
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 1 Issue: 1 016 – 019

16

IJFRCSCE | June 2015, Available @ http://www.ijfrcsce.org

Erasure Code Based Cloud Storage System

Makhan Singh

Computer Science and Engineering,

University Institute of Engineering & Technology,

Panjab University, Chandigarh, India.

singhmakhan@pu.ac.in

Abstract— Cloud Computing is the technology that provides on demand services and resources like storage space, networks,

programming language execution environment on the top of Internet pay per use model. Cloud computing is globalized concept

and there are no borders within the Cloud. Because of attractive features of Cloud computing, many organizations are using Cloud

storage for storing their critical information. The data can be stored remotely in the Cloud by user and can be accessed using thin

clients as and when required. One of the major issue in Cloud today is data security. Storage of data in the Cloud can be risky

because storage is done on Cloud service providers’ servers which mean less control over the stored data. One of the major

concern in Cloud is how do we grab all the benefits of Cloud while maintaining security controls over the data. In this paper

reliable storage system is proposed which can be robust in case of errors or erasures in data to be stored. Proposed system

provides reliable storage while maintaining the integrity of the data. The files are split into parts to get an extra layer of security
Keywords-Cloud storage; erasure codes; cloud service providers; reliabilty; data security.

__*****___

I. INTRODUCTION

Cloud Computing is the technology that provides on
demand services and resources like storage space, networks,
programming language execution environment on the top of
Internet pay per use model. One of these services provided by
the cloud computing environment is the storage of data on the
Cloud data centers. Digital data is very critical resource hence
Cloud data centers provide sufficient data availability and
security even in the case of failure and malicious attacks. This
paper uses erasure code [1] which improves the security and
availability of data on the Cloud data centers. The proposed
scheme also completely reconstructs original data even it is
partially damaged and allows secure storage of data. The cloud
users can provide data that they need to store on the cloud data
center as a means of creating backup for it. The backup of these
files is traditionally maintained by replicating the files on
multiple data centers such that any of these replicated parts can
be used to retrieve the file on request from the user. Another
method used is deduplication where the encryption of the data
is overridden and only one copy of the file is stored and the
encryption key for the file is deleted whenever the file needs to
be removed.

These techniques, however, have a lot of drawbacks like
lack of security of the data, high redundancy and transmission
overheads.

In literature many efforts are made to use erasure code for
securing cloud storage secure and reliable. All the efforts were
made at server side of cloud service providers or work on
securing cloud data [2][3][4][5]. Huang et al. used the erasure
code in windows Azure storage [4] by introducing new set of
codes termed as Local Reconstruction Codes. These codes
helps in reducing the number of fragments required for
reconstruction. They had divided the redundant data into two
sets called local and global groups, and geographically
separated storage local and global groups, and geographically
separated storage servers are used to store the same. This
reduces the total reconstruction cost as the local groups needs
minimum input/output and network overhead for data

reconstruction. Gomez et al. used erasure codes to influence the
Iaas clouds to save data in reliable way without any additional
overheads in Iaas. They have also proposed a scalable erasure
coding techniques that provides high coding techniques that
provides high degree of reliability for local storage with low
computational overhead and cost less amount of
communication [3]. Santos et al. proposed scheme which
provides execution environment which acts as a closed box
hence it guarantees confidential execution of guest virtual
machines on virtual machines on cloud infrastructure. They
proposed the design of a trusted cloud computing platform for
Infrastructure as a Service [6].

All the above schemes for securing cloud data assumes that
cloud service providers (CSPs) can be trusted and can prevent
any physical attacks on servers at their site. But in reality this is
not always true and there have been many incidents where
cloud services were attacked by internal or external hackers
hence users data was also compromised. Due to this relying on
service provider’s security techniques are not feasible solutions
for storing critical user data. Due to these reasons there is a
need for applying erasure coding methods at application level
by the use of multiple CSPs. Here user’s data has been encoded
as well as redundancy is also introduced in it. After this the
encoded redundant data have been stored across multiple cloud
storage service provider’s servers. This approach acts as fault
tolerant when ever any cloud service providers server fails or
attacked.

II. SECURE CLOUD STORAGE

The proposed model is designed in the various components,
where each of the components independently handles the
individual group of tasks as shown in figure 1. The proposed
model can be primarily divided into the following components:

A. Data Storage Mechanism

The data storage mechanism is the primary model to store
the data across the available number of data centers. The server
list consists of the data centers/storage server along with the

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 1 Issue: 1 016 – 019

17

IJFRCSCE | June 2015, Available @ http://www.ijfrcsce.org

number of segments for each of the server on the list, which
eventually depicts the upload scheme for the data storage
mechanism. The probability of failures involves the risk of data
loss, which is caused due to errors introduced during saving or
transmission of the data. The data loss has been simulated in
the simulation varying from server to server in the server list
available to store the data. The probability of error in the
retrieved data blocks is reduced by using the Reed-Solomon
code, which is primarily designed for the error correction.

Figure 1. Architecture for secure Cloud storage system

B. Reed Solomon Coding

Reed-Solomon codes are specifically designed error-
correcting mechanism, developed by Gustave Solomon and
Irving S. Reed. The Reed-Solomon codes are utilized in the
various applications such as DVD, CD, Blu-Ray Disk, data
transmission channels, Barcodes or QR-codes, etc for the error
correction for the accounted data [7]. The Reed-Solomon
mechanism has been primarily designed for the correction of
the multiple bit errors in a data block, and it is capable of
covering the symbols by adding up the value t for the
estimation of the errors in the given data. The Reed-Solomon
encoding (RS-encoding) is capable of correcting the erroneous
symbols up to [t/2], which defines a deeper range and corrects
more than 90% of the symbols lost during the storage under our
proposed procedure. In the proposed application, the RS
encoding method is utilized to correct the erasures ranging
between [t/2] and t.

C. Calculating the number of Checksums

Checksums are the parity blocks that are to be added to the
original data which helps to recreate the original data in case of
lost data parts. In order to get high performance from the
system, minimum number of Checksums should provide the
ability to handle more data center failures. Let S be the total
number of data centers where each data center is denoted as
dc1,dc2…….dcS , N be the number of parts data is divided into

and n1 , n1 , … . , nN be the number of data pieces stored at the
corresponding data center. Let M be the total number of data
centers allowed to fail or be unavailable at a certain time. Let
m1 , m2, … . . , mS be the number of checksums to be stored on
corresponding data center and m = m1 + m2 + ⋯ . . +mS is
the total number of checksums needed for the file. The value of
m is to be minimized to get better efficiency but with a
condition that the number of total checksums in the remaining
working data centers is greater than the number of data parts
lost due to failure of one or more data center. An example of
DC=3 and M=1 can be taken which can be solved as follows:

 minimize m1 + m2 + m3
 subject to

m1 + m2 ≥ n3 if data center dc3fails (3.1)

m2 + m3 ≥ n1 if data center dc1fails (3.2)

m1 + m3 ≥ n2 if data center dc2fails (3.3)
From the above equations it was found out that an optimal

number of checksums for a data file is N/2, so for example 5
data parts 3 checksums are optimal.

D. Calculating the Checksums and Data Reconstruction

In order to calculate the checksums firstly a m + n × n
Vandermonde matrix A is created. Vandermonde matrix has
elements of a geometric progression in each of its row. A
m × n Vandermonde matrix looks as below:

V=
1 α1 α1

2 ⋯ α1
n−1

⋮ ⋱ ⋮
1 αm αm

2 ⋯ αm
n−1

 or Vi,j = αi
j−1

 (3.4)

Vandermonde matrix has another property that if m rows
are deleted from the matrix the new matrix formed is invertible.
Now get a new matrix known as Information Dispersal matrix
B by applying some finite sequence of elementary row
operations on the matrix A which has an Identity matrix on top
of a m × n matrix. It is to be noted that applying elementary
row operations on the matrix B does not change the rank of
matrix so its property that states that if m rows are deleted then
the resultant matrix is invertible. Multiply the matrix B with the
data matrix D where each row denotes one part of the data to
get a new matrix whose first n rows are the data pieces and last
m rows are the required checksums.

E. Uploading Data Blocks to Data Centers/Servers

This module has been designed for the server uploads. The
segments of data are uploaded with the accordance to the
Server List created in Server Selection after encoding each of
the blocks using Reed-Solomon encoding. The Upload
algorithm involving the overall design of the algorithmic
workflow has been described in the following algorithm:

Algorithm 1: Server Upload Algorithm

1. Get data blocks (n) from Segmentation Algorithm.

2. Encode the data using Reed-Solomon Encoding

 (Algo. 2) to get (n + m) pieces containing checksums.

3. Load the Server List created from the Server Selection

 Algorithm.

4. Run the iteration considering the Server List for all the

 servers

a. Do while Counter, C1 of server 1 is not equal to 0

i. Upload current block on the server 1

ii. Decrement C1 by 1

b. Do while Counter, C2 of server 2 is not equal to 0

i. Upload the current on the server 2

ii. Decrement C2 by 2

c. Continue till server n

d. Do while Counter, Cn of server n is not equal to 0

i. Upload the current on the server n

ii. Decrement Cn by 1

5. Return the final upload status

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 1 Issue: 1 016 – 019

18

IJFRCSCE | June 2015, Available @ http://www.ijfrcsce.org

Each block or segment is encoded as using Reed-Solomon
before uploading to the appropriate data center as it makes the
system error resistant and can correct errors at the time of data
download. The Reed-Solomon encoding process is explained
using an algorithm as following:

Algorithm 3: Reed-Solomon Encoding

1. Convert each segment of data into data vector D of n-bytes.

2. Compute m number of n-bytes checksums by taking a

 n + m ∗ n Vandermonde matrix A and convert it into

Information Dispersal matrix B.

3. Multiply the Information Dispersal matrix B to the data

vector D to get the encoded data matrix, B × D = E.

4. Add checksums to the original data to get the (n + m)

pieces of n- bytes each.

F. Reliable Download and Reconstruction of data

This module deals with downloading the different parts of
the data, decoding them using Reed-Solomon decoder and then
joining them to give the original data without any errors. It can
be explained in detail in the following algorithm:

Algorithm 4: Reliable Download and Reconstruction of Data

1. Check for all the required parts to recover the original

file.

2. If all the data parts are available

a. Download all the parts of the file and append them

together

3. Else If some parts k (k ≤ m) are lost

a. Use RS decoding (Algorithm 7) to recover the lost

parts.

4. Put the data pieces into right order to get the file.

Here, n is the number of symbols in the codeword, k is the

number of symbols in original message and m is the number of
bits per symbol. After downloading the segments they are
decoded using RS Decoding so as to correct errors or/and
erasures which might have crept in at the time of storage before
finally joining them to get the original data.

Algorithm 5: Reed-Solomon Decoding

1. Get the available (n-k) data parts and checksums.

2. Use all the data parts downloaded and k checksums to

create a n × n matrix.

3. Remove the rows corresponding to the lost data in

Information dispersal matrix B to get B´.

4. Multiply B´ with data vector, D.

5. Multiply with its inverse B´-1 to get the original data

 pieces.

III. PERFORMANCE ANALYSIS AND EXPERIMENTAL

RESULTS

This section presents the overall results obtained from the
proposed model in order to estimate the accuracy based
assessment of the proposed model for uploading and
downloading of data over the error-prone transmission as well
as error-prone network servers (known as the connected peers).
The various sizes of data files have been utilized for the
estimation of the performance of proposed system using the
performance parameters discussed above. Simulation results

were taken carefully and plotted into charts to get a better
perspective of the results achieved. The results are separated
into two parts as Uploading and Encoding part and Download
and Decoding part. The charts given below provide a lot of
information about the system.

To analyze the performance of our approach, the file size is
taken 156 MB. Figure 2 shows the encoding and uploading
time vs. the number of data pieces set by the user. From the
figure, we can see that when we increase the number of data
pieces from 2 to 8, the uploading time drops

Figure 2. Encoding & Uploading Time vs. Number of Data Pieces

down significantly; while the encoding time has slightly
increased. The significant performance improvement for
uploading is due to the parallel processing of the systems, while
the increased number of data pieces along with more checksum
pieces results in more overhead for encoding. However, when
the number of data pieces n is increased further, the uploading
time and the total processing time very with very less variation.

The proposed model has also been analyzed for its
performance during the downloading of the data from the
centralized cloud service. The data download involves the two
major steps, retrieval of the file parts followed by the decoding
of data, which are further combined from all file parts to
combine the output file. Figure 3 shows the downloading and
decoding time vs. the number of data pieces. From the figure,
when we increase the number of data pieces from 2 to 8, the

Figure 3. Downloading and Decoding Time vs. Number of Data Pieces

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e(
In

 s
ec

o
n

d
s)

Number of parts

Total time

Upload

Encoding

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 1 Issue: 1 016 – 019

19

IJFRCSCE | June 2015, Available @ http://www.ijfrcsce.org

downloading time drops down significantly; while the
decoding time has slightly increased. Similar to the case of
uploading, the significant performance improvement for
downloading is also due to the use of multithreading technique,
and the increased number of data pieces along with more
checksum pieces results in more overhead for decoding. When
the number of data pieces n is increased further, the total
processing time only slightly goes up due to the overhead of
decoding files. However, when n ≥ 8, the total processing time
is constantly below 15 seconds.

IV. CONCLUSION
The proposed model has been designed for the online

storage model based on the Reed Solomon encoding for the
storage of data. The proposed model consists of the data centers
designed to store the data over the target storage system. Data
is split into parts as required by the user and encoded with the
checksums calculated. Experimental results show that besides
the advantages of being secure and fault tolerant, this approach
provides very good performance in both file uploading and
downloading, with the cost of minor overhead for encoding and
decoding data.

REFERENCES

[1] J. S. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”
Login: The USENIX Magzine, www.usenix.org, December 2013, Vol.
38, No. 6, pp. 44-50.

[2] C. Huang, H. Simitci, Y. Xu et al., “Erasure Coding in Windows Azure
Storage,” Proceedings of the 2012 USENIX Annual Technical
Conference, Boston, MA, USA, pp. 15-26 , June 13-15, 2012.

[3] L. B. Gomez, B. Nicolae, N. Maruyama, F. Cappello and S. Matsuoka,
“Scalable Reed-Solomon-based Reliable Local Storage for HPC
Applications on IaaS Clouds,” Proceedings of the 18th International
Euro-Par Conference on Parallel Processing (Euro-Par’12)Greece, pp.
313-324, August 2012.

[4] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery and
Degraded Reads,” Proceedings of the 10th USENIX Conference on file
and Storage Technologies (FAST-2012), San Jose, CA, USA, pp. 20-33,
February 2012.

[5] K. Hwang and D. Li, “Trusted Cloud Computing with Secure Resources
and Data Coloring,” IEEE Internet Computing, Vol. 14, No. 5, pp. 14-
22, 2010.

[6] N. Santos, K. Gummadi, and R. Rodrigues, “Towards Trusted Cloud
Computing,” Proceedings of the Workshop on Hot Topics in Cloud
Computing (HotCloud09), Article No. 3, San Diego, CA, June 15, 2009.

[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland Mathematical Library, Amsterdam, London, New
York, Tokyo, 1977.

