
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

227

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Maximizing the Efficiency using Montgomery Multipliers on FPGA in RSA

Cryptography for Wireless Sensor Networks

Leelavathi G, Shaila K,

Department of Electronics and Communication Engineering,

VTU-Research Centre, Vivekananda Institute of Technology,

Bengaluru, India

 nisargamodini@gmail.com

Venugopal K R,

IEEE Fellow, Principal,

University Visvesvaraya College of Engineering,

Bengaluru, India

Abstract- The architecture and modeling of RSA public key encryption/decryption systems are presented in this work. Two different

architectures are proposed, mMMM42 (modified Montgomery Modular Multiplier 4 to 2 Carry Save Architecture) and RSACIPHER128 to

check the suitability for implementation in Wireless Sensor Nodes to utilize the same in Wireless Sensor Networks. It can easily be fitting into

systems that require different levels of security by changing the key size. The processing time is increased and space utilization is reduced in

FPGA due to its reusability. VHDL code is synthesized and simulated using Xilinx-ISE for both the architectures. Architectures are compared in

terms of area and time. It is verified that this architecture support for a key size of 128bits. The implementation of RSA encryption/decryption

algorithm on FPGA using 128 bits data and key size with RSACIPHER128 gives good result with 50% less utilization of hardware. This design

is also implemented for ASIC using Mentor Graphics.

Keywords— FPGA, Modular Multiplication, Modified Montgomery algorithm, Modular Multiplication, RSA cryptosystem, VHDL

__*****___

I. INTRODUCTION

Wireless Sensor Network (WSN) denotes a heterogeneous

system, comprised of autonomous devices called sensor nodes.

It has limited data transmission and low computational power

that leads to a challenging environment to provide security. A

WSN is a self-organizing low-cost, low-power, wireless nodes

installed to capture information and used to monitor the

environmental conditions, like climatic measurements, in

health area which includes measurement of vital signs,

temperature, home automation etc [1].

The Objective of any Cryptographic systems is to provide the

information security: authentication, confidentiality, data

integrity. In disparity to Private Key Cryptosystems

(Symmetric key), Public-Key Cryptosystems

(PKC)(Asymmetric key) are capable of fulfilling all the

objectives. All security solutions considered for conventional

computer networks cannot be implemented directly in WSN

due to limitations of WSNs . It was understood for a long time,

that the PKC was not suitable for WSNs because it requires

elevated processing power. But in the course of studies of

encryption algorithms based on curves it proved the feasibility

of that technique in WSN [2]. However, in order to achieve

fast and better feasibility in the applications, public key

cryptographic schemes have to be implemented in hardware.

Rivest–Shamir–Adleman (RSA) is the utmost widely used

public-key cryptosystem, based on the idea originally

presented in 1976 by Diffie and Hellman. The consequence of

high security and faster implementations covered the way for

RSA crypto-accelerators, hardware implementations of the

RSA algorithm [3] [4] [5].

With the heightened emphasis on security in realm of

computers and computer networks, the RSA encryption

algorithm is used as an effective method to encrypt and protect

data. This key-based algorithm relies on integer multiplication

to accomplish the data encryption or decryption, with the

speed of the multiplication algorithm contributing more to the

throughput performance of the RSA encryption algorithm.

Furthermore, Wireless Sensor Networks have an added

vulnerability because nodes are often placed in a hostile or

dangerous environment where they are not physically

protected. Security mechanisms need a definite quantity of

data memory, code space and energy to power the sensor.

These resources are very inadequate in tiny wireless sensor

nodes.

RSA operation is a modular exponentiation and its security

depends on its incapability to factorize large integers.

Application-specified integrated circuit (ASIC) solutions have

the disadvantage of reduced flexibility and high NRE cost.

The implementation of cryptographic algorithms on

reconfigurable devices like Field Programmable Gate Arrays

gives the solution, which adds up high flexibility with speed

and physical security of traditional hardware. According to

McIvor et al., [6] the Montgomery multiplication algorithm

Modified Montgomery Multiplication 5 to 2 Carry Save Adder

(CSA) architecture (MMM52) is used implementations of

RSA.

This proposed work investigated the performance of

RSA encryption algorithm using Montgomery modular

multiplication in both hardware and software. The device

utilization is more.

Motivation: RSA is a cryptographic technology and relies

severely on complex large-number mathematics to provide its

security services. Use of dedicated ASIC or Application

Specific Instruction Processors to speed up the mathematics,

are frequently expensive and inflexible. The combined cost

and performance problem can be addressed by taking into

account an FPGA based implementation. To achieve practical

hardware implementations for RSA, the complex mathematics

involved, utilizes a technique known as Montgomery

Multiplication. Montgomery’s techniques are very proficient

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

228

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

implementations of RSA-based cryptography systems.

Computations involved with Montgomery are concentrated in

the region of the cyclic re-use of additions and the challenges

encountered with FPGA implementations.

The computation costs associated with public key

cryptosystems is restricted due to the limited resources.

Crypto-accelerators are encouraging as they characteristically

attain enhanced power efficiency and better performance than

a software implementation on a generic processor. The

proposed work aims to design arithmetic architectures for

RSA Cryptosystems which are optimized for modern FPGAs

and ASIC technologies. In these architectures, Montgomery

algorithm is utilized to increase the speed of modular

multiplication [2]-[9].

Contribution: Key contribution of this work is the Field-

Programmable Gate Array implementation of the proposed

architectures. Two different architectures RSACIPHER128 and

modified Montgomery Modular Multiplication 4 to 2 CSA

(Carry Save Adder) architecture (mMMM42) multiplier are

implemented in Encryption and Decryption processor. The

MMM42 multiplier modified to utilize in our algorithm. Both

architectures are implemented with VHDL coding one with

structural approach and other with behavioral approach. The

performance of the both the approaches are compared.

Organization: In Section II various research works linked to

security techniques, public key cryptography and RSA,

different multiplication algorithms are described. Background

work is discussed in Section III. Problem definition is stated in

Section IV and implementation model is described in Section

V. Modular multiplication with Montgomery techniques and

RSA are given in Section VI. Algorithm is described in

Section VII. Implementation and Performance Evaluation

details are explained in Section VIII and Section IX

correspondingly. Conclusions are discussed in Section X.

II. LITERATURE SURVEY

The popular cryptographic algorithm, RSA include extensive

modular exponentiation of long integers. On a general-purpose

computer, its operation is a very slow since; current typical

operands have larger bits. Repeated modular multiplications

are carried out to achieve the modular exponentiation. An

proficient Modular Multiplication (MM) algorithm for the

calculation of A
B
modM was established by P L Montgomery

[2].

Abdullah et al., [3] discusses to protect the data in unsecure

networks. It is highlighted the essentiality of strong

cryptography is WSNs, with improvement over time

efficiency and reduction in power consumption. The Key

length considered is 1024 bits and designed for specific

applications.

Alan Daly et al., [8] review existing architectures of

Montgomery Modular Multiplication and Exponentiation

implementation on FPGA Xilinx Virtex V1000FG680-6. The

new architecture exploits the maximum carry chain length

feature of the FPGA that is used to implement modular

exponentiation operation. It is essential for encryption and

decryption.Based on different multiplier size for the pipelined

modular multiplier and RSA encryptor / decryptor speed and

area are provided.

Sutter et al., [10] discussed Montgomery’s multiplication,

suggested different architectures to accomplish the LSB first

and the MSB first algorithms. Conversion of the CSA

representation of intermediate multiplication with carry-skip

addition and digit serial method for Montgomery

multiplication is used. Results are presented in Virtex 5 and in

0.18-m ASIC technologies’ that reveals the better delay

performance and area-time complexity.

Hong et al., [11-14] reduces the number of partial products in

the multiplication algorithm by the radix-4 Booths algorithm.

He proposes a radix-4 modular multiplication and

exponentiation algorithm, which is good choice for modular

multiplier in terms of area-time product.

Kauther et al., [15] presents a new algorithm of Radix-4 MSB

modular multiplier using 4-2 compressor. Fournaris et al., [16]

defines and analyzes the Montgomery multiplication algorithm

presenting two scalable systolic Montgomery MM

architectures and implementations with high speed and

accomplished improved results in terms of area and speed. The

architectures proposed uses redundant Carry-Save arithmetic.

Mentens et al.,[17] presents a pipelined architecture of a

modular Montgomery multiplier, which is appropriate for

public key coprocessors and have derived a more compact

pipelined version. This outperforms earlier designed

Montgomery multipliers.

Pourmina et al., [18] modified radix-4 modular multiplication

based on Booths multiplication technique. To avoid carry

propagation CSA (Carry Save Adder), fast algorithm was

developed and employed for computing the modular

reduction. It is revealed that the processor can perform RSA

operation of 1024-bit in less than 15ms at 54.6MHz and and in

50ms at 16.1MHz on VirtexII and XC4000 FPGA.

Vincent et al., [19] describes the scheme of an effective RSA

cryptosystem with a modified Montgomery algorithm. A

Kogge-Stone Adder which is very fast parallel prefix adder,

employed to reduce the critical path.

New scalable systolic hardware architecture is presented by

Tamer Gudu et al., [20] Their design enables making area-time

tradeoff with different precision of inputs. The add-shift

Montgomery algorithm and R-L binary Montgomery

exponentiation algorithm are utilized to implement in Virtex-

5 FPGA chips for different radixes. Highest performance per

area is obtained with the Radix-216 design. Suitability requires

more hardware for resource constrained devices.

Drutarovsk’y et al., [21] gives a comparison of possible

methods for an efficient implementation of Multiple-word

radix-2 Montgomery Modular Multiplication on FPGAs. An

embedded soft-core processor Altera NIOS is used for purely

software implementation. The combined hardware-software

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

229

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

designs on Altera FPGAs, speed and logic requirements

comparisons are accomplished.

Kamala et al., [22] proposed Montgomery modular

multiplication technique to perform long-integer arithmetic

that uses multi-bit shifting and carry-save addition. The

resultant hardware realization is best in terms of delay and

offers high data throughput. It occupies a little more area. The

proposal has been assessed on Virtex2 series for practical bit

lengths of 512, 1024 and 2048 bit.

Shian-Rong et al., [23] projected architecture with less energy

consumption and higher throughput. The whole design

manipulates the MM52 and MM42 Algorithm for

Montgomery Multiplication.

Chen et al., [24-25] developed a unified Montgomery modular

multiplication algorithm which is useful to realize either the

conventional modular multiplication or squaring operation in

carry-save procedure to attain area-efficient scheme of

modular exponentiation. In this work, the number of input

operands is condensed for carry-save addition by mathematical

exploitation to reduce the resultant critical path delay, least

hardware complexity and area-time complexity.

Shieh et al., [26-27] investigates how to unwind the data

dependency that occurs between multiplication, quotient

determination and modular reduction in the conventional

Montgomery modular multiplication algorithm. A new

modular multiplication algorithm for high-speed hardware

design is proposed. The speed upgrading is accomplished by

reducing the critical path delay from the 4-to-2 to 3-to-2 carry-

save addition. Investigational results display that the

developed modular multiplication can function at speeds

higher than those of related work.

Kuang et al., [28] presented energy-efficient algorithm

architecture to decrease the energy consumption and to

improve the throughput of Montgomery modular multipliers.

The architecture offered is equipped to bypassing the

superfluous carry-save addition and register write operations,

leading to less energy consumption and higher throughput.

Experimental outcomes demonstrate that the intended

approaches can accomplish 60% energy saving and 24.6%

throughput enhancement for 1024-bit Montgomery multiplier.

Table 1.Comparison of Our Work with Related Work

AUTHOR ALGORITHM ADVANTAGES DISADVANTAGES PERFORMANC

E

Alan
Daly

et al[].,

Pipelined and
non pipelined

MMM

Input can be
built into n-

bit words

Occupies more
area

At higher
bitlengths

the speed

improved
significantly

Shiann-

Rong et
al[].,

Carry Save

Addition
MMM

Energy

consumption
of CSAs and

registers are

reduced

Implementatio

n with
backend tools,

not on a

FPGA

Less energy

consumption
and higher

throughput

John Fry
et al[].,

RSA
Calculation

RSA-based
Cryptograph

Target FPGA
are Cyclone or

Less Silicon
area and

Architecture y systems Stratix family

from altera

Cost

effective

Abdulla
h Said et

al[].,

Usage of
hardware

security

Public key
cryptograph

y for WSNs

security

The work is
Concentrated

on timer and

power analysis
for higher

keylengths

More
effective in

time and

power
consumption

with

hardware

Our

work

Two methods

1.use of

MMM42
2.Without

MMM42,

direct RSA
implementatio

n

 Second

Method

Suitable for
WSNs

more area and

device usage

on Spartan
FPGA

With Artix,

Kintex and

Virtex
 good

performance

w.r.t area
and time.

Table 1 depicts the survey on different methods of

implementations of scalar multiplication and cryptographic

process using various techniques. Most of the works are

implemented using FPGAs, few are with ASIC design. In our

work, input is split into 64bits with use of MMM42. Input of

128bits is used without MMM42. Modified modular

multiplication algorithm MMM42 is implemented in our

design with little modification.

III. BACKGROUND

Alan et al.,[8] proposed pipelined multipliers to implement a

full modular exponentiation for RSA encryption and

decryption. By choosing Xilinx target device Virtex-6, a high

speed Montgomery multipliers are implemented. The work

mainly concentrates on speed and area results for pipelined

modular multiplier. Pipelined architectures consume more

hardware, so suitability for WSNs requires reduction in

hardware.

Shian-Rong et al., [23] presented architecture with less energy

consumption and higher throughput. The whole design

manipulates the MM52 and MM42 Algorithm for MM, in turn

modifying modular exponentiation algorithm. These features

motivated to select this MMM42 architecture and modify to

implement on 128-bit with Xilinx FPGA. The synthesis of

MMM42 multiplier is performed using the Synopsys Design

Complier. Only multiplier designs are taken up in [23],

whereas in our work we have implemented complete RSA

cryptosystem i.e., encryption and decryption, with modified

MMM42 Multiplier.

IV. PBOBLEM DEFINITION

In WSNs the security problem is challenging concerning the

limitations of sensors and essential to balance data integrity,

confidentiality and availability. Several architectures are not

area proficient and result in higher cost after implemented in

silicon.

we overcome the area utilization problem in our proposed

system. Area and throughput are prudently trading off to make

it appropriate for wireless sensor nodes, where emphasis is on

the speed and on area of implementation. Since the demand for

higher levels of security it becomes significant to find the

ways of implementing the RSA PKC in more efficient and

faster architectures. The FPGA is the target implementation

podium for the presented architectures.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

230

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

A. Objectives

The main objective is to improve the security by:

 Designing the Hardware Crypto engine to increase the
Encrypted communication.

 Implementing asymmetric cryptographic algorithms on
Sensor node and is extended with an FPGA module for
increasing the efficiency of the system.

B. Assumptions

 The prime numbers p, q are selected with p ≠ q.

 The sender’s public key is published and is made
available to the receiver.

 The sender has public key e, and only the receiver
knows the private key d. Thus, a public key (e, n) and
secret key (d, n) is distributed to transmitter and
receiver separately.

V. RSA CRYPTOSYSTEM MODEL

Figure 1 shows the model of RSA cryptosystem in which 128

bit input data and key are used to generate cipher. In the model

public key is employed for encryption and private key for

decryption since utilization of private key for decryption

provides more security.

Our proposed work depends on the hardware acceleration for

security algorithms which significantly improve the

performance and power of the system, even though, additional

hardware is required thus increasing the design complexity. In

our proposed approach, the computation time, energy and

hardware implementation of cryptographic application are

considered to increase the average network lifetime.

Fig.1 Block Diagram of RSA Cryptosystem Model

VI. RSA CRYPTOSYSTEM

Equations for encryption and decryption of information are

shown in figure 2. Plaintext P, Exponent (public key) E and

Modulus M are represented as indata, inExp and inMod

respectively.

Fig. 2 Description of Equation (1) and (2)

A. Montgomery ModularMultiplication

In the design, for implementation of modular multiplication,

we have used Montgomery multiplication algorithm. RSA

encryption and decryption with and without MMM42

algorithm is executed and performance is compared to check

suitability for WSNs in terms of execution speed and hardware

utilization.

The Montgomery’s algorithm[7] for modular multiplication

shown is in Algorithm 1. This algorithm calculates the product

of two integers modulo and third one without execution of

division by M yielding the condensed product using series

additions. This algorithm is modified with carry save

representation of the data A, B and M in [23]. The same

algorithm is utilized and modified to compute the modular

multiplication. In the modified algorithm the data is

represented individually as 64bits to perform RSA-128bit

operations.

The following Algorithm 1 calculates the Montgomery

Multiplication.

Algorithm 1: Basic Montgomery Algorithm

MontProd (A,B,M)

{

S-1=0;

For i=0 to n-1 do

Ci= (Si-1+BiA) Mod 2

Si= (Si-1+CiM+BiA)/2

End For

Return Sn-1

}

McIvor et al[7]., presented Algorithm MM52 and Algorithm

MM42, two efficient algorithms termed as to fast compute the

Montgomery modular product. In these algorithms the carry-

save arithmetic is employed to evade the ripple-carry

propagation. I/O operands A, B and S are represented as (A1,

A2), (B1, B2) and (S1, S2) in the carry-save representation

respectively. The time-consuming ripple carry propagation is

detached, used only in the last step for attaining the result of

modular exponentiation. The following pseudo code gives the

modified MMM42 multiplier to perform RSA encryption and

decryption.

Function1: Pseudo Code for the Implementation of RSA

Cryptosystem Without Modified MMM42 Multiplier

Entity Main

{Inputs: clk,rst, Publickey, Privatekey, modin, data_in,

 Outputs: cyphertext, original_msg

Component RSACypher

{Generic (KEYSIZE:integer :=32);

Inputs: indata, inExp, inMod, clk, ds, reset;

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

231

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Outputs: Cypher, ready;

Encryption: RSACypher generic map (keysize=>128)

Portmap(data_in, public key, modin, enc_msg, clk, ds1, rst,

rdy1);

Decryption: RSACypher generic map (keysize=>128)

Portmap(enc_msg, private key, modin, original_msg, clk, ds2,

rst, rdy2);

Pseudo Code of Modified MMM42_Multiplier

Entity MMM42_multiplier

{

Port(clk,rst,lda,A1,A2,B1,B2,N,S_1,S_2)

Component RSACypher

Generic(KEYSIZE:integer:=128);

Port(indata, inExp, inMod, Cypherout);

Component CSA

Port(X1,X2,X3,y1,y2);

Component mux_4_1

Port(a,b,c,d,sel,y1,out);

Component lu_unit

Port(a1,a2,S1,S2,S3,q_not,bypass,a_not);

Component mbrfa

Port(clk,rst,bypass,A1,A2,ai1,ai2,out);

}

The schematic diagram of the entity for MMM42 is shown in

Figure 3 and Figure 4. The 64bit inputs (A1, A2) =A, (B1, B2)

= B and N and output (S-1, S-2) = S are observed in the Figure

3 and Figure 4. Clk, lda, rst and done are control signals.

B. Modular Exponentiation

Fig 3. Schematic of MMM42 Multiplier for Encryption

Fig 4. Schematic of MMM42 Multiplier for Decryption

In this work L Algorithm or Right to Left algorithm, is

selected because square and multiply are independent

operations and can be executed in parallel. 50% of clock

cycles are required to accomplish the modular exponentiation.

But, two physical multipliers are compulsory to achieve

acceleration of the algorithm. The algorithm 2 is shown below.

Algorithm 2: Modular Exponentiation using MMM42

multiplier

RSACypher (P, E, M)

{

C=2
2n

 Mod M;

P= Modmult (C, E, M);

R=Modmult(C, 1, M);

For i=0 to k-1 do

If (E(i)=1) then

R=Modmult(R, P, M)

End if

P=ModSqr(P, P, M)

End for

R=Modmult(1, R, M)

Retrun R;

}

Figure 5 shows the block diagram of modular exponentiation

in which MPNAND, MPLIER and Modulus are of 128 bit

data. The Multiplicand and Multiplier should be less than the

modulus value M.

Fig.5. Block Diagram of Modular Exponentiation

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

232

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

As shown in Equation (1) and Equation (2) both encryption

and decryption involve an algorithm for computing a modular

exponentiation.

Modular exponentiation operation is series of modular

multiplication and squaring operation involves square and

multiply algorithm, which is based on scanning the bit of the

exponent from the left (MSB) to the right (LSB). In each

iteration, i.e., for every exponent bit, the current outcome is

squared, If and only if the currently scanned exponent bit has

the value 1, a multiplication of the current result by M is

performed following the squaring. The algorithm is signified

in Function 3 in the form of pseudo code and its

implementation in Figure 6.

Fig 6. Implementation of Modular Exponentiation

Function 3: Pseudo code for RSACipher

 RSACipher

{

Generic (KEYSIZE:integer:=128);

Port(indata:in std_logic_vector(KEYSIZE-1 downto 0);

 inExp: in std_logic_vector(KEYSIZE-1 downto 0);

 inMod: in std_logic_vector(KEYSIZE-1 downto 0);

 cipher: out std_logic_vector(KEYSIZE-1 downto 0);

 clk,ds,reset : in std_logic ready: out std_logic);

Component modmult

Generic (KEYSIZE:integer:=128)

Port (MPNAND, MPLIER, Modulus, Product);

}

To implement RSA cryptosystem the MMM42 algorithm is

utilized and modified [Cheng]. The structural VHDL coding

of the RSA includes two MMM42, one for encryption and

another for decryption. The RSA-128 is carried out to compare

the performance.

Function 4: Pseudo code for the Implementation of RSA

Cryptosystem with MMM42 Multiplier

RSA_Encryption_Decryption

{

Encryption: MMM42_Multiplier port map (clk,rst, lda1, da1,

da2, pbk1,pbk2,mod in, sout1, sout2, done)

Decryption: MMM42_multiplier port map (clk, rst, lda2,

sout1,sout2, pvk1,pvk2, mod in, org1,org2,done2)

Entity MMM42_multiplier

{

Port(clk,rst,lda,A1,A2,B1,B2,N,S_1,S_2)

Component RSACypher

Generic (KEYSIZE:integer:=128);

Port (indata, inExp, inMod, Cypherout);

Component CSA

Port(X1, X2,X3,y1,y2);

Component mux_4_1

Port(a,b,c,d,sel,y1,out);

Component lu_unit

Port(a1,a2,S1,S2,S3,q_not,bypass,a_not);

Component mbrfa

Port(clk,rst,bypass,A1,A2,ai1,ai2,out);

}

}

Figure 7 and Figure 8 shows Schematic Diagram of Main Unit

which consists of both encryption and decryption of

implemented VHDL code using Xilinx on FPGA. The

operation of modules is described in sections B and C. The

input data size for the system is 128 bit. The inputs to the

module are (da1, da2)=da , the da is data which is a plaintext

input to the system is represented in individual 64 bits.

Similarly (pbk1,pbk2)=pbk ,(pvk1,pvk2)=pvk, and modin are

the 64bit data given to cryptosystem. The

(enc1,enc2)=enc,(org1,org2)=org are the output data.

Fig 8. Entity of Main Unit

As shown in Figure 8 for encryption and decryption, the RSA

module consists of two Modified MMM42 multiplier. The

(da1, da2)=da, (pbk1,pbk2)=pbk and modin are the inputs to

the encryption unit. The encrypted data output

(enc1,enc2)=enc is obtained. This data is fed to the Decryption

unit as (Sout1,Sout2)=Sout along with (pvk1,pvk2)=pvk and

modin. The decrypted original plaintext (org1,org2)=org is

obtained from decryption unit. The separated multiplier

diagrams are shown in Figure 3 and Figure 4.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

233

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Fig 7. Complete RSA module

VII. PERFORMANCE ANALYSIS

A. Simulation and Results with modified MMM42 Multiplier

Spartan 3 XC3S400-5pq208 is chosen for software and

hardware implementation. VHDL code is simulated with ISE

simulator and waveforms are observed with Modelsim. The

corresponding RTL schematic and timing diagrams are

obtained.

In Figure 9 the data input (A1, A2), message bits (B1,B2),

exponent (public key) and modulus (N) of 64 bits are applied

and output (S_1,S_2) is obtained when done signal goes high.

The entity and timing diagram for the encryption unit with

modified MMM42 is shown in Figure 9 and Figure 10. The

inputs considered are ((0011223344556677),

(8899AABBCCDDEEFF))=(a1,a2)=A, (0000000000000000)

,(0000000000010001)=(b1,b2)=public key. It is observed

from the waveform that transmitter uses the public key for the

encryption process which is shared between the sender and

receiver. The following output is obtained

((125DB969FF426764),(FD832F8B30971598)=(s_1,S_2)=cy

pher output, Clk, rst, lda and done are control signals.

Fig 9. Entity of modified MMM42 multiplier

Fig 10. Timing Diagram of Encryption Unit

Table 3. Device Utilization of mMMM42 Multiplier

Device utilization Summary

Logic utilization Used Available Utilization

Number (No.) of slices 2271 5472 41%

No. of Slice Flip Flops 2035 10944 18%

No. of 4 input LUTs 4329 10944 39%

No. of bonded IOBs 452 320 141%

No. of GCLKs 1 32 3%

Table 2. Timing Summary of MMM42 Multiplier

Timing analysis of the RSA Cryptosystem with MMM42

Speed Grade 12

Minimum (Min) period 9.847 nano seconds

Maximum (Max)frequency 101.554MHz

Min. input arrival time before

clock

6.631 nano seconds

Max. output required time after

clock

7.517 nano seconds

Max. combination path delay 9.547 nano seconds

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

234

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Figure 11 gives the Decryption output for modified MMM42

multilpier. Table 2 and Table 3 gives device utilized for the

MMM42 multiplier in terms of Slices, Flip-flops, LUTs and

timing summary with time and frequency respectively. It is

observed from the results the utilization of hardware for each

MMM42 multiplier is more, when compared with the other

architecture, the details are given in Section B.

Fig 11. Timing Diagram of Decryption Unit

The entity and timing diagram for the decryption unit with

modified MMM42 is shown in Figure 6 and Figure 8. The

inputs considered are ((125DB969FF426764),

(FD832F8B30971598))=(a1,a2)=A, ((40F76A229EE3C0763)

,(F598241C5E3DCC01)=(b1,b2)=private key. It is observed

from the waveform that transmitter uses the private key for the

encryption process which is not shared between the sender and

receiver, only receiver knows about private key. Table 4 gives

the details about device utilized in FPGA and the timing

details for input and output along the frequency are provided

in the Table 5. From the device utilization, it is almost two

times of the device utilization of MMM42 multiplier, as

complete RSA system is constituted by two MMM42

multipliers. The same results are compared with other

architecture given in section B.

Figure 12 shows the timing diagram obtained for

implementation of Figure 6, which takes the 64 bit data and

gives the result for both encryption and decryption. It is

observed from the timing diagram that da1, da2 which is

plaintext input is obtained back through decryption as org1,

org2.

Fig 12. Timing Diagram of Encryption and Decryption

Table 4. Device Utilization of Complete RSA System

Device utilization Summary

Logic utilization Used Available Utilization

No. of slices 4645 5472 84%

No. of Slice Flip Flops 4068 10944 37%

No. of 4 input LUTs 8920 10944 81%

No. of bonded IOBs 710 320 221%

No. of GCLKs 1 32 3%

Table 5. Timing Summary of Complete RSA System

Timing analysis of the RSA Cryptosystem with MMM42

Speed Grade 12

Min. period 9.847 nano seconds

Max. frequency 101.554MHz

Min. input arrival time before

clock

7.003 nano seconds

Max. output required time

after clock

7.545 nano seconds

Max. combination path delay 9.555 nano seconds

Fig 13. Device utilization with mMMM42 Multiplier

 Figure 13 describes the usage of Slices, Look Up Tables

(LUT), LUT Flip Flop pairs with the algorithm executed using

the MMM42 multiplier with reference to Table 7. This is

compared with the algorithm executed without MMM42. In

Spartan-3 (Xc3s400-5pq208) utilization is more and number

of LUTs used are beyond 100%, so it is not used for hardware

implementation. Atrix-7 (xc7a100t-3csg324) is utilized for

implementation and encryption and decryption time are also

measured.

B. Simulation and Results without MMM42 Multiplier

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

235

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Fig.14 Entity Module of RSACypher_128

Figure 14 provides the module to perform encryption and

decryption which is utilized to implement complete RSA

Cryptosystem. The RTL Schematic of the same is shown in

Figure 15.

Fig.15 RTL Schematic of RSACipher_128

The inputs to the RSA CYPHER-128 Encryption includes

Public key, (modulus M) modin and data_in (plain text

message) as inputs of 128 bits and Cipher as output.

Decryption unit takes Cipher, Private key and Modulus(M) as

inputs to produce the plaintext message output i.e.,

original_msg. Figure 16 gives the corresponding timing

diagram of RSA CYPHER_128 shown in Figure 15 and

Static power utilization details in Figure 13. The device

utilisation for the complete RSA system is very less that is

below 50% compared to the earlier architecture discussed in

section A. It is also observed from the execution and timing

diagrams the time required for encryption and decryption is

around 50%. Through comparison, the second architecture is

best suitable for WSNs as it satisfies the constraints and

limitations in terms of hardware usage.

Fig 16. Timing Waveform RSA System Without Modified MMM42 Multiplier(RSACIPHER 128 Cryptosystem)

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

236

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Table 6. Device Utilization of Complete RSA System

without mMMM42 Multiplier

Device utilization Summary

Logic

utilization
Used Available Utilization

No. of slices 1889 5472 34%

No. of Slice

Flip Flops
1807 10944 16%

No.r of 4

input LUTs
3474 10944 31%

No. of bonded

IOBs
516 320 161%

No. of GCLKs 1 32 3%

Figure 17 describes the usage of Slices, Look Up Tables

(LUT), LUT Flip Flop pairs with the algorithm executed

without using the MMM42 multiplier, with reference to Table

8. This is compared with the algorithm executed with

MMM42. In Spartan-3 (Xc3s400-5pq208) utilization is more

and numbers of LUTs used are beyond 100%, so it is not used

for hardware implementation.

Fig 17. Device utilization without MMM42 Mulltiplier

(RSACIPHER 128 Cryptosystem)

Fig 18. Static Power Utilization

C. Hardware Results with MMM42 Multiplier

The VHDL code is synthesized using the Spartan 3E FPGA on

Chip Scope Pro with Virtual input and output as Spartan 3 E

cannot provide complete 64-bit data on LEDs. Figure 14

shows the encryption of 64-bit data individually and the same

data bits are utilized in software implementation. Figure 15

gives the decryption of data. The Virtual inputs and outputs

are chosen only for encryption and decryption i.e., plaintext

and cipher text. Other inputs and outputs are not shown in

Figures 19 and Figure 20.

As the device utilization is less in the architecture RSA

CIPHER-128 (Figure 11) , the same code is implemented

using Mentor Graphics for ASIC design. Figure 17 gives the

Area report of Figure 11 i.e., RTL Schematic of

RSACipher_128. It describes the number of ports used for

implementation as 772 and number of instances as 2, that

shows minimum use of hardware with the second architecture

implementation. Figure 18 shows very less delay time and the

time required for data arrival is 0 and for output arrival is 10.0.

Fig19. Encryption of Data

Fig 20.Decryption of Data

Two different architectures are designed and implemented to

compare the performance. RSA CIPHER-128 multiplier gives

the good performance with respect to speed and area. It is

observed from the results shown in Figure 21 and Figure 22

that implementation with modified MMM42 multiplier is not

suitable for WSN nodes as it consumes 50% more hardware in

FPGA.

The design RSA CIPHER-128 is selected and also

implemented using Mentor Graphics for ASIC design. It is

also observed from the Figures 17 and 18 , with device

Spartan-3 for both architectures i.e., with and without

MMM42, the utilisation of hardware is more, that leads to

select the device Atrix-7 for Hardware implementation.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

237

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Fig 16. Area Report

Fig. 21 Comparison of Device Utilization

Device Atrix-7 Kintex-7 Spartan-3 Virtex-5 Zynq

% of slices

with MMM42
3 0 129 5 0

% of Slices

without

MMM42
2 0 105 5 0

%ofLUTS

with MMM42
13 2 56 11 2

%ofLUTS

without

MMM42
10 2 50 10 2

%ofLUTFF

pairs with

MMM42
35 35 124 40 35

%ofLUTFF

pairs without

MMM42

32 32 96 36 32

Fig. 22. Comparision of Slices Utilized with and without

MMM42 Multiplier

Fig 23. Critical Path Report

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

238

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Fig 24. Timing diagram - RTL Schematic of RSACipher_128

Table 7. Device Utilization of Complete RSA System with mMMM42 Multiplier

Device Clock Time Available

Slices

Used Usage Available

LUTs

Used Usage Available

LUT FF

pairs

Used Usage

Atrix-7

xc7a100t-

3csg324

148.534

MHz

6.732

Nano

sec

126800 4062 3% 63400 8294 13% 9110 3246 35%

Kintex-7

Xc7k480t-

3ffg1156

222.074

MHz

4.503

Nano

sec

597200 4062 0% 298600 8294 2% 9110 3246 35%

Spartan-3

Xc3s400-

5pq208

46.677

MHz

21.424

Nano

sec

3584 4639 129% 7158 4068 56% 7168 8908 124%

Virtex-5

Xc5vls110t-

3ff1136

144.52

MHz

6.919

Nano

sec

69120 4062 5% 69120 8202 11% 8750 3514 40%

Zynq

Xc7z100-

2ffg1156

199.931

MHz

5.002

Nano

sec

554800 4062 0% 277400 8294 2% 9112 3244 35%

Table 8. Device Utilization of Complete RSA System RSACIPHER-128 Multiplier

Device Clock Time Available

Slices

Used Usage Available

LUTs

Used Usage Available

LUT FF

pairs

Used Usage

Atrix-7

xc7a100t-

3csg324

148.534

MHz

6.732

Nano

sec

126800 3606 2% 63400 6850 10% 7865 2591 32%

Kintex-7

Xc7k480t-

3ffg1156

222.074

MHz

4.503

Nano

sec

597200 3606 0% 298600 6850 2% 7865 2591 32%

Spartan-3

Xc3s400-

5pq208

46.677

MHz

21.424

Nano

sec

3584 3764 105% 7158 3606 50% 7168 6928 96%

Virtex-5

Xc5vls110t-

3ff1136

142.77

MHz

7.664

Nano

sec

69120 3606 5% 69120 7108 10% 7864 2850 36%

Zynq

Xc7z100-

2ffg1156

199.931

MHz

5.002

Nano

sec

554800 3606 0% 277400 6850 2% 7865 2591 32%

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

239

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Table 9. Execution Speed Performance Analysis with

mMMM42 Multiplier Cryptosytem

Devic

e

Clock

(MHz)

Time

(ȠSec)

Area
(slices

)

Usage

 (%)

Encry

p

tion

time
(ns)

Decry

p

tion

time
(ns)

Atrix-

7

148.534

6.732

3606

2% 50.012 19028
5

Kinte
x-7

142.776

7.004

3606

5% 50.012 19028

5

Sparta

n-3

49.679 20.129

3764

105% 50.012 19028

5

Virtex

-5

142.776

7.004

3606

5% 50.012 19028

5

Zynq

199.931

5.002

3606

0% 50.012 19028
5

Table 10. Execution Speed Performance Analysis

RSACIPHER-128 Cryptosystem

Devic
e

Clock

(MHz)

Time

(ȠSec)

Area
(slices

)

Usage

 (%)

Encry

p

tion

time
(ns)

 Decryp

tion

time
(ns)

Atrix-

7

148.534

6.732 4062

3 30.002 185764

Kinte

x-7

222.074

4.503

3606

0 30.002 185764

Sparta

n-3

46.677

21.424

4639

129 30.002 185764

Virtex
-5

144.526

6.919

4062

5 30.002 185764

Zynq

199.931

5.002

4062

0 30.002 185764

The modules discussed in this section are designed and

implemented in VHDL code and tested on ISE 13.2

software using XILINX FPGA Artix-7 xc7a100t-

2csg324 device and simulated with Modelsim

Simulator. This FPGA is advised for implementation

of Public Key Cryptography as it supports different

degrees of security and high-speed execution for GF

computations. The static power consumption is also

very less compare to other FPGAs [2].

Table 11. Execution Speed Performance Analysis on

FPGA Artix-7 xc7a100t-2csg324 with mMMM42

Cryptosystem

Device Clock

(MHz)
Tim

e
(ȠSe

c)

Area
(slices)

Usag
e

 (%)

Encryptio
n

time
(ns)

Decryptio
n
 time
(ns)

ARTIX-
7

148.534
MHz

6.73
2

4062

3 20.198

125064

Table 12. Execution Speed Performance Analysis on

FPGA Artix-7 xc7a100t-2csg324 RSACIPHER-128

Cryptosystem

Device Clock
(MHz)

Tim
e

(ȠSe
c)

Area
(slices)

Usag
e

 (%)

Encryptio
n

time
(ns)

Decryptio
n
 time
(ns)

ARTIX-
7

148.53
4

6.7
32

3606

2 33.670

128108

VIII. CONCLUSIONS

To achieve better security and improve the speed constraints

a high degree of flexibility with respect to the cryptographic

algorithms is desirable in WSNs. RSACIPHER-128

cryptosystem gives good performance in terms of speed and

area. It is observed from the results that the implementation

with mMMM42 multiplier is not suitable for WSN nodes as

it consumes 50% more hardware in FPGA. The design

RSACIPHER-128 is selected and also implemented using

Mentor Graphics for ASIC design. It is planned to take up

Vedic multipliers to perform modular multiplications in

future work to speed up the multiplication operation and to

reduce the hardware usage.

REFERENCES

[1] 1. Ian F Akylidiz, Weilian Su, Yogesh Sankara

subramani --am and E Cayirci, “Wireless Sensor

Network : A Sur vey on Sensor Networks,” in IEEE

Communication Magazine, ISSN:0163-6804, vol. 40, no.

8, pp. 102-114 , 2002.

[2] Antonio de la Piedra, An Braeken, and Abdellah Touhafi.

2012. Sensor Systems Based on FPGAs and Their

Applications: A Survey. Sensors (2012), 12, 12235-

12264; DOI:10.3390/s 120912235.

[3] Abdullah Said Alkalbani, Teddy Mantoro, Abu Osman

Md Tap, “Comparison between RSA Hardware and

Software Implementation for WSNs Security Schemes”,

in Proceedings of Third International Conference on

ICT4M, pp. E84-E89, 2010.

[4] P L Montgomery, “ Modular Multiplication Without

Trial Division,” Mathematics Computations, vol.44, no.

170, pp. 519-521, 1985.

[5] Sushanta Kumar Sahu Manoranjan Pradhan,

“Implementation of Modular Multiplication for RSA

Algorithm,” in IEEE Conference on Communication

Systems and Network Technologies, pp. 112-114, 2011.

[6] Jainath Nasreen P, Denila N, “ A Novel Architecture for

VLSI Implementation of RSA Cryptosystem,” in IEEE

International conference on ICCEET, pp. 606-609, 2012.

[7] C. Mclvor, M. McLoone, J. V., McCanny: Fast

Montgomery Modular Multiplication and RSA

Cryptographic Processor Architectures. In: proceedings

of 37th Asilomar Conference on Signals, Systems,

Computations, vol.1, pp. 379-384, 2003.

[8] Alan Daly, William Marnane: Efficient Architectures for

Implementing Montgomery Modular Multiplication and

RSA Modular Exponentiation on Reconfigurable Logic.

In: Proceedings of the 2002 ACM/SIGDA tenth

International Symposium on FPGAs, pp. 40-49, ACM 1-

58113-452-5/02/2002, Monterey, California, USA

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 227 – 240

240

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

[9] Ridha Ghayoula, ElAmjed Hajlaoui, Talel Korkobi,

Mbarek Traii, Hichem Trabelsi, “ FPGA Implementation

of RSA Cryptosystem,” in World Academy of Science,

Engineering and Technology, vol. 20, no. 3, pp. 1005-

1009, 2008.

[10] Gustavo D Sutter, Deschamps, Jean-Pierre and Imana,

Jos´e Luis, “Modular Multiplication and Exponentiation

Architectures for Fast RSA Cryptosystem Based on Digit

Serial Computation.,” IEEE Transactions on Industrial

Electronics, vol. 58, no.7 pp. 3101-3109, 2011.

[11] A Miyamoto, N Homma, T Aoki and A Satoh,

“Systematic Design of RSA Processors Based on High-

Radix Montgomery Multipliers,” in IEEE Transactions

on VLSI, pp. 1-11, 2011.

[12] T Blum, and C Paar, “High Radix Montgomery

Multiplication on Reconfigurable Hardware,” in IEEE

Transactions on Computers , vol. 50, no.7, pp. 759-764,

2001.

[13] E Michalski and D A Buell, “A Scalable Architecture

For RSA Cryptography on Large FPGAs,” in

Proceedings of International Conference on Field

Programmable Logic and Applications, 2006.

[14] Jin-Hua Hong, Cheng-Wen Wu Cellular-Array Modular

Multiplier for Fast RSA Public-Key Cryptosystem Based

on Modified Booths Algorithm”, in IEEE Transactions

on Very Large Scale Integration(VLSI) Systems, vol. 11,

no. 3, pp. 474-484, June 2003.

[15] Kauther M Amer, Sami M Sharif, Ahmed S Ashur, “

Enhancement of Hardware Modular Multiplier Radix-4

Algorithm for Fast RSA Cryptosystem,” in Proceedings

of the 10th Conference on computing , Electrical and

Electronic engineering, pp. 692-697, 2013.

[16] A P Fournaris and O Koufopavlou, “Montgomery

Modular Multiplier Architectures and Hardware

Implementations for an RSA Cryptosystem,” pp. 778-

793.

[17] Mentens, Nele and Sakiyama, Kazuo and Preneel, Bart

and Verbauwhede, Ingrid, “Efficient Pipelining for

Modular Multiplication Architectures in Prime Fields,”

in Proceedings of the 17th ACM Great Lakes

Symposium on VLSI, pp. 534-539, 2007.

[18] Mentens S S Ghoreishi, M A Pourmina, H Bozorgi, M

Dousti, “High Speed RSA Implementation Based on

Modified Booths Technique and Montgomery’s

Multiplication for FPGA Platform,” in Proceedings of

Second International Conference on Advances in

Circuits, Electronics and Micro-Electronics, pp. 534-539,

2009.

[19] Desiree Juby Vincent, “ Fast and Area Efficient RSA

Cryptosystem Design Using Modified Montgomery

Multiplication for FPGA Applications,” in International

Journal of Scientific Engineering Research, vol.4, no. 7,

pp. 2221-2228, 2013.

[20] Tamer Gudu, “ A new scalable hardware architecture for

RSA algorithm,” in Proceedings of the International

conference on Field Programmable Logic and

Applications, pp. 670-674, 2007.

[21] Milo Drutarovsk, Martin Imka, Viktor Fischer,

“Comparison of Scalable Montgomery Modular

Multiplication Implementations Embedded in

Reconfigurable Hardware,” in Acta Electrotechnica et

Informatica, Versita, vol. 6, no. 2, pp. 37-45, 2008.

[22] Kamala, Ramachandruni Venkata and Srinivas, M B, “

High-Throughput Montgomery Modular Multiplication,”

in proceedings of International Conference on Very

Large Scale Integration, pp. 58-62, 2006.

[23] Kuang, Shiann-Rong and Wang, Jiun-Ping and Chang,

Kai-Cheng and Hsu, Huan-Wei, “ Energy-Efficient

High-Throughput Montgomery modular multipliers for

RSA Cryptosystems,” in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol.21, no.11,

pp. 1999-2009, 2013.

[24] Chen, Jun-Hong and Wu, Haw-Shiuan and Shieh, Ming-

Der and Lin,Wen-Ching, “A New Montgomery Modular

Multiplication algorithm and its VLSI Design for RSA

Cryptosystem,” in IEEE International Symposium on

Circuits and Systems, pp. 3780-3783, 2007.

[25] Chen, Jun-Hong and Wu, Haw-Shiuan and Shieh, Ming-

Der and Lin, Wen-Ching, “An efficient montgomery

Multiplication Algorithm and RSA Cryptographic

Processor,” in International Conference on

Computational Intelligence and Multimedia

Applications, vol.2, pp.188-195, 2007.

[26] Shieh, Ming-Der and Chen, Jun-Hong and Lin, Wen-

Ching and Wu, Hao-Hsuan, “A New Algorithm for

High-Speed Modular Multiplication Design,” in IEEE

Transactions on Circuits and Systems , vol.56, no.9,

2009.

[27] Shieh, Ming-Der and Chen, Jun-Hong and Wu, Hao-

Hsuan and Lin, Wen-Ching, “A New Modular

Exponentiation Architecture for Efficient Design of RSA

Cryptosystem,” in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol.16, no.9, pp.

1151-1161, 2008.

[28] Shiann-Rong Kuang, Kun-Yi Wu, Ren-Yao Lu: Low

Cost High Performance VLSI Architectures for

Montgomery Modular Multiplication, In: IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol.24, no.2, pp. 434-443, 2016.

