

system which gives flexibility by taking external

binaries/scripts and output of such binaries and scripts back

to the rule language as well as provides a fairly high level

way of representing knowledge may be good approach, a

mix of XML and shell script style. Finally, failure event

correlation based on rules is another area of future work.

REFERENCES

[1] Binzenhöfer, A., Tutschku, K,.Graben, B., Fiedler, M., Arlos,

P., “A P2P-Based Framework for Distributed Network

Management”, New Trends in Network Architectures and

Services, LNCS, Loveno di Menaggio, Como, Italy, 2006.

[2] Miao, K., Schulzrinne, H., Singh, V., Deng, Q., “Distributed

Self Fault-Diagnosis for SIP Multimedia Applications”, To

appear in MMNS’2007, 10th IFIP/IEEE International

Conference on Management of Multimedia and Mobile

Networks and Services

[3] Rish, I. Brodie, M. Odintsova, N. Sheng Ma Grabarnik, G.,

“Real-time problem determination in distributed systems using

active probing”, Network Operations and Management

Symposium, 2004. NOMS 2004. IEEE/IFIP.

[4] Utton, P.; Scharf, E., “A fault diagnosis system for the

connected home”, Communications Magazine, IEEE, Volume

42, Issue 11, Nov. 2004, 128 - 134.

[5] Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and

ParamvirBahl. Automating network application dependency

discovery: Experiences, limitations, and new solutions. In

OSDI, pages 117–130. USENIX Association, 2008.

[6] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik,

P´eterBenk¨o, Jennifer Chiang, Alex C. Snoeren, Stefan

Savage, and Geoffrey M. Voelker. Automating cross-layer

diagnosis of enterprise wireless networks. In SIGCOMM,

pages 25– 36, 2007.

[7] Y. Zhang, Z. M. Mao, and M. Zhang, “Effective diagnosis of

routing disruptions from end systems.” in Proc. of NSDI, San

Francisco, CA, USA, April 2008.

