
International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

16
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

Video streaming over p2p using AQCS algorithm

Ms. Kalyani Dhodre

1
, Mrs. Hemlata dakhore

Department of Computer Science & Engineering,, G.H.R.I.E.T.W.,RashtrasantTukdojiMaharaj Nagpur University

Nagpur, India
1
kalyanidhodre@gmail.com,hemlata.dakhore@raisoni.net

,

Abstract:-P2p streaming has been popular and is expected to attract even more users. The proposed scheme can achieve high

bandwidth utilization and optimal streaming rate possible in ap2p streaming system.

The prototype implementing the queue based scheduling is developed and used to evaluate the scheme in real network. between

one or more number of clients running un trusted code into controlled environment to a remote host that has opted into

communication from that of the code p2p network which is use in case of The distribution of the videos. where proposed

design which enables flexible customization of video streams to support heterogeneous of receivers, highly utilizes upload

bandwidth of peers, and quickly adapts to network and peer dynamics

Keywords—peer to peer coding ,scalable video coding, network coding, web socket

__*****___

I. INTRODUCTION

From past of the time, creating web applications that need

bidirectional communication between a client and a server

(e.g., instant messaging and gaming applications) has

required an abuse of HTTP to poll the server for updates

while sending upstream notifications as distinct HTTP

calls[1].This can be provided by WebSocket Protocol The

capability to achieve high streaming rate is desirable for P2P

streaming. Higher streaming rate allows the system to

broadcast video with better quality. It also provides more

cushions to absorb the bandwidth variations caused by peer

churn and network congestions when constant-bit-rate

(CBR)video is broadcasted[1]. The key to achieve high

streaming rate is to better utilize peers’ uploading

bandwidth. In this section, we propose a queue-based chunk

scheduling algorithm that can achieve close to 100% peers’

uploading bandwidth utilization in practical P2P networking

environment[3].In P2P system, the resource utilization is

determinedby the overlay topology and collective behavior

of chunk scheduling at individual peers. At system level,

queue-based adaptive chunk scheduling requires fully

connected mesh among participating peers. At peer level,

data chunks are pulled/pushed from server to peers, cached

at peers’ queue,and relayed from peers to its neighbors[4].

The availability of upload capacity is inferred from the

queue status such as thequeue size or if the queue is empty.

Signals are passed between peers and server to convey the

information if a peer’s upload capacity is available.

.

II. ADAPTIVE QUEUE-BASED CHUNK SCHEDULING

Fig. 1.Queue-based P2P system with four nodes.

1. peera sends pull signal to the content source server;

2. content source server send three chunks in response to the

pull signal;

3. three chunks are cached in the forward queue;

4. cached chunks are forwarded to neighbor peers;

5. duplicate chunk is sent

Fig. 1 depicts a P2P streaming system using queue-based

chunk scheduling with one source server and three peers.

Each peer mainstains several queues including a forward

queue. Using peer as an example, the signal and data flow is

described next. Pull signals are sent from peers a to the

server whenever the queues become empty (or have fallen

below a threshold) (step 1 in Fig. 1). The server responds to

the pull signal by sending three data chunks back to peer a

(step 2).These chunks will be stored in the forward queue

(step 3) and be relayed to peer b and peer c (step 4). When

the server has responded to all ’pull’ signals on its ’pull’

signal queue, itserves one duplicated data chunks to all peers

(step 5). These data chunks will not be stored in forward

queue and will not be relayed further.

Next we first describe in detail the queue-based scheduling

mechanism at the source server and peers.

A. Peer side scheduling and its queuing model

Fig. 2 depicts the queuing model for peers in the queuebased

scheduling method. A peer maintains a playback buffer that

stores all received streaming content from the source server

and other peers. The received content from different

nodes is assembled in the playback buffer in playback

order.The peer’s media player renders/displays the content

from thisbuffer. Meanwhile, the peer maintains a forwarding

queue which is used to forward content to all other peers.

The received content is partitioned into two classes: F-

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

17
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

marked content and NF-marked content. F (forwarding)

represents content that should be relayed/forwarded to other

peers.

 NF(nonforwarding)

indicates that content is intended for this peer only and no

forwarding is required. The content forwarded byneighbor

peers is always marked as NF[2].

B. Server side scheduling algorithm and its queuing model

Fig. 3 illustrates the server-side queuing model of the

decentralized method. The source server has two queues: a

content queue and a signal queue. The content queue is a

multi-server queue with two dispatchers: an F-marked

content dispatcher and a forward dispatcher. The dispatcher

that isinvoked depends on the control/status of the ’pull’

signal queue. Specifically, if there is ’pull’ signal in the

signal queue, a small chunk of content is taken from the

content buffer.This chunk of content is marked as F and

dispatched by the F-marked content dispatcher to the peer

that issued the ’pull’signal. The ’pull’ signal is then

removed from the ’pull’ signalqueue. If the signal queue is

empty, the server takes a small chunk of content from the

content buffer and puts that chunk of content into the

forwarding queue to be dispatched. The forwarding

dispatcher marks the chunk as NF and sends it to all peers in

the system[1].

C. Proof of optimality for queue-based chunk scheduling

It show that the queue-based scheduling method for both

the peer-side and the server-side achieves the maximum P2P

live streaming rate of the system. Given a content source

server and a set of peers with known upload capacities, the

maximum streaming rate, rmax, is governed by the

following formula The first case is termed as server

resource poor scenario where the server’s upload capacity

is the bottleneck. The second case is termed as server

resource rich scenario where the peers’ average upload

capacity is the bottleneck.Assume that the signal

propagation delay between a peer and the server is

negligible and the data content can be transmitted at an

arbitrary small amount, then the queue-based decentralized

scheduling algorithm as described above achieves the

maximum streaming rate possible in the system. Proof:

Suppose the video content is divided into small chunks. The

server sends out one chunk each time it serves a ’pull’

signal. A peer issues a pull signal to the server whenever the

forwarding queue becomes empty. _ denotes the chunk

size.For peer i, i = 1, 2, . . . , n, it takes time of (n − 1)_/uito

forward one data chunk to all peers. Let ribe the maximum

rate at which the ’pull’ signal is issued from peer i. Hence

ri= ui/(n − 1)The maximum aggregated rate of ’pull’ signal

received atServer, It takes server _/us toserve a pull signal.

Hence the maximum ’pull’ signal rate a server can

accommodate is us/_. Now consider the following two

scenarios/cases:

In this scenario, the server cannot handle the ’pull’ signal at

maximum rate. The signal queue at the server side is hence

never empty and the entire server bandwidth is used to

transmit F-marked content to peers. In contrast, a peer’s

forward queuebecomes idle while waiting for the new data

content from the source server. Since each peer has

sufficient upload bandwidth to relay the F-marked content

(received from the server) to all other peers, the peers

receive content sent out by the server at the maximum rate.

Hence the streaming rate is consistent with the Equation (1)

and the maximum streaming rate is reached.In this scenario,

the server has the upload capacity to service the ’pull’

signals at the maximum rate. During the time period when

the ’pull’ signal queue is empty, the server transmits

duplicate NF`-marked content to all peers. The server’s

upload bandwidth used to serve NF-marked content is

therefore For each individual peers, the scenario in which

the server is resource rich described above. Again, the

streaming rate reaches the upper bound as indicated in

Equation (1). This concludes the proof. Note that in case 2

where the aggregate ’pull’ signal arrival rate is smaller than

the server’s service rate, it is assumed that the peers receive

F-marked content immediately after issuing the ’pull’ signal.

The above assumption is true only if the ’pull’ signal does

not encounter any queuing delay and can be serviced

immediately by the content source server. This means that

(i) no two ’pull’ signals arrive at the exact same time and (ii)

a ’pull’ signal can be serviced before the arrival of next

incoming ’pull’ signal. Assumption (i) is commonly used in

queuing theory and is reasonable since a P2P system is a

distributed system with respect to peers generating ’pull’

signals. The probability that two ’pull’ signals arrive at

exactly the same time is low. [3]

II. RELATED WORK

A. Protocol Overview

The protocol has two parts: a handshake and the data

transfer. The handshake from the client looks as follows:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

The handshake from the server looks as follows:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

18
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

Connection: Upgrade. Combined with the WebSocket API ,

it provides an alternative to HTTP polling for two-way

communication from a web page to a remote server.Then

same technique can be The WebSocket Protocol is designed

to supersede the existing bidirectional communication

technologies that use HTTP as a transport layer to benefit

from existing infrastructure (proxies,

filtering,authentication).Such technologies were

implemented as trade-offs between efficiency and reliability

because HTTP was not initially meant to be used for

bidirectional communication[2]. The WebSocket Protocol

attempts to Theaddress the goals of existing bidirectional

HTTP technologies in the context of the existing HTTP

infrastructurededicated port without reinventing the entire

protocol. This last point is important because of the traffic

patterns of interactive messaging do not closely match

standard HTTP traffic and can induce unusual loads on

some components.it will significantly improve their

performance. it present the design of a P2P streaming

system that employs both scalable video coding and network

coding where design is modular and can be used as an

improvement plug- in other P2P streaming systems. The p2p

mechanism can potentially achieve a very high efficiency of

data exchange between end devices,its very useful in

particular network infrastructure[1].In addition, we

quantitatively show the expected performance gain from the

proposed design using actual scalable video traces in

realistic P2P streaming environments with high churn rates,

heterogeneous peers, and flash crowd scenarios.In

particular, our results show that the proposed system can

achieve (i) significant improve-ment in the visual quality

perceived by peers (several dBs are observed), (ii) smoother

and more sustained streaming rates (up to 100% increase in

the average streaming rate is obtained), (iii) higher

streaming capacity by serving more requests from peers (iv)

more robustness against high churn rates and flash crowd

arrivals of peers[1].

Fig1.Architecure of websocket protocol server.

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept:

s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: chat

The leading line from the client follows the Request-Line

format..TheRequest-Line and Status-Line productions are

defined intoAn unordered set of header fields comes after

the leading line in the both cases. The meaning of these

header fields is specified in the Section 4 of this document.

Additional header fields may also be present, such as

cookies. The format and parsing of headers is as defined in

the client and server have both sent their handshakes, and if

the handshake was successful, then the data transfer part

starts. This is a two-way communication channel where each

side can, independently from the other, send data at

will.[1]After a successful handshake, clients and servers

transfer data back and forth in conceptual units referred to in

thatof specification as "messages". On the wire, a message is

composed of one or more frames. The WebSocket

messages does not necessarily correspond to a particular

network layer framing, as a fragmented message may be

coalesced or split by an intermediary. A frame has an

associated types. Each frame belonging to the same message

contains the same type of data. Broadly speaking, there are

types for textual data , binary data (whose interpretation is

left up to the application), and control frames (which are not

intended to carry data for the application but instead for

protocol-level signaling, such as to signal that the

connection should be closed). This version of the protocol

defines six frame types and leavesit in tenreserved for future

use.

B. Opening Handshake

The opening handshake is intended to be compatible with

HTTP-based server-side software and intermediaries, so that

a single port can be used by both HTTP clients talking to

that of Theserver and WebSocketclients talking to that of

The server. To this end, the WebSocket client’s handshake

is an HTTP Upgrade request:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

In compliance with, header fields in the handshake may be

sent by the client in any order, so the order in which

different header fields are received is not significant. The

"Request-URI" of the GET method is used to identify the

endpoint of the WebSocketconnection, both to allow

multiple domains to be served from one IP address and to

allow multiple WebSocketendpoints to be served by a single

server. The client includes the hostname in the |Host| header

field of its handshake as per , so that both the client and the

servercan verify that they agree on which host is in

use.TheWebSocket Protocol in December 2011

TheAdditional header fields are used to select options into

the WebSocketProtocol. Typical options available in this

version are the subprotocol selector (|Sec-WebSocket-

Protocol|), list of extensions support by the client (|Sec-

WebSocket-Extensions|), |Origin| header field, etc. The |Sec-

WebSocket-Protocol| request-header field it canbeused to

indicate what a subprotocols (application-level protocols

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

19
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

layered over the WebSocket Protocol) are acceptable to the

client.The server selects one or none of the acceptable

protocols and echoes that value in its handshake to indicate

that it has selected that protocol. Sec-WebSocket-Protocol:

chat The |Origin| header field is used to protect

againstunauthorized cross-origin use of a WebSocket server

by scripts using the WebSocket API in a web browser. The

server is informed of the script origin generating the

WebSocket connection request. If theserver does not wish to

accept connections from this origin, it can choose to reject

the connection by sending an appropriate HTTP error code.

This header field is sent by browser clients; for non-

browserclients, this header field may be sent if it makes

sense in the context of those clients.Finally, the server has to

prove to the client that it received the client’s WebSocket

handshake, so that the server doesn’t accept connections that

are not WebSocket connections. This prevents an attacker

from tricking a WebSocket server by sending it

carefullycrafted packets using XMLHttpRequestor a form

submission.Toprove that the handshake was received, the

server has to take two pieces of information and combine

them to form a response. The first piece of information

comes from the |Sec-WebSocket-Key| header field in the

client handshake:

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ=For

this header field, the server has to take the value (as present

in the header field, e.g., the base64-encoded version minus

any leading and trailing whitespace) and concatenate this

with theGlobally Unique Identifier "258EAFA5-E914-

47DA-95CA-C5AB0DC85B11" in string form, which is

unlikely to be used bynetwork endpoints that do not

understand the WebSocket Protocol. A SHA-1 hash (160

bits), base64-encoded, of this concatenation is then returned

in the server’s handshake.

C. Closing Handshake

The closing handshake is far simpler than the opening

handshake.Either peer can send a control frame with data

containing a specified control sequence to begin the closing

handshake (detailed in Section 5.5.1). Upon receiving such a

frame, the other peer sends a Close frame in response, if it

hasn’t already sent one. Upon receiving that control frame,

the first peer then closes the connection, safe in the

knowledge that no further data is forthcoming. After sending

a control frame indicating the connection should be closed, a

peer does not send any further data; after receiving a control

frame indicating the connection should be closed, a peer

discards any further data received.It is safe for both peers to

initiate this handshake simultaneously. The closing

handshake is intended to complement the TCP closing

handshake (FIN/ACK), on the basis of TCP closing

handshake is not always reliable end-to-end, especially in

the presence of intercepting proxies and other

intermediaries.By sending a no of Close frames and waiting

for a Close frames in response, certain cases are avoided

where data may be unnecessarily lost. For instance, on some

platforms, if a socket is closed with The data in the receive

queue, a RST packet is sent, which will then cause recv() to

fail for the party that received the RST, even if there were

data waiting to be read.

D. Design Philosophy

The WebSocket Protocol is to be designed on the principle

that there should be minimal framing (the only framing that

exists is to make the protocol frame-based instead of stream-

based and to support a distinctions between Unicode text

and binary frames). It is expected that metadata would be

layered on top of the WebSocket by the application

Fette&Melnikov Standards TrackThe WebSocket Protocol

December 2011 layer, in the same way this metadata is

layered on top of TCP by the application layer (e.g., HTTP).

Conceptually, WebSocket is really just a layer on top of

TCP that protocol frame-based instead of stream-based and

to support a distinction between Unicode text and binary

frames. It is expected that the metadata would be layered on

top of WebSocket .Itdesigned in such a way that its servers

can be share a port with HTTP servers, by having its

handshake be a valid HTTP Upgrade request. One could

conceptually use the other protocols to establish client-

server messaging, but the intent of WebSockets is to be

provide a relatively simple protocol that can coexist with

HTTP and deployed HTTP infrastructure (such as proxies)

and that is as close to TCP as is safe foruse with such

infrastructure given security considerations, with targeted

additions to be simplify usage and keep simple things.The

protocol is intended to be extensible; future versions will

belikely introduce additional concepts such as multiplexing

E. Security Model

The WebSocket Protocol uses the origin model used by web

browsers to restrict which web pages can contact a

WebSocket server when the WebSocket Protocol is used

from a web page. Naturally, when theWebSocket Protocol is

used by a dedicated client directly (i.e., not from a web page

through a web browser), the origin model is not useful, as

the client can provide any arbitrary origin string. This

protocol is intended to fail to establish a connection with

servers of the pre-existing protocols like SMTP and HTTP,

while allowing HTTP servers to opt-in to supporting this

protocol if Fette&Melnikov Standards Track. The

WebSocket Protocol December 2011desired. This is

achieved by having a strict and elaborate handshakeand by

limiting the data that can be inserted into the connection

before the handshake is finished (thus limiting how much

the server can be influenced).It is similarly intended to fail

to establish a connection when data from other protocols,

especially HTTP, is sent to a WebSocket server,for example,

as might happen if an HTML "form" were submitted to a

WebSocket server. This is primarily achieved by requiring

that the server prove that it read the handshake, which it can

only do if thehandshake contains the appropriate parts,

which can only be sent by a WebSocket client. In particular,

at the time of writing of this specification, fields starting

with |Sec-| cannot be set by an attacker from a web browser

using only HTML and JavaScript APIs

suchasXMLHttpRequest [XMLHttpRequest].

F. Relationship to TCP and HTTP

 Relationship to TCP and HTTP The WebSocket Protocol is

an independent TCP-based protocol. Its only relationship to

HTTP is that its handshake is interpreted by HTTP servers

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

20
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

as an Upgrade request. By default, the WebSocket Protocol

uses port 80 for regular WebSocketconnections and port 443

for WebSocket connections tunneled over Transport Layer

Security (TLS).

G. Establishing a Connection

When a connection is to be made to a port that is shared by

an HTTP server (a situation that isquite likely to occur with

traffic to ports 80 and 443), the connection will appear to the

HTTP server to be a regular GET request with an Upgrade

offer. In relatively simplesetups with just one IP address and

a single server for all traffic to a single hostname, this

might allow a practical way for systems based on the

WebSocket Protocol to be deployed. In more elaborate

setups (e.g., with load balancers and multiple servers), a

dedicated set of hosts for WebSocket connections separate

from the HTTP servers is probably easier to manage. At the

time of writing of this specification, it should be noted that

connections on ports 80 and 443 have significantly different

success rates, with connections on port 443 being

significantly more likely to succeed, though this may change

with time.

H. Subprotocols Using the WebSocket Protocol

The client can request that the server use a specific

subprotocol by including the |Sec-WebSocket-Protocol| field

in its handshake. If it is specified, the server needs to include

the same field and one of the selected subprotocol values in

its response for the connection to be established. toavoid

potential collisions, it is use to be recommended names that

contain the ASCII version of the domain name of

thissubprotocol’soriginator. for example carporationwere to

create a Chat subprotocol to be implemented by many

servers around a Web, they could name it

"chat.example.com". If theExample Organization

called thecompeting subprotocol "chat.example.org", then

the two subprotocols could be implemented by servers

simultaneously, with thatserver dynamically selecting which

subprotocol to be use based on the value sent by the client.

These subprotocols would be considered completely

separate by WebSocketclients. Backward-compatible

versioning can be implemented by reusing the same

subprotocol string but carefully designing the actual

subprotocol to support this kind of extensibilitythe data

received from others and process this data to be create

proper scalable video streams and to ensure smooth videos

quality. As senders, peers encodes the videos of data using

network coding positions of with parameters based on their

own upload capacity as well as the characteristics of the

receiving peers. A simplified model for the software

architecture of a peer in our system is shown in the Fig. 1. A

similar model is used for source nodes, but with some of

differences as elaborated later. We do not address the design

or optimization of trackers; the function of the tracker is

orthogonal to the work to be presented in this paper. We

also do not to be addresses other problems in mesh-based

P2P streaming systems, including neighbor selection, gossip

protocols (for exchanging data availability), incentive

schemes, and overlay optimization which all have been

heavily researched in the literature. All of the above issues

are abstracted in the Connection Manager component in a

Fig. 1, while our work is focused on the components in the

shaded box in that of figure. The separation and abstraction

of functions enable us to the support different P2P stream-

ing systems with minimal changes in our design and code.

Therefore, our work is fairly general.

Fig 2: Peer Software Architecture. Dashed arrows denote

video data, and solid arrows denote control messages

III. MEASUREMENT AND ANALYSIS OF

PROJECT

working within an intranet boundary, since you likely have

cont It's easier to communicate via TCP sockets when you're

rol over the machines on that network and can open ports

suitable for making the TCP connections.Over the internet,

you're communicating with someone else's server on the

other end. They areextremely unlikely to have any old

socket open for connections. Usually they will have only a

few standard ones such as port 80 for HTTP or 443 for

HTTPS. So, to communicate with the server you are obliged

to connect using one of those ports.

Given that these are standard ports for web servers that

generally speak HTTP, you're therefore obliged to conform

to the HTTP protocol, otherwise the server won't talk to you.

The purpose of web sockets is to allow you to initiate a

connection via HTTP, but then negotiate to use the web

sockets protocol (assuming the server is capable of doing so)

to allow a more "TCP socket"-like communication

stream.When you send bytes from buffer with a normal tcp

the send function returns the number of bytes of the buffer

that were sent. If it is a non-blocking socket or a non-

blocking send then the number of bytes sent may be less

than the size of the buffer. If it is a blocking socket or

blocking send, then the number returned will match the size

of the buffer but the call may block. With WebSockets, the

data that is passed to the send method is always either sent

as a whole "message" or not at all. Also, browser

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

21
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

WebSocket implementations do not block on the send call.

But there are more important differences are on the receive

side of things. When the receiver does a recv (or read) on a

TCP socket, there is no guarantee that the number of bytes

return correspond to a single send (or write) on the sender

side. It might be the same, it may be less (or zero) and it

might even be more (in which case bytes from multiple

send/writes are received). With WebSockets, the receipt of a

message is event driven (you generally register a message

handler routine), and the data in the event is always the

entire message that the other side sent. Note that you can do

message based communication using TCP sockets, but you

need some extra layer/encapsulation that is adding

framing/message boundary data to the messages so that the

original messages can be re-assembled from the pieces. In

fact, WebSockets is built on normal TCP sockets and uses

frame headers that contains the size of each frame and

indicate which frames are part of a message. The

WebSocketAPIreassembles the TCP chunks of data into

frames which are assembled into messages before invoking

the message event handler once per messageA It is easy to

install so the configuration of computers on of that

network, All the resources and contents are shared by all

the peers, unlike server-client architecture where Server

shares all the contents and resources..P2P is more reliable as

central dependency is eliminated. The Failurity of one peer

doesn’t affect on functioning of other peers. In case of

Client –Server network, if server goes down whole network

gets affected. here is no need for full-time System

Administrator. Every user is the administrator of his

machine. User can control their shared resources. The over-

all cost of building and maintaining this type of network is

comparatively very less. In AQCS, the chunks size is set to

be 1KByte, andthe server replies each pull signal with only

one chunk. Weexperiment with other parameters and the

current setting givesus the best performance. The server

increases the streamingrate by increasing the number of

chunks generated per second. If download window is set to

be 30 secondsand moves forward every 10 seconds. The

server producesfour chunks per second and increases the

streaming rateby increasing the chunk size (this way the

buffer map size remains the same) . A fullmesh is formed

among nodes. The content source server’suploading

capacity is set at 1 Mbps. We gradually increasethe

streaming rate from 480 kbps to 960 kbps. For each

streaming rate, we conduct one set of experimentsfor each

scheduling algorithm. Each experiment lasts for 300seconds.

Based on our off-line data analysis, the experimentduration

of 300 seconds is appropriate since the systemsgoes into the

steady state within tens of seconds.This indicates that when

the system has high resource index,the chunk miss ratio is

insensitive to scheduling algorithms.Even random

scheduling can have very good performance.Indeed, most

current commercial P2P streaming systems onthe Internet

operate at streaming rates of 400kbps or lower.3) the

previous experiment, the server uploading bandwidth

is1Mbps. Since the average peer uploading capacity in

thesystem is slightly above 1Mbps, it corresponds to the

serverresource poor scenario. In the following experiments,

weincrease the server bandwidth to 3:2Mbps, leading to the

server resource rich scenario. when streaming rate goes

beyond 960kbps while AQCS still maintains zero miss ratio

up to 1; 100kbps.

B. Impact of Server Scheduling Rule and Capacity

The server gives strict priority to push out fresh chunks so

that new content can be quickly distributed among peers.

The experiment results suggest that (i) the freshchunkfirst

scheduling at source server plays an important role in

improving the system performance; and (ii) most deprived

scheduling, although has been theoretically shown to be

optimal does not seem to bring performance improvement in

our experiments. Next we investigate the impact of server

bandwidth. In the previous experiment, the server uploading

bandwidth is 1Mbps. Since the average peer uploading

capacity in the system is slightly above 1Mbps, it

corresponds to the server resource poor scenario.when

streaming rate goes beyond 960kbps while AQCS still

maintains zero miss ratio up to 1; 100kbps. The miss ratio

for AQCS increases linearly at the end, since the system

resource index drops below one when the streaming rate is

larger than 1; 100kbps. More interestingly, increasing server

capacity from 1Mbps to 3:2Mbps extends the scheduling

insensitive region dramatically from 480kbps (½ = 2:2) in

Figure 5(a) to 960kbps (½ = 1:155) in Figure 6(a).

Obviously, increasing server capacity can increase the

resource index of the system. Andsystem performance will

improve as resource index increases. However, according to

equation 2)in that increasingserver uploading capacity

brings in more dramatic performance improvement than

barely increasing system resource index. illustrates the

average server bandwidth utilizationunder different

streaming rates. This suggests that the server bandwidth

plays an important role in reducing the chunk miss ratio for

these two scheduling algorithms. On the contrary, the server

utilization in AQCS is low until the streaming rateexceeds

1Mbps and the resource index falls below 1. bring down the

server load and improve the system scalability.conducted

additional experiments by continuously varying server

upload capacity. We fix the streaming rate at 640kbps and

increase the server bandwidth from 600kbps to 1:2Mbps.

When the server bandwidth is low, there are performance

gapsamong them. Again, algorithms with fresh-chunk-first

rule have better performance. As the server bandwidth

approaches 1:2Mbps (twice the streaming rate), the

performance becomes insensitive to scheduling and all of

them have nearly zerochunk miss ratios. This again shows

the unique impact of the server bandwidth on the whole

system. One explanation is that a server with high

bandwidth can simultaneously upload a chunk to many

peers.r. The same amount of bandwidth increase on a

regular peer does not have such significant impact. Our

results here suggest that investing onserver bandwidth can

dramatically bootstrap theperformance

D. Impact of Buffering Delay

In client-server based video streaming, client side video

buffering is necessary for continuous playback in face of

network bandwidth variations. In P2P streaming, each peer

maintains a moving window that specifies the range of video

chunks to be downloaded. The window normally advances

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

22
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

at the video playback rate. The window size determines the

length of playback delay. The larger window size gives

peers more time to download chunks. However, the larger

window size imposes longer playback delay. The

dimensioning of buffering delay is indeed a trade-off

between the streaming delay performance and playback

continuity In AQCS,the download window is 15 seconds

and moves forward every 1 second. downloading of all

missing chunks entering into the moving window. The peer

stays idle to wait for the next window advance. The fast

downloading at low streaming rate enables us to reduce the

download window size to achieve shorter playback delays

on all peers. AQCS at the streaming rate of 1120kbps.Where

AQCS not only achieves zero chunk miss ratio, Next we

examine the root cause of the delay difference in different

scheduling algorithms. In P2P streaming, a peer downloads

chunks either from the server or from other peers. Therefore,

the variability in the uploading rates and downloading rates

on all peers collectively determine peer delay performance.

To verify this, we conduct two sets of experiments at

different streaming rates. For each set of experiments, we

keep track of peers’ average uploading and downloading

rates every 10 seconds.

rates. The digit `10 and `20 in the legends represent results

for the streaming rate 640kbps and 960kbps, respectively.

we see that when the streaming rate is low, for scheduling

algorithms, the peer’s download AQCS has stable uploading

at low and high streaming rates.To reduce chunk miss ratio

under uploading and downloading rate oscillations, one can

introduce a large buffering delay on peers. The streaming

rate and the server bandwidth are fixed to be 640kbps and

1Mbps. We then vary the download window size of all peers

from 10 seconds to 50 seconds.Therefore, the average

number of hops that a chunkneeds to traverse to reach all

peers decreases. Consequently, peers can download chunks

faster and the chunk miss ratio becomes smaller. To verify

the path length of each chunk, we append a hop counter to

each chunk, which records how many hops a chunk has

traversed. Upon receiving a chunk, each peer increments the

chunk’s hop counter and forward it to its descendants in the

chunk delivery tree. the distribution of the average hop

count of randomly sampled chunks received by all peers.

When all peers connect to 6 neighbors, each chunk needs to

traverse in average 6 hops from server. As peer degree

increases to 14, the average path length drops down to

below 4. Next we examine the impact of peering degree in

heterogeneous random topology.

we set the number of neighbors of a peer proportional to its

uploading bandwidth. the average chunk miss ratio is less

than 5%, while the average miss ratio in the homogeneous

case is 20%. This suggests that peers with high bandwidth

should be assigned with moreneighbors in order to improve

the whole system performance. Since the existence of super

peers can dramatically improve performance, more

considerations should be given to them during the system

design. Other than achieving good streaming performance,

such as small chunk missing ratio and low chunk delay, how

to make P2P streaming systems robust against peer churn is

another major design consideration. In the rest of that

section, the impact of peering degree on the resilience of

P2P streaming systems. In that work, all 100 peers join the

system at the beginning and each peer has homogenous

number of neighbors. After the system enters its steady

state, if we create peer churn events by removing a certain

percentage of peers from the system .we samplethe

performance of the system after each batch peer removal

without implementing any churn recovery mechanisms. In

practice, a peer losing neighbors can obtain more neighbors

through directory service such as tracker. After each batch

peer removal, a random set of peers in the system are

sampled to evaluate their playback performance residual

peering degree of the sampled peers after different

percentages of peers leave the system. When 10% peers

leave, the average chunk miss ratio on the sampled peers is

around 12% and the average number of connections of each

peer drops to around.

While 40% peers leave, the chunk miss ratio increases

to20% and the average residual peer number drops below

.As larger percentage of peers leave, the remaining peers

have less neighbors and the performance becomes worse.

Large peering degree helps in improving system

robustnessin the face of peer churn. The system with initial

peer degree 18 has better resilience than others. Even when

50% peers leave, it can still has around 15%chunk loss,

while the ratio of that with initial peer degree 10 is nearly

twice as much.e.g. prefetching and longer tolerable delays,

and challenges, e.g. less concurrent peers. We will extend

our current prototype system to support P2P VoD service.

Experimental study will be conducted to test the

applicability of live streaming results to VoD, and obtain

new results unique to P2P VoD designs.

Fig 1:Initialization of system

Fig 2:Connection of client towards peers

http://www.ijfrcsce.org/

International Conference on Modern Trends in Engineering Science and Technology (ICMTEST 2016) ISSN: 2454-4248

Volume: 2 Issue: 5 16 - 23

__

23
IJFRCSCE | May 2016, Available @ http://www.ijfrcsce.org (Conference Issue)

Fig 3:Connection of peer toward client

Fig :streaming video over p2p network

IV. CONCLUSIONS AND FUTUREWORK

In this paper, we showed an implementation of websocket

protocol which is a application work as client as well as

server.I will also utilizing the algorithm of Adaptive queue

based chunk scheduling where it provide full band width

utilization in p2p network. Then designing of P2P

streaming systems with scalable video coding and network

coding can solve both of the above problems. The

evaluation study confirms the significant potential

performance gain, in terms of visual quality perceived by

peers, average streaming rates, streaming capacity, and

adaptation to higher peer dynamics. I will explore queue

control design space to further improve its performance.

V. REFERENCES
[1] Mu, Johnathan Ishmael, William Knowles,

MarkRouncefield, Nicholas Race, Mark Stuart, and

George Wright:” P2P-Based IPTV Services: Design,

Deployment, and QoE Measurement” IEEE

TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO.

6, DECEMBER 2012

[2] K. Mokhtarian and M. Hefeeda.Efficient allocation of

seed servers in peer-to-peer streaming systems with

scalable videos. In Proc. of IEEE International Workshop

on Quality of Service (IWQoS’09), pages 1–9,

Charleston, SC, July 2009

[3] Z. Liu, Y. Shen, K. Ross, J. Panwar, , and Y. Wang.

Substream trading: Towards an open P2P live streaming

system. In Proc. of IEEE Conference on Network

Protocols (ICNP’08), pages 94–103, Orlando,FL,

October 2008.

[4] Z. Wang, H. R. Sheikh, and A. C. Bovik, “No-reference

perceptual quality assessment of JPEG compressed

images,” in Proc. IEEE Int. Conf. Image Processing,

2002

[5] ShabnamMirshokraie, Mohamed Hefeeda School “Live

P2P Streaming with scalable video coding and network

coding”, February 22–23, 2010

[6] L. D’Acunto, M. Meulpolder, R. Rahman, J. A.

Pouwelse, and H. J. “Modeling and analyzing the effects

of firewalls and NATs in P2P swarming systems,” in

Proc. IEEE Int.

Parallel&DistributedProcessing,Workshops and Phd

Forum (IPDPSW) Symp.pp.1-8, 2010, .

[7] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, and S.

Traverso, “QoE in pull based P2P-TV systems: Overlay

topology design tradeoffs,” in Proc. IEEE 10th Int. Conf.

Peer-to-Peer Computing, pp 1-10 2010, .

[8] J. Ishmael, S. Bury, D. Pezaros, and N. Race, “Deploying

rural community wireless mesh networks,” IEEE Internet

Comput., pp. 22–29, 2008.

[9] M. Wang and B. Li. Lava: A reality check of network

coding in peer-to-peer live streaming. In ProcOf IEEE

INFOCOM’07, pages 1082–1090, Anchorage, AK, May

2007.

[10] X. Chenguang, X. Yinlong, Z. Cheng, W. Ruizhe, and

W. Qingshan. On network coding based multirate video

streaming in directed networks. In Of IEEE International

Conference April 2007.

[11] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang.

Lion: Layered overlay multicast with network coding.

IEEE Transactions on Multimedia, October 2006.

[12] K. Nguyen, T. Nguyen, and S. Cheung.Peer-to-peer

streaming with hierarchical network coding.In Proc. of

IEEE International Conference on Multimedia and Expo

(ICME’07), pages 396–399, Beijing, China, July 2007.

http://www.ijfrcsce.org/

