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Abstract: A Software bug is an error, flaw, failure or fault in a computer program or system that causes it to produce an incorrect or unexpected 

result. When bugs arise, we have to fix them which is not easy. Most of the companies spend 40% of cost to fixing bugs. The process of fixing 

bug is bug triage or bug assortment. Triagingthis incoming report manually is error prone and time consuming .Software companies spend most 

of their cost in dealing with these bugs. In this paper we classifying the bugs so that we can determine the class of the bug at which class that bug 

is belongs and after applying the classification we can assign the particular bug to the exact developer for fixing them. This is efficient. In this 

paper we are using combination of two classification techniques ,naïve Bayes (NB) and k nearest neighbor(KNN).In modern days company uses 

automatic bug triaging system but  in Traditional manual Triaging system is used which is not efficient and taking too much time .For triaging 

the bug we require bug detail which is called bug repository. In this paper we also reducing the bug dataset because if we having more data with 

unused information which causes problem to assigning bugs. For implementing this we use instance selection and feature selection for reducing 

bug data.  This paper  describe the whole procedure of bug allotment from starting to end and at last result will show on the basis of graph 

.Graph represents the maximum possibility of class means at which class the bug will belongs. 

 

Keywords-bug triage, bug data reduction, bugs classification technique (NB &KNN). 
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INTRODUCTION- 

Everyday new bugs are generated and fixing these bugs are 

more difficult.Software companies are for developing new 

applications but here they waste their time for fixing the 

bugs.In this paper we triaging the bug by using some 

classification techniques and we also reducingthe bug 

dataset.For triaging the bug we require the bug details so 

that we can assign the bug to the particular developer which 

is more efficient. Bug details are stored in bug repository.In 

traditional days bugs are assign manually which is not 

efficient and also time consuming.they could not handle the 

large dataset .In modern days bug assignment is done 

automatic but still there was a problem, details of the bugs 

are not properly .Some of the information is incorrect and 

some are unused .we could not predict the class of the bug 

depending on that information so in this paper we find the 

solution of that problem and the solution is “reduction of 

bug dataset”. Where reducing unwanted data which is not 

useful for triaging the bug. This process is comes under the 

prepossession. 

Applying the example choice procedure to the information 

set can diminish bug reports yet the accuracy of bug triage 

might be diminished; applying the element determination 

system can lessen words in the bug information and the 

exactness can be expanded.In the meantime, consolidating 

both strategies can build the accuracy, and additionally 

decrease bug reports and words. For instance, when 50 

percent of bugs and 70 percent of words are evacuated, the 

exactness of Naive Bayes on Eclipse enhances by 2 to 12 

percent and the accuracy on Mozilla enhances by 1 to 6 

percent. In view of the featuresfrom historical bug 

information sets, our prescient model can give the exactness 

of 71.8 percent for foreseeing the lessening request. In view 

of top hub investigation of the properties, results 

demonstrate that no individual characteristic can decide the 

decrease request. 

Basically bug repository is database where we store 

information regarding bugs.Differentbugs having different 

information so detecting a class of that bug we require bug 

repository or bug database. In a bug repository, a bug is 

maintained as a bug report, which records the 

textualdescription of reproducing the bug and updates 

according to the status of bug fixing [20]. A bug repository 

consist of many types of tasks on bugs, e.g. fault prediction 

[7], [18], bug localization [3], and reopenedbuganalysis 

[19].  Bug reports in a bug repositoryare called bug data. 

This classification process is not done by a single person, for 

making it successful it required Admin, Developer and 

Tester.  Tester is responsible for testing the program 

whenever bug is occur, tester submit the bug with its bug 

details in the bug repository or bug database. By using this 

information about bug, classification process is done for 

determine the class of that bugand after that administrator 

assign the bug depending on the class to the proper 

developer. 

Important stages in the bug triaging process is selecting the 

most appropriate developer to fix a new bug report and it 

has a significant effect in decreasing the time taken for the 

bug fixing process [16] and the cost of the projects [2], 

[11].Software companies spend over 45 percent of cost in 

fixing bugs [1], [8], and [17]. In traditional bug triage 

systems, a developer whois dominant in all parts of the 

project as well as the activities plays the role of bug triager 

in the project. The triager reads a new bugreport, makes a 

decision about the bug, and then selects the most appropriate 

developer who can resolve the bug. Fixing bug reports 

through the traditional bug triage system is very time 

consuming and also imposes additional cost on the project 

[2]. 

One of the most important reasons why bug triaging is such 

a lengthy process is the difficulty in selection of the most 

competent developer for the bug kind. The bug triager, the 

person who assigns the bug to a developer, must be aware of 

the activities (or interest areas) of all the developers in the 

project. Bug triaging normally takes 8 weeks to resolve a 

bug if the developer, to whom the bugreport is assigned, 
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could not resolve it, it is assigned to another developer. This 

would consume both time and money. Thus, it is really 

important on part of bug triager to assign the bug report to a 

developer who could successfully fix the bug without need 

of any tossing. Hence, the job of bug triager is really crucial 

[2]. 

In this paper we using the classification to assigning the bug  

which is automatic process and by using this bug fixing is 

done quickly as compare to the manualassignment. 

 Depending on graph we can assign the bug easily, here two 

graphs are use first graph  is represent maximum possibility 

of class based on word count (KNN) and  second graphs  

describe the combination of KNN & NB which is based on 

frequency. The output of second graph is generated from the 

help of first graph .Final output will beconsider from second 

graph. 

 

METHODS AND MATERIAL 

NB Classifier 

Naïve bayes classifier is developed by “Thomas bayes” 

which is use for classification process.Bayes classifier is 

also called as Idiot Bayes, Naïve Bayes and Simple Bayes. 

Naïve Bayes is fast,space efficient and easy to learn. 

Assume that we have two classes c1 = male, and c2 = 

female. We have a person whose sex we do not know, say 

“sonu” . Classifying sonu as male or female is equivalent to 

asking is it more probable that sonu is male or female, i.e 

which is greater p(male| sonu) or p(female| sonu).To solve 

this Problem we will use dataset (Table a)where data about 

sex is present .classifier calculate the maximum count with 

the use of dataset and declare the output. Here SONU is 

female because in table here is 2 entries of sonu with sex 

“female” and only one entry for male. 

 

Name Sex 

Sonu Female 

Monu Male 

Sonu Female 

Neha Female 

Sonu Male 

Table(a) 

 

Bayes classifiers assume that the value of a particular 

feature is independent   of the value of any other feature, 

given the class variable. For example, a fruit may be 

considered to be an apple if it is red, round, and about 10 cm 

in diameter. A naive Bayes classifier considers each of these 

features to contribute independently to the probability that 

this fruit is an apple, regardless of any possible correlation 

between the color, roundness and diameter features. 

Similarly this classifier is helpful in classifying the flaw or 

bug and with the help of dataset where all type of classes is 

inserted it predict the class.An advantage of naive Bayes is 

that it only requires a small amount of training data to 

estimate the parameters necessary for classification. 

 

KNN Classifier 

KNN Means K nearest neighbor which identify the k nearest 

neighbor of „c‟ where c is the item or bug (flaw).With the 

help of this classifier we classify the bug .For ex: the value 

of k is 3,here are two classes a and o and we have to find out 

the class for c.here k=3 means we need to find out 3 nearest 

neighbor of c. 

 

 
Fig(a) 

 
fig(b) 

 

In fig(a) class a &b is present and In fig(b) c is present 

which is one type of bug and after applying the KNN it 

defines 3 nearest neighbor ,one from class 

 a and two from class o. Here 2 vote for class o and 1 vote 

for class a so output will be class o means bug c is belongs 

to class o by using KNN. 

In this paper we are using combination of these two 

algorithm for classification where KNN algorithm is based 

on word count and NB algorithm is based on term 

frequency. 

 

Applying Instance Selection and FeatureSelection 

In this paper we use the instance selection and feature 

selection for reducing bug data set. For triaging the we 

require the dataset and we need to convert it into text matrix 

with two dimensions,bug dimension and word dimension. In 

this we combine the instance and feature  to generate the 

reduced data set. Instance selection and feature selection are 

widely usedtechniques in data processing for replacing 

original dataset with reduced data set for bug triage.instance 

selection is to obtain a subset ofrelevant instances (i.e., bug 

reports in bug data) [21] while feature selection aims to 

obtain a subset of relevant features (i.e., words in bug data) 

[22]. In our work, we employ the combination of instance 

selection and feature selection. Todistinguish the orders of 

applying instance selection and feature selection, we give 

the following denotation. Givenan instance selection 

algorithm IS and a feature selectionalgorithm FS, we use 

FS!IS to denote the bug data reduction,which first applies 

FS and then IS; on the other hand,IS!FS denotes first 

applying IS and then FS. 

 

Word dimension: We use feature selection to remove noisy 

duplicate words in a data set. By removinguninformative 

words, feature selection improves the accuracy of bug 
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triage. This can recover the accuracy lossby instance 

selection. 

 

Bug dimension: Instance selection can remove 

uninformative bug reports; meanwhile, we can observe that 

the accuracy may be decreased by removing bug reports.  

 

Algorthm:  

Algorithm Preprocess (Data D) 
Step 1: Read Data into Array 

Step 2: Remove All Stop words 

 Σ 𝑖 = 0 | 𝜙 𝑛 ≠ 𝑠𝑡𝑜𝑝(𝑖) 

Step 3: Remove Redundancy from Array 

 Σ 𝑖 = 0 | 𝜙 𝑛 ≠ 𝑟𝑒𝑝𝑒𝑎𝑡(𝑖) 

Step 4: Remove all Special Symbol and digits. 

Step 5: Write back 

 

Algorithm Classification (Data D) 

Step 1: Read Data into Array 

Step 2: Call Preprocess (D) 

Step 3: Calculate Word count 

 Σ 𝑖 = 0 | 𝜙 𝑖 = 𝑖 + 1 𝑖𝑓 𝑎 𝑖  ∈ 𝑓𝑖𝑛𝑎𝑙[𝑖] 
Step 4: Calculate Frequency 

 Tf = number of occurrences / total words 

Step 5: Calculate Normalized TF 

 NTF = sum of Tf / number of classes 

Step 6: Generate Decision Matrix 

Step 7: Calculate Final max class value and classify. 

 

Module 
Module1: Dataset Generation- First module of this project 

is dataset generation. all types of classes are inserted in this 

dataset.we introduce 6 types of classes. Bad practice, 

Correctness, dodgy code, Experimental, Internationalization, 

and Malicious code Vulnerability. 

If bug belongs to this classes it automatically assign to that 

class of developer which is efficient for fixing the bug. 

 

 Module2: Prepossessing second module of this project is 

prepossessing. In this module we remove all stop words 

which is not useful for detecting the class. 

After prepossessing we will apply the classifier on that 

preprocessed data for detecting the class. 

 

Module3: Bug Classification: This is third module “bug 

Classification”. Two classification algorithms are use for 

classifying the bug.NB(naïve bayes) and KNN(K nearest 

neighbor).In this project we are using the Combination of 

these two algorithm due tothis, it generate the better result. 

 

 Module 4: Bug allotment: last module is Bug allotment 

where we are allotting the bug to the particular developer 

depending upon their class. 

 

Overview of Dataset 

We have used FINDBUGS Categories as our bug dataset for 

unstructured bug categories. 

Some of Bug categories 

 

 

Correctness bug  

Probable bug - an apparent coding mistake resulting in code 

that was probably not what the developer intended. We 

strive for a low false positive rate. 

 

Bad Practice 

Violations of recommended and essential coding practice. 

Examples include hash code and equals problems, cloneable 

idiom, dropped exceptions, serializable problems, and 

misuse of finalize. We strive to make this analysis accurate, 

although some groups may not care about some of the bad 

practices. 

 

Dodgy 

Code that is confusing, anomalous, or written in a way that 

leads itself to errors. Examples include dead local stores, 

switch fall through, unconfirmed casts, and redundant null 

check of value known to be null. More false positives 

accepted. In previous versions of FindBugs, this category 

was known as Style. 

 

Probable bug - an apparent coding mistake resulting in 

code that was probably not what the developer intended. We 

strive for a low false positive rate. 

 

Experimental Results 

• We introduce the issue of information lessening for bug 

triage. This issue means to increase the information set of 

bug triage in two viewpoints, to be specific  

a) To at the same time lessen the sizes of the bug 

measurement and the word measurement.  

b) to enhance the precision of bug triage.  

• We propose a mix way to deal with tending to the issue of 

information diminishment. This can be seen as a use of 

example choice and highlight determination in bug vaults.  

• We manufacture a parallel classifier to foresee the request 

of applying case choice and highlight choice. As far as 

anyone is concerned, the request of applying occurrence 

determination and highlight choice has not been explored in 

related spaces.  

By utilizing the programmed bug triage approach the time 

and cost is spared. This framework is executed by utilizing 

the Naive bayes grouping strategy. The task of bug to 

designer is done naturally. Nature of bug triage is enhanced 

utilizing this new framework, in light of the fact that here 

we utilize classifier for execution. We are utilizing occasion 

and highlight determination for information decrease. 

Occurrence determination and Feature choice with Naïve 

Bayes and KNN grouping for bug triage. 

The proposed system is implemented in Java and MySQL. 

The dataset is provided with 9 classes from FindBugs 2.0 

that is openly available on GitHub and Source Forge. The 

algorithm used for classification is KNN and Naïve Bayes 

and we also provide comparative study for both this 

algorithms in terms of Bug Triage System. 
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Fig: KNN and NB Results 

 

Result Based onKNN algorithm 

 
 

Result Based on NB & KNN algorithm: 

 
 

 Here two Graphs are Present 1
st
 one is based on word count 

which support KNN Classifier and 2
nd

 is based on Term 

Frequency which support NB & KNN classifier .the result is 

“bad Practice” means the bug is belongs to the class which 

name is “bad Practice”. 

 

 
Bug allotment 

Bug allotment is last step where we allot bugs to the 

developer for fix them. 

Conclusion and Future Scope: 

            In this paper we introduced the concept of bug 

classification for allotting the bug to appropriate developer 

for fixing it and for this purpose we used the combination of 

two algorithms NB and KNN. We also introduced the 

reduction process of bug database by applying 

prepossessing. 

Bug tracking systems are an important part of how teams in 

open source interact with their user communities. This 

interaction goes beyond users simply submitting bugs. Many 

follow-up questions are posed to the reporters of bugs 

andOften, if a reporter does not play an active role in the 

discussion of the bug, little progress is made. Our results 

highlight the importance of effectively and efficiently 

engaging the user community in bug fixing activities, and 

keeping them up-to-date about the status of a bug. We 

believe that our results will help to form the design of new 

bug tracking systems that will aim at eliciting the right 

information fromUsers and facilitating communication 

between end users and developers as well as among 

developers. An integration and active participation of users 

in bug tracking will result in bugs being fixed faster and 

more efficiently. 

Bug triage is a costly stride of programming upkeep in both 

work cost and time cost. In this paper, we join highlight 

choice with occasion determination to diminish the size of 

bug information sets and enhance the information quality. 

To decide the request of applying example determination 

and highlight choice for another bug information set, we 

separate traits of every bug information set and prepare a 

prescient model in view of verifiable information sets. We 

experimentally examine the information lessening for bug 

triage in bug storehouses of FindBugs Database of Bugs. 

Our work gives a way to deal with utilizing strategies on 

information handling to shape diminished and brilliant bug 

information in programming advancement and upkeep. We 

also provide a system that can classify bugs with the help of 

KNN and NB classifier system. Bug Triage with automated 

classification is the main objective of proposed system. 
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