
62
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

An Assessment of Eclipse Bugs' Priority and

Severity Prediction Using Machine Learning

Mohammed Q. Shatnawi1, Batool Alazzam2

1, 2Computer Information Systems Department, Faculty of Computer and Information Technology

Jordan University of Science and Technology, Jordan

Abstract: The reliability and quality of software programs

remains to be an important and challenging aspect of software

design. Software developers and system operators spend huge time

on assessing and overcoming expected and unexpected errors that

might affect the users’ experience negatively. One of the major

concerns in developing software problems is the bug reports, which

contains the severity and priority of these defects. For a long time,

this task was performed manually with huge effort and time

consumptions by system operators. Therefore, in this paper, we

present a novel automatic assessment tool using Machine Learning

algorithms, for assessing bugs’ reports based on several features

such as hardware, product, assignee, OS, component, target

milestone, votes, and versions. The aim is to build a tool that

automatically classifies software bugs according to the severity and

priority of the bugs and makes predictions based on the most

representative features and bug report text. To perform this task, we

used the Multi-Nominal Naive Bayes, Random Forests Classifier,

Bagging, Ada Boosting, SVC, KNN, and Linear SVM Classifiers

and Natural Language Processing techniques to analyze the Eclipse

dataset. The approach shows promising results for software bugs’

detection and prediction.

Keywords: Eclipse, Severity Prediction, Machine Learning, ML,

Software Bug, Bug Priority, Bug Detection, Software Security.

1. Introduction:

A software bug is a failure in the program which causes

unexpected or unwanted outputs [1]. It is an error that

prevents the program to operate its function as it should,

either while launching the software or while using its

features. System operators and software developers spend

huge time testing their proposed software as modules to

bypass having any type of bugs or errors and assessing the

potentials of having any type of system crashes for any

reason. Research has shown that half of the developers' time

is spent on fixing bugs, and just 36% is specified for adding

new features. The bugs fixing process consists of

determining why the program or software is behaving

abnormally and trying to fix the part of the component that

caused the error [2]. Although, this is their main concern to

ensure a smooth user experience, there still exist many cases

where human limitations in designing software modules

cause certain lacuna in building those modules. The most

common types of bugs or defects encountered in the software

testing process are Functional Bugs, Logical Bugs,

Workflow Bugs, Unit Level Bugs, System-level Integration

Bugs, and Out of Bound Bugs [3]. Software bugs should be

detected through the early stages of the development life

cycle at the testing phase; because the cost to fix the error

differs depending on which level it is discovered or fixed.

For example, the cost to fix an error after the product is

released is four to five times as much as being discovered

during the design phase [4].

Classifying software bugs makes the corrective actions

process easier and minimizes the defects. This step

determines which bug should be fixed at first, which should

be considered with higher priority and may affect the whole

program operationally, functionally or security wise. For

that, there is a need to automate this process to reduce the

cost of time and effort. Bugs are prioritized according to two

features: bug priority and bug severity, in which the bugs

with the highest priority and severity are critical and must be

solved at first. Now, the core question is how to define the

bug priority? According to the priority, it divides the bugs

into four different levels: critical bugs, high-priority bugs,

medium-priority bugs, and low-priority bugs. The priority is

set by the committee, contributor, or component owner; in

this way, the importance of the bugs, and the possible

enhancement can be indicated. The bugs' priority levels are

symbolized to four levels from P1 to P4. P1 which has the

highest priority, and it must be fixed, P4 which has the

lowest priority which means is a valid bug, has a choice to

fix it but it is not important. As for the bugs' severity, is

assigned by the bug reporter which defines how much the

bug is important. Bug severity is divided into seven types,

which are major, blocker, critical, normal, enhancement,

minor, and trivial [5].

• Major: is a major loss of function.

• Blocker: blocks the work of testing and development.

• Critical: is crashes, loss the data, memory leak.

• Normal: is a regular issue, loss of some functions but

under specific conditions.

• Minor: is a trivial loss of function or another problem

that is easy to be solved.

• Enhancement: This is an enhancement request.

• Trivial: is a cosmetic problem, improving the

problem.

Different open-source projects can be an interesting area to

analyze, study, and track bugs report such as Eclipse [6].

Eclipse project that composed of five sub-projects which are:

Platform, Java development tools, Plug-in Development

Environment (PDE), e4, Equinox, and Orion [7].
The provided model in figure 1 depends on the bugs features

that are trained model on. Feature selection is an essential

step; because not all features in the bugs dataset have the

same importance and affect the final results in a big manner.

The model will be trained on the selected features to be able

to classify the bugs according to the priority and severity

level. As an extra advantage, bugs report text will be fed to

the model and extracted more characteristics that will be

helpful at the prediction phase.

In this research, the Eclipse software bugs dataset will be

used to develop a model that can automatically classify and

predict the severity and priority of the bugs. The provided

model will use bugs features which will be selected carefully

to ensure they are representative and achieve the highest

63
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

results. At the classification process, machine learning

algorithms, Random Forests Classifier, Bagging, Ada

Boosting, SVC, and KNN, will be used to make bugs

severity and priority classification based on hardware,

product, component, OS, resolution, version, and status

features.

Figure 1: Bugs classification and prediction model

architecture.

The results will show an F1 score, accuracy, precision,

recall, and execution time for each used algorithm at the

testing process. On the other hand, a summary of bug reports

will be studied using NLP techniques and try to extract the

characteristics of the text and used them in the bugs

prediction process. The report text will be preprocessed,

converted to numerical form to facilitate dealing with, using

TF-IDF.

2. Related Work

During the development life cycle, testers and editors are

responsible to detect, triaging, and fixing the bugs that exist

in the program or software. Bug triaging is an essential step

that must be done at the beginning stages, that will consume

the cost whether in the time, money, and effort [8]. Different

cases cause software bugs, such as what happens during the

development process. One of the drawbacks of using

machine learning is that these algorithms cannot extract the

important feature patterns for learning the classifier. This

work aims to use a novel deep learning model for bug

severity classification using CNN and random forest with

boosting (BCR). This model can learn from the hidden and

high representative features in the dataset. NLP techniques

deal with the bug report text, and n-gram extracts the

features. For CNN, is used to extract the important feature

patterns and BCR to classify the multiple bug severity

classes [9].

Machine learning algorithms are used in the classification

process to compare the severity accuracy, such as the

decision tree and random forest. Many of the bugs' reports

have incomplete data that relate to the features, which causes

inaccurate results. The case deletion, mean imputation,

median imputation, and k nearest neighbor are methods that

are used to deal with this issue. Different machine learning

algorithms are used to predict future software faults depend

on historical data and the comparison between each

algorithm performance depends on some measures, such as

accuracy, precision, recall, F-measure, and ROC curves. The

used dataset consists of the number of faults, and the number

of test workers for each day. The main goal of this study is to

measure the ML performance in the bugs classification

process [10].

Bugs detection is a very essential step that should be done at

the early level of the software development lifecycle. Which

reflects in the software quality, reliability, and the cost of

development positively. The machine learning algorithms,

such as Logistic regression, Naive Bayes, and Decision tree,

are used for bugs' severity classification process. In addition,

statistical analysis helps in the detection of the bug. The

imbalanced data problem can be solved using the

oversampling methods, such as SMOTE [11]. Bugs' reports

have a summary or description field as text, at the bug

prediction process there is a need to deal with this text and

convert it to numeric format to apply the machine learning

algorithms. Bag-of-Words and tf-idf transformer are used to

convert the text data into feature vectors. At the training and

testing processes different machine learning algorithms and

make a comparison between the final accuracy results [12].

The inconsistency in the used datasets to design and develop

prediction models for software detects leads to get inaccurate

results. Self-Paced Association and Node embedding

(SPAN) is used to make connections between the text

datasets effectively. Also, Software Bug Report Network is

used to identify aimed features [13].

Bug's priority is defined based on the emotion words that are

included in the bug reports. Emotion values will be assigned

for these emotion words. After that, machine learning models

are applied to this data to predict the bugs' priority. THE

SentiWordNet emotion words corpus is the most corpus

used. Dealing with the text part of the dataset is includes

tokenization, part of speech, remove the stop words, and

lemmatization [14]. The bug severity, component, and

problem title are the based features that will be used to make

a model that aims to prioritize the bug. As the first step, the

text input features are converted to numeric features using

TF-IDF. PCA and NMF are used to reduce the complexity

and running time of the algorithms. For the clustering

approach, X-Mean and K-Mean algorithms are used, SVM,

Naive Bayes classifiers are applied to all features. The

FindBugs, JLint, and PMD are three bug-finding tools used

in this research applied on open projects, namely Columba

Lucene, and Scarab to assign the priority of the bug. The

developed model is an improvement of the existing models,

which use two new bugs features, classification algorithms,

and feature reduction techniques [15].

There were many tries to find alternatives to the manual code

testing and detect the defects, which is time and effort

consuming. They got the main advantage from the neural

networks, which have multiple layers that allow extracting

the high-level features from the original dataset to solve the

problems. Deep Belief Networks (DBN), CNN, LSTM, and

Transformer architecture are the most popular deep learning

techniques used for software bugs detection [16]. Deep

neural networks can be appropriate to deal with bug

prediction. The TensorFlow and traditional python

algorithms are used from the scikit-learn python package.

The best setup of the networks is decided according to the

best F1-measure result, such as learning rate, number of

layers, number of learning epochs, number of neurons, the

early stopping, and dynamic learning rates. The final results

64
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

are also compared to the final results using machine learning

algorithms [17]. The convolution neural networks can be

used for software bug triaging to deal with the text features

in the dataset. Word2vec is used to make a word vector

representation. Then, CNN is combined with batch

normalization, pooling, and a full connection approach to

learning from the word vector. This work is based on three

large open projects, namely Eclipse, Mozilla, and NetBeans.

The text preprocessing approach includes word

segmentation, Stemming, and Stop words removal. CNN

model extracts the high-level features from the text, the

different spatial scales are used with convolution kernels.

The ReLU is used as an activation function to avoid the

gradient descent problem. For the dimensionality problem,

the maximum pooling operation is used. This model shows

high performance comparing with many other machine

learning algorithms [18]. Machine learning is one of the

approaches that is used in the bug prediction process. ML is

widely used because it gives accurate results and good

analysis. Systematic Literature Review (SLR) is a

methodology that contains identifying, evaluating, and

understanding steps for the available research. During this

work, the goal is to know What kind of machine learning

techniques have been selected for the prediction model?

Which performance measures should be used? and Which

metrics are frequently used? The six techniques that have

been identified are Bayesian Network (BN), Neural Network

(NN), Support Vector Machine (SVM), Clustering, Feature

Selection (FS), and Ensemble Learning (EL). Through these

used techniques, NN is the most widely used.

For the measurement, there are types, such as graphical

measure and numerical measure. The graphical measure

consists of the precision-recall curve, cost curve, and ROC

curve, whereas numerical measure consists of accuracy, F-

Measure, precision, recall [19]. The duplicated software

bugs' reports it's a problem that faces many of the software

companies, which these companies have a large number of

users and customers that can submit a huge number of bugs

reports for the same fault. Many techniques are used to deal

with this problem, such as the classification technique.

The feature extraction technique that reduces the feature size

and yet retains the information that is most critical for the

classification. The N-grams are used to deal with the text

part of the dataset, which compute the distance between the

incoming stack traces and the historical set of bug reports

stack traces. For the linear combination between the reports

and non-textual features such as component and severity.

This approach is applied to the Eclipse dataset which has

thousands of bugs reports [20]. The main goal or purpose of

detecting the root cause of the software bugs is to reduce the

manual involvement in the software development process.

Using the Eclipse bugs dataset, ten of the root cause

categories are decided based on the most common bugs

causes. Then, using ML algorithms, such as Naive Bayes,

Maximum entropy, SVM, and Decision Trees. F1-score,

precision, and recall are used as measurements [21]. Feature

selection strategy is used at bugs' severity types detection

process. The work shows that a ranking-based strategy and

ensemble feature selection show better performance than

using a commonly used maximization-based strategy based

on F1-score measure using Eclipse, and Mozilla bugs'

severity dataset [22]. Bugs' priority is very important to tell

when the bug should be resolved, in case the process of

filtering bug reports and assigning priority manually is very

heavy, time and effort consuming. With the increasing

number of bugs and bugs' reports, there need to design a

model that can detect the bugs' priority. The provided model

uses component name, summary, assignee, and reporter as

features in the model that may affect bugs' priority. The

model is a 5-layer deep learning RNN-LSTM neural

network. The text-preprocessing step is applied to the bugs'

summary. Bugs' report passes through five levels, Open, In-

Progress, Resolved, Closed, and Reopened. Bug's priority is

classified or labeled to low and high.

The results from this provided model are compared to others

from models using ML algorithms, such as SVM, KNN. The

study showed that LSTM reported the best performance

results based on all performance measures [23]. Software

bugs' datasets have many features that can be used at bugs'

priority determining process. Problem title, summary, and

component name features are used in this work. The textual

data is converted to numerical formal to facilitate dealing

with using the TF-IDF technique. PCA and NMF are used

for feature reduction, besides clustering and classification

algorithms. The authors in [24] proposed a novel approach

for malware detection in Android devices since they are

vulnerable for continuous attacks although they are the most

popular. The authors used ensemble machine learning

algorithms for malware and anomaly detection since using a

single anomaly classifier will not be as effective as using

ensemble classifiers. The authors proposed grid search N-

gram system call sequence features to improve the accuracy

of anomaly and malware detection in mobile-based devices.

Many works focus on using the bugs' reports to classify the

bugs' severity as secure and non-secure bugs. Using text data

and making preprocessing on the text by N-gram for feature

extraction. Then use a machine learning algorithm, such as a

stacking-based Naive Bayes classifier to classify the

extracted features data. The model performance is measured

using F1- score and compared to SVM and Decision Tree

algorithms performance on the Eclipse dataset [15].

The used approach counts the probability for all the

sentences for both classes 0 and 1according to the probability

for each word in the sentence. Then, make a comparison

between which class has the highest probability [25]. Three

features are used to detect the bugs' severity, such as

component name, product, and OS; because of the severity

of the existed bug associated with the component and

product. Besides these features, the stack trace is used in this

model as a source of bugs' reports. KNN algorithm is used in

this work, the used algorithm computes the nearest class of

the bugs' severity for the inputted bug report [26]. The idea

of bugs data study is the same, the core difference in what

are the used ML algorithms, the feature selection techniques,

the selected features from the bugs' reports, and the

environment of the dataset. The final results are compared

according to precision, recall, accuracy, F1-score. Some

approaches depend on unstructured data, such as summaries,

and descriptions of the bugs. For that, unstructured data need

to be preprocessed using for example word embedding,

tokenization [27]. Bugs reports are submitted significantly by

the users, Stack Overflow is a website for asking and

65
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

answering different questions and problems. For that this

website can be used to collect a dataset about potential bugs

that may users suffer from as bugs' summaries and

descriptions. Then, apply techniques for preprocessing the

text. Using the maximum likelihood method to train the logic

regression model [28]. Text mining techniques have a core

role in analyzing and developing models of bugs' reports

databases. Such as word embedding that captures the

semantics of the text. The work shows the effectiveness of

using word2vec for bugs' severity prediction process, the

results show using a bigger window size improves the

classifier's performance. Xgboost and Random Forest ML

algorithms are used because of their ability for classifying

the bugs' severity with a small number of records or

infrequent appearance of words specific to each class.

3. Proposed System

In case most software programs have become large and

complicated, software bugs need to take into consideration.

Detecting and fixing bugs problem at initial levels that

reflected positively on the quality, security, and performance

of the program, and will save time and effort. Machine

learning algorithms and Natural language processing

techniques (NLP) have a great effort in software bugs

classification and prediction. Depending on the historical

bugs data ML and NLP can be used to build an automated

model for classification and prediction software bugs instead

of the manual way the be used by testers and editors.

With the emergence of new types of software bugs, there is a

significant need to find new ways to detect and deal with

them. Software bugs reports can be used to study and

recognize new features and characteristics of new bugs. NLP

techniques give a manner to analyze, study and extract

characteristics from the text, which enable the testers and

editors to recognize the software bugs deeply and facilitate

the detecting and fixing processes.

In this research, the Eclipse software bug dataset will be used

to develop a model that can automatically classify and

predict the severity and priority of the bugs. The proposed

model can be helpful and facilitate the testers' and editors'

work during the testing process and the development life

cycle generally.

The overall architecture of the proposed system can be found

in figure (2).

Figure 2: The overall architecture of our proposed Bugs’

severity and priority classification and prediction system

3.1 Eclipse overview:

Eclipse is an open-source project since November 2000, is an

integrating development tools platform, is an open and

extensible architecture based on plug-ins [29]. Although

Eclipse was developed for Java applications, plug-ins also

allow the developers to create other applications with other

languages, such as C, C++, COBOL, PHP, Python, and Perl.

Using the plug-ins, Eclipse can work with network

applications, database management systems, and modeling

tools. IBM has established the Eclipse and gave to the open-

source community. The consortium’s primary goal was

marketing and business affairs to provide code administrated

and controlled by the Eclipse community.

The Java Development Tool (JDT) is a plug-in permit to use

Eclipse as Java IDE. As for the PyDev plug-in permits

Eclipse to be used as Python IDE. CDT is a plug-in that

allows Eclipse to be used for developing applications using

C/C++ [30].

The Eclipse Modeling Framework (EMF) is a code generator

for creating software applications and tools based on a

structured data model. EMF has a big advantage in providing

tools and runtime support; to generate a set of Java classes

for the model, as well as adapter classes for viewing and

command-based editing, and a basic editor [31].

3.2 Dataset Overview

The dataset size is 10000 rows, that consists of 30 features

describing the bugs. These features are: Bug ID, Product,

Component, Assignee, Status, Resolution, Summary,

Changed, Assignee Real Name, Classification, Flags,

Hardware, Keywords, Number of Comments, Opened, OS,

Priority, QA Contact, QA Contact Real Name, Reporter,

Reporter Real Name, Severity, Tags, Summery, Target

Milestone, URL, Version, Votes, Whiteboard, and Alias.

These features have different effects on determining the

importance of each resulting bug, and thereafter its severity

and priority. This dataset is collected from the Eclipse

environment and includes various bugs that harm this IDE. It

has two main classes, severity, and priority. The severity is

divided into seven classes, major, blocker, critical, normal,

enhancement, minor, and trivial, and three priority classes,

high, middle, and low. These two main classes are used

together to decide which bug should be solved first, which is

the most harmful, and which is normal and can skip it.

The data set contains a summary as a short text description

about the bugs. In this case, the text needs to deal with in

another way, many features can be extracted from the text

which is helpful in the classification process and identifying

each type. The discrimination between the minor bugs from

the blocker bugs for example can be learned. Figure 3 shows

part of dataset features.

Figure 3: An overview on the Eclipse dataset

66
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

These features will be studied and analyzed to choose the

most effective and representative features that will improve

the final results.

3.3 Data Pre-processing and Cleaning

The most important aspect that was taken into consideration

in the preprocessing phase was the feature selection. Because

all features do not have the same importance level in the

task, and each one may affect the final results differently. So,

the features must be chosen in a way that efficiently serves

the task. In addition, the dataset in not balanced, which that

affect the accuracy degree that the results may be not

accurate as should.

Figure 4: Correlation between the bugs' features, with

severity as the target feature

3.3.1 Text Pre-processing

The text may contain numbers, special characters, foreign

letters, or unwanted spaces. All of these reduce the efficiency

of the model's work. In this step unwanted characters,

punctuations, numbers, or spaces were removed from the

description and the summary of the text in the dataset. The

regular expressions from the Python library along with

lemmatization were applied on the dataset. used to deal with

the text cleaning process. The main goal of using

lemmatization is to avoid producing features that are

semantically similar but syntactically different.

3.3.2 Converting Text to Numbers

There are different approaches are used to convert the text

data into numerical forms, such as the Bag of Words (BoW)

model that will be used in this work. The Bag of Word

model has one drawback as it cannot consider the frequency

of the word that may vary from one document to another, or

from text to another. To overcome this problem, Term

Frequency-Inverse Document Frequency (TF-IDF) was also

used. TF-IDF multiplies the word frequency by the inverse

document frequency.

3.3.3 Label Encoding

In machine learning, most of the used datasets contain

multiple labels and these labels may be words or numbers

depending on the class that represents. Label encoding is

converting labels into numeric form to be machine-readable.

It is an essential pre-processing step when dealing with

structured datasets in supervised learning.

The correlation between the chosen bugs' features is shown

in Figure 4, the figure shows the relationship for each feature

with the other which allows knowing how may affect each

other. For example, the strongest relation as shown in the

figure is between OS and Hardware. This figure helps to

explain what are features that more affect the Severity as the

target feature, Version, Hardware, OS, and Resolution have

the highest correlation score.

.

Figure 5: Correlation between the bugs' features, with

priority as the target feature.

As for the Priority as the target feature, Figure 5 shows the

correlation between the chosen features and how much affect

each other. As clearly shown the Priority feature has the

highest correlation score with the Version feature.

3.4 System Methodology

The most important and affected features will be used in the

classification process such as Priority, OS, Hardware,

Component, Product, Version, Votes, Resolution,

Classification, Status, Severity. As for, the severity, and

priority features will be used as a label for bugs classification

and prediction alternately. The severity will be re-labeled as

an integer number to facilitate dealing with it.

Because this work focuses and works on a multi-labeled

dataset the challenge is to build a model which can

distinguish between different bugs' severity and priority

types. A series of Machine learning algorithms were

experimented to assess their performance such as KNN ,

Random Forest, and SVM.

Dataset was not balanced and therefore the results may not

be accurate. To overcome this issue we used two techniques:

feature selection and oversampling (the Synthetic Minority

Oversampling Technique (SMOTE)) along with ensemble

learning method (e.g. voting classifier, bagging decision tree,

Ada Boost). The evaluation metrics used are the level of

accuracy, F1 score, precision, and recall. Also, the tf-idf will

be used to study the text features, count the terms that are

repeated in the corpus; that may help to distinguish between

the types of bugs' severity.

4. Experimental Results and Discussion

In this work, several experiments were produced to show the

power of the provided system. Different Machine Learning

algorithms were applied in these experiments to detect

Eclipse's software bugs.

67
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Machine Learning algorithms were applied in two stages. In

the first stage, the highest correlated features were used,

such as Priority, OS, Hardware, Component, Product,

Version, Votes, Resolution, Classification, Status, Severity,

the Severity, and Priority were used as target feature

alternately. As for the second stage, bugs' reports were used

as a feature in the bugs detection process labeled by

bugs' severity.
Table 1 summarizes the results obtained from several ML

algorithms used. It also shows the final results of the system

using different ML algorithms to make the detection process

of the bugs' severity depending on the bugs' summary text.

The used algorithms extracted features from the reports and

used them in the detection process and distinguishing

between severity different types

Table 2, on the other hand, shows the final results of the

system using different ML algorithms to make the detection

process of the bugs' priority depending on the bugs' summary

text. The used algorithms extracted features from the reports

and used them in the detection process and distinguishing

between priority different types.

Table 2: The results of the system using the bugs' reports as

system feature, and bugs' priority as target feature.

Tables 3 summarize the results obtained using several

features’ alternations and variations and their effect in the

assessment process.

Table 3: The results of the system using the representative

bugs' features, and bugs' severity as target feature

Algorithm

Name

Accuracy F1 score ROC

Dummy

classifier

65.6% 3.0 0.5

Random

Forest

100% 1.0 1.0

KNN 92.4 7.4 8.2

Bagging |

PCA

100% 1.0 1.0

Bagging |

Multi

9.9 9.9 9.9

Ada Boosting 91% 5.3 7.7

SVC 99.8% 9.9 9.9

Table 4: The results of the system using the representative

bugs' features, and bugs' severity as target feature/ Over-

sampling.

Algorithm
Name

Accuracy F1 score ROC

Ada
Boosting

90.8% 7.9 9.2

Bagging 100% 1.0 1.0

Table 5: The results of the system using the representative

bugs' features, and bugs' severity as target feature/ Feature

Selection.

Algorithm
Name

Accuracy F1 score ROC

Ada
Boosting

91.1% 5.3 7.7

Bagging 90.2% 7.9 8.3

Table 6: The results of the system using the representative

bugs' features, and bugs' priority as target feature

Algorithm
Name

Accuracy F1 score ROC

Dummy
classifier

64.6 % 2.0 0.5

Random
Forest

100 % 1.0 1.0

KNN 94.5 % 8.2 8.8

Bagging |
Multi

100% 1.0 1.0

Bagging |
PCA

9.9 9.9 9.9

Ada
Boosting

90.9% 5.3 7.7

SVC 99.8% 9.9 9.9

Table 7: The results of the system using the representative

bugs' features, and bugs' priority as target feature/ Over-

sampling.

Algorithm
Name

Accuracy F1 score ROC

Ada
Boosting

90.8% 7.8 9.2

Bagging 100% 1.0 1.0

Table 8: The results of the system using the representative

bugs' features, and bugs' priority as target feature/ Feature

Selection.

Algorithm
Name

Accuracy F1 score ROC

Ada
Boosting

90.9% 5.5 7.7

Bagging 100 % 9.9 9.9

4.1 Result Analysis

The previous tables show the effect of feature selection on

the assessment process proposed in this paper. It is shown

that when using bugs' summary as the main feature and data

label with priority and severity alternately, the results range

between 73% - 79% in reference to F1-score, since we are

using unstructured data.

68
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

In terms of using structured data as model features, such as

OS, Hardware, Component name, Product, Version, Votes,

Resolution, Classification, Status, and data label with priority

and severity alternately. These features were chosen based

on the correlation degree between them and the priority and

severity; to ensure the result is accurate, representative. The

final results of using ML algorithms, such as KNN, Bagging,

Ada-Boosting, SVC, Random Forest, show a very good

performance based on F1-score, ROC curve, and accuracy

measures.

In order to improve the result and the model performance,

two techniques were used, Feature selection and Over-

sampling techniques. SMOTE focuses on samples near the

border of the optimal decision function and will generate

samples in the opposite direction of the nearest neighbors'

class and connect inliers and outliers.

For the feature-selection technique, according to the

correlation result in Figures 4 and 5, nine features were used

as they have highest relationship score with both bugs'

severity and priority. In this case two ML algorithms were

used, Bagging and Ada-Boosting, the final results were very

good in reference to the F1-score, accuracy, and ROC curve

measures.

5. Conclusion

This paper proposes a detection bugs' severity and priority

system using the Eclipse bugs dataset. Since dealing with

bugs process is not easy and take a huge effort, financial and

time cost.

The proposed model passed on two phases for the detection

of bugs. The first stage was bugs' summary which was

preprocessed before being used in the model. Then, the

machine learning algorithms, Naive Bayes, Random Forest,

SVM, Ada Boosting, Bagging, KNN, and Stochastic

Gradient Descent, were applied and trained the model to

distinguish and detect the bugs' severity and priority types.

To improve the performance two techniques were applied,

Over-sampling, and feature selection, the performance

improvement was noticed.

In the second phase, 12 representative features were selected

from the 30 features from the dataset, Product, Component,

Status, Resolution, Classification, Assignee, Hardware, OS,

Version, Votes, and Opened. Then applied the same used

ML algorithms and notice the model performance during the

bugs' severity and priority detection process.

The model performance was better when the 12 features

were used instead of using the bug's summary. The

comparison process was done depending on Accuracy, F1

score, and ROC curve final results, before and after applying

the over-sampling and feature-selection techniques.

References

[1] 360logica, "Difference between Defect, Error, Bug, Failure

and Fault!," https://www.360logica.com/blog/difference-

between-defect-error-bug-failure-and-fault/

Accessed in October 2021.

[2] Gema Rodríguez-Pérez, Gregorio Robles, Alexander

Serebrenik, Andy Zaidman, Daniel M. Germán & Jesus M.

Gonzalez-Barahona, "How bugs are born: a model to identify

how bugs are introduced in software components," Springer

Nature, p. 47, 2020.

[3] J. Unadkat, "6 Common Types of Software Bugs Every Tester

Should Know," https://www.browserstack.com/guide/types-of-

software-bugs, BrowserStack, June 2021, accessed in October

2021

[4] Sanket, "The exponential cost of fixing bugs," Deepsource,

January 2019, Sanket, "The exponential cost of fixing bugs,"

DEEPSOURCE, 2019, accessed in October 2021.

[5] T. Sidorova, "Software Testing Basics: Types of Bugs and

Why They Matter," ScienceSoft,

https://www.scnsoft.com/software-testing/types-of-bugs,

accessed in November 2021.

[6] Hassan, Zohaib, Iqbal, Naeem, Zaman, Abnash, "Towards

Effective Analysis and Tracking of Mozilla and Eclipse

Defects using Machine Learning Models based on Bugs Data,"

Soft Computing and Machine Intelligence, vol. 1, no. 1, 2021.

[7] Vikas Chandra, Leo Ufimtsev, David Williams and John

Arthorne and others., "Eclipse/Bug Tracking," Eclipse

Foundation, 2021,

https://wiki.eclipse.org/Eclipse/Bug_Tracking, accessed in

November 2021.

[8] Guo, S., Zhang, X., Yang, X. et al. Developer Activity

Motivated Bug Triaging: Via Convolutional Neural

Network. Neural Process Lett 51, 2589–2606 (2020).

https://doi.org/10.1007/s11063-020-10213-y

[9] Ashima Kukkar 1, Rajni Mohana 1, Anand Nayyar 2, Jeamin

Kim 3, Byeong-Gwon Kang 4,* and Naveen Chilamkurti 5, "A

Novel Deep-Learning-Based Bug Severity Classification

Technique Using Convolutional Neural Networks and Random

Forest with Boosting," Sensors, p. 22, 2019.

[10] Awni Hammouri, Mustafa Hammad, Mohammad Alnabhan,

Fatima Alsarayrah, "Software Bug Prediction using Machine

Learning Approach," (IJACSA) International Journal of

Advanced Computer Science and Applications,, vol. 9, p. 6,

2018.

[11] S. Delphine Immaculate; M. Farida Begam; M. Floramary,

"Software Bug Prediction Using Supervised Machine Learning

Algorithms," in 2019 International Conference on Data

Science and Communication (IconDSC), Bangalore, India,

2019.

[12] Thamali Madhushani Adhikari; Yan Wu, "Classifying

Software Vulnerabilities by Using the Bugs Framework," in

2020 8th International Symposium on Digital Forensics and

Security (ISDFS), Beirut, Lebanon, 2020.

[13] Hufsa Mohsin a, Chongyang Shi a,∗, Shufeng Hao b, He Jiang

c, "SPAN: A self-paced association augmentation and node

embedding-based model for software bug classification and

assignment," ELSEVIER, vol. 236, p. 107711, 2022 .

[14] QASIM UMER , HUI LIU , AND YASIR SULTAN,

"Emotion Based Automated Priority Prediction for Bug

Reports," in IEEE Access, Beijing 100081, China, 2018.

[15] SHAHID IQBAL1, RASHID NASEEM 2, SALMAN JAN 3,

SAMI ALSHMRANY4, MUHAMMAD YASAR5, AND

ARSHAD ALI4, "Determining Bug Prioritization Using

Feature Reduction and Clustering With Classification," in

Digital Object Identifier, 2020.

[16] Akimova, Elena N., Alexander Y. Bersenev, Artem A. Deikov,

Konstantin S. Kobylkin, Anton V. Konygin, Ilya P.

Mezentsev, and Vladimir E. Misilov. 2021. "A Survey on

Software Defect Prediction Using Deep

Learning" Mathematics 9, no. 11: 1180.

https://doi.org/10.3390/math9111180

[17] Rudolf Ferenc, Dénes Bán, Tamás Grósz, Tibor Gyimóthy,

Deep learning in static, metric-based bug prediction,

Array, Volume 6, 2020, 100021,

https://doi.org/10.1016/j.array.2020.100021.

[18] S. Iqbal, R. Naseem, S. Jan, S. Alshmrany, M. Yasar and A.

Ali, "Determining Bug Prioritization Using Feature Reduction

and Clustering With Classification," in IEEE Access, vol. 8,

pp. 215661-215678, 2020, doi:

https://www.360logica.com/blog/difference-between-defect-error-bug-failure-and-fault/
https://www.360logica.com/blog/difference-between-defect-error-bug-failure-and-fault/
https://www.browserstack.com/guide/types-of-software-bugs
https://www.browserstack.com/guide/types-of-software-bugs
https://www.scnsoft.com/software-testing/types-of-bugs
https://wiki.eclipse.org/Eclipse/Bug_Tracking

69
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

10.1109/ACCESS.2020.3035063.

[19] 1Syahana Nur’Ain Saharudin, 1Koh Tieng Wei and 2Kew Si

Na, "Machine Learning Techniques for Software Bug

Prediction: A Systematic Review," Journal of Computer

Science, vol. 16, p. 12, 2020.

[20] Korosh Koochekian Sabor, Abdelwahab Hamou-Lhadj, Alf

Larsson, "DURFEX: A Feature Extraction Technique for

Efficient Detection of," in IEEE International Conference on

Software Quality, Reliability and Security (QRS), Prague,

Czech Republic, 2017.

[21] H. Lal and G. Pahwa, "Root cause analysis of software bugs

using machine learning techniques," 2017 7th International

Conference on Cloud Computing, Data Science & Engineering

- Confluence, 2017, pp. 105-111, doi:

10.1109/CONFLUENCE.2017.7943132.

[22] Wenjie Liu, Shanshan Wang, Xin Chen and He Jiang,

"Predicting the Severity of Bug Reports Based on Feature

Selection," International Journal of Software Engineering and

Knowledge Engineering, vol. 28, p. 22, 2018.

[23] Hani Bani-Salameh, Mohammed Sallam, Bashar Al

shboul, "A Deep-Learning-Based Bug Priority Prediction

Using RNN-LSTM Neural Networks," e-Informatica Software

Engineering Journal, vol. 15, no. 1, p. 29–45, 2021.

[24] Nor Azman Mat Ariff, Mohd Zaki Mas’ud, Nazrulazhar

Bahaman, Erman Hamid, and Noor Azleen Anuar,

Ensemble Method for Mobile Malware Detection using N-

Gram Sequences of System Calls. International Journal of

Communication Networks and Information Security

(IJCNIS), 13(2).

doi:https://doi.org/10.54039/ijcnis.v13i2.4937 .

[25] Zaher Shuraym M. Alharthi, Ravi Rastogi, An efficient

classification of secure and non-secure bug report material

using machine learning method for cyber security, Materials

Today: Proceedings, Volume 37, Part 2, 2021, Pages 2507-

2512.

[26] Sabor, Korosh & Hamdaqa, Mohammad & Hamou-Lhadj,

Abdelwahab. (2019). Automatic Prediction of the Severity of

Bugs Using Stack Traces and Categorical Features.

Information and Software Technology. 123. 106205.

10.1016/j.infsof.2019.106205.

[27] Luiz Alberto Ferreira Gomes a , ∗ , Ricardo da Silva Torres b ,

Mario Lúcio Côrtes b, "Bug report severity level prediction in

open source software: A survey and research opportunities,"

Information and Software Technology, vol. 115, pp. 58-78,

2019.

[28] Youshuai Tan a , Sijie Xu a , Zhaowei Wang b , Tao Zhang c ,

∗, Zhou Xu d , Xiapu Luo e, "Bug severity prediction using

question-and-answer pairs from Stack Overflow," Journal of

Systems and Software, volume 3, 2020.

[29] Catherine. Griffin, Introduction to the Eclipse Modeling

Framework, IBM, 2003.

https://www.omg.org/news/meetings/workshops/MDA_2003-

2_Manual/Tutorial_4_Griffin.pdf, accessed in November

2021.

[30] "Eclipse - Overview," Tutorials Point.

https://www.tutorialspoint.com/eclipse/eclipse_overview.htm,

accessed in September 2021.

[31] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed

Merks, EMF: Eclipse Modeling Framework, 2nd Edition,

Addison-Wesley Professional., 2008.

Table 1: The results of the system using the bugs' reports as system feature, and bugs' severity as target feature.

Algorithm

Name

Accuracy Training

Time

Prediction

Time

F1 score Precision Recall

Multinomial NB 56.1 % 0.08 0.25 sec 79 65 99

Random Forest 64.5 % 0.63 sec 53.3 sec 78 67 95

SVM

64.3 % 0.07 sec 12.4 sec 78 66 95

Majority voting 65 % 1.02 sec 66.0 sec 79 67 95

Bagging

64 % 0.93 sec 2929.22 sec 77 67 92

Ada Boosting

64 % 80.3 sec 4.94 sec 78 66 97

Stochastic

Gradient Descent

65 %

1067.1 sec

0.12 sec

79

66

97

https://doi.org/10.54039/ijcnis.v13i2.4937
https://ur.booksc.me/journal/9606
https://af.booksc.eu/journal/15422
https://af.booksc.eu/journal/15422
https://www.omg.org/news/meetings/workshops/MDA_2003-2_Manual/Tutorial_4_Griffin.pdf
https://www.omg.org/news/meetings/workshops/MDA_2003-2_Manual/Tutorial_4_Griffin.pdf
https://www.tutorialspoint.com/eclipse/eclipse_overview.htm

