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Abstract: The Modulo 1 Factoring Problem (M1FP) is an elegant 

mathematical problem which could be exploited to design safe 

cryptographic protocols and encryption schemes that resist to post 

quantum attacks. The ELGAMAL encryption scheme is a well-

known and efficient public key algorithm designed by Taher 

ELGAMAL from discrete logarithm problem. It is always highly 

used in Internet security and many other applications after a large 

number of years. However, the imminent arrival of quantum 

computing threatens the security of ELGAMAL cryptosystem and 

impose to cryptologists to prepare a resilient algorithm to quantum 

computer-based attacks. In this paper we will present a like-

ELGAMAL cryptosystem based on the M1FP NP-hard problem. 

This encryption scheme is very simple but efficient and supposed to 

be resistant to post quantum attacks.  
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1. Introduction 
 

In 1976, Witfield Diffie and Marten Hellman invented the 

concept of public key cryptography [1], but without any 

concrete implementation. One year later, Rivest, Shamir and 

Adleman proposed a first realization, it was the RSA 

cryptosystem [2]. Their cryptosystem was protected by a 

patent until the year 2000 which poses a difficulty for its use. 

In 1985, Taher ELGAMAL described an ingenious public key 

cryptosystem [3]. The new algorithm was not patented as 

RSA, its security depends on the difficulty of solving Discrete 

Logarithm Problem, i.e. given integers q, g and 𝑔𝑎  𝑚𝑜𝑑 𝑞, 

guess the smallest positive integer value a. ELGAMAL 

cryptosystem was improved by introducing its elliptic curve 

version by Koblitz [4] and its digital signature algorithm [5] 

by the National Security Agency NSA. 

ELGAMAL encryption scheme consists of three algorithms: 

a key generation algorithm (KeyGen), an encryption 

algorithm (Enc) and a decryption algorithm (Dec). Suppose 

that we have two protagonists Alice and Bob wanting to 

communicate securely using an encryption scheme, they could 

use the ELGAMAL cryptosystem to secure their 

communications as follows: 

ELGAMAL Key Generation Algorithm: 

The first protagonist, Alice, generates a key pair as follows 

• Generate an efficient description of a cyclic group G, of 

order q, with generator g. Let e represent the unit element 

of G. 

• Choose, randomly, an integer x from the set {1,2, … , 𝑞 −
1}. 

• Compute ℎ = 𝑔𝑥 

• The public key of Alice consists of the quadruplet 

(𝐺, 𝑞, 𝑔, ℎ). She publishes this public key and retains x as 

her private key, which must be kept secrete. 

ELGAMAL Encryption Algorithm: 

A second protagonist, Bob, will encrypt a message 𝑀 to Alice 

under her public key (𝐺, 𝑞, 𝑔, ℎ) as follows: 

• Map the message 𝑀 to an element 𝑚 of 𝐺 using a 

reversible mapping function. 

• Choose an integer y randomly from the set {1,2, … , 𝑞 − 1}. 

• Compute 𝑠 = ℎ𝑦. This is called the shared secret. 

• Compute 𝐶1 = 𝑔𝑦 

• Compute 𝐶2 = 𝑚. 𝑠 

• The ciphertext C of m consists of pair 𝐶 = (𝐶1, 𝐶2). 

• Bob sends 𝐶 to Alice. 

Note that if one knows both the ciphertext 𝐶 = (𝐶1, 𝐶2) and 

the plaintext m, one can easily find the shared secret 𝑠, since 

𝐶2. 𝑚−1 = 𝑠. Therefore, a new 𝑦 and hence a new 𝑠 is 

generated for every message to improve security. For this 

reason, 𝑦 is also called an ephemeral key. 

ELGAMAL Decryption Algorithm: 

Alice can decrypt the received ciphertext 𝐶 = (𝐶1, 𝐶2)using 

her private key x as follows: 

• Compute 𝑠 = 𝐶1
𝑥. Since 𝐶1 = 𝑔𝑦 , 𝐶1

𝑥 = 𝑔𝑦𝑥 = ℎ𝑦, and 

thus it is the same shared secret that was used by Bob in 

encryption. 

• Compute 𝑠−1, the inverse of s in the group 𝐺. This can be 

computed in one of several ways. If 𝐺 is a subgroup of a 

multiplicative group of integers modulo 𝑛, where 𝑛 is 

prime, the modular multiplicative inverse can be computed 

using the extended Euclidean algorithm. An alternative is 

to compute 𝑠−1 as 𝐶1
𝑞−𝑥

. This is the inverse of 𝑠 because 

of Lagrange's theorem, since 𝑠. 𝐶1
𝑞−𝑥

= 𝑔𝑥𝑦 . 𝑔(𝑞−𝑥)𝑦 =

(𝑔𝑞)𝑦 = 𝑒𝑦 = 𝑒. 

• Compute 𝑚 = 𝐶2. 𝑠−1. This calculation produces the 

original message m, because 𝐶2 = 𝑚. 𝑠; hence 𝐶2. 𝑠−1 =
(𝑚. 𝑠). 𝑠−1 = 𝑚. 𝑒 = 𝑚. 

• Map 𝑚 back to the plaintext message 𝑀. 

Practical use: 

As in most asymmetric cryptosystems, the ELGAMAL public 

key encryption scheme is generally used as part of a hybrid 

encryption scheme. In such cryptosystems, the confidential 

message is practically encrypted by a symmetric algorithm, 

only the symmetric key is encrypted using the ELGAMAL 

cryptosystem, the ciphertext is the concatenation of the two 

resulted encrypted messages. We do like this, because of the 

slowness of asymmetric cryptosystems. The slowness of 

public key encryption schemes is 10 up to 100 times compared 

to symmetric encryption schemes. Consequently, it is faster 

and practical to use a symmetric cipher to encrypt the 

confidential message, which can be of arbitrary size, and then 

use ELGAMAL only to encrypt the secrete key of the 

symmetric cipher (called also session key), which has a small 

size compared to the size of the arbitrary message. 
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Security: 

What about the security of the ELGAMAL encryption 

scheme? As well as any padding scheme used on the 

messages, the security is depending on the properties of the 

underlying cyclic group 𝐺. The encryption algorithm is 

supposed to be one-way, if the computational Diffie–Hellman 

assumption (CDH) is holding in the underlying cyclic group 

𝐺. The ELGAMAL cryptosystem achieves semantic security, 

if the decisional Diffie–Hellman assumption (DDH) holds in 

the group 𝐺. The computational Diffie–Hellman assumption 

alone do not imply semantic security. The ELGAMAL 

encryption scheme is not secure under chosen ciphertext 

attack (CCA) because it is partially homomorphic (it is a 

multiplicatively homomorphic encryption scheme) which 

involves its malleability. For the partial homomorphy we give 

the example, given an encryption (𝐶1, 𝐶2) of an unknown 

message 𝑚, we can easily perform some operations on the 

ciphertext and construct a valid encryption (𝐶1, 2𝐶2) of the 

message 2𝑚 without any prior decryption. The malleability 

allows to use the ELGAMAL encryption scheme for the 

electronic vote for example. The CCA security could be 

achieved by a modification of the scheme like using a padding 

process with ELGAMAL scheme. The DDH assumption may 

or may not be necessary, depending on this modification. 

However, there are variants of ELGAMAL encryption scheme 

that achieve security under chosen cipher attacks, such as the 

Cramer-Shoup [6] encryption scheme which can be 

considered as an extension of the ELGAMAL cryptosystem. 

It was the first cryptosystem [6] to combine the following 

three properties: it is resistant to chosen ciphertext adaptive 

attacks (IND-CCA2), it is proven secure in the standard 

model, and it is efficient. 

Efficiency: 

The same plaintext could be encrypted to many possible 

ciphertexts, using the same public key, under the cryptosystem 

ELGAMAL. Schemes which assure this property are called 

probabilistic. This property leads to a consequence that a 

general ELGAMAL encryption scheme produces a two 

components ciphertext with a double expansion in size from 

plaintext to ciphertext (1:2). Encrypting messages under 

ELGAMAL cryptosystem requires two exponentiations; 

nonetheless, these two exponentiations are independent from 

the message and can be precomputed in offline mode to speed 

up the encryption process. In the other hand, decryption 

requires just one exponentiation, but it requires also one 

computation of a group inverse, which can, anyhow, be simply 

combined into just one exponentiation. 

2. Related Work 

The ELGAMAL encryption scheme was used, without any 

problem, in the free GNU Privacy Guard software [7] recent 

versions of PGP [8] and other cryptosystems [9] until the 

apparition of Shor’s algorithm [10]. It [10] is a polynomial-

time quantum computer algorithm for integer factorization. 

Informally, it solves the following problem: Given an integer 

N, find its prime factors. It was discovered in 1994 by the 

American mathematician Peter Shor. This algorithm provides 

a threat against many cryptosystems like RSA, ELGAMAL 

encryption and its versions. In fact, Shor’s algorithm just 

needs the appearance of a quantum computer to be a real threat 

for ELGAMAL cryptosystem, which is always possible today 

at any time. For that reason, many efforts have been provided 

[11], including the competition launched by the National 

Institute of Standards and Technologies (NIST) in this 

direction [11], to develop cryptosystems that resist to post 

quantum attacks. 

Taking into consideration possible threats of quantum 

computing to actual cryptographic schemes, from now on 

classical mathematical problems like Factoring and Digital 

Logarithm problems are supposed to be obsoletes. Indeed, the 

next generation of cryptographic algorithms should be based 

on new mathematical problems quantum computer resilient. 

Five classes of candidate problems are known today [11]: code 

based, isogeny based, hash based, lattice based and 

multivariate system based cryptographic methods. 

Code based candidates: uses the theory of error-coding codes 

to build public key encryption schemes. The first candidate in 

this category was early designed in 1978 [12]. We remark that 

is roughly the same age as RSA [2], but it hasn’t take the same 

importance in deployment. It is due to its large key size which 

make unfavorable in comparison to RSA. McEliece’s 

cryptosystem [12] was improved a plenty of times [13], [14], 

the last one is the Classic McEliece [15] candidate to NIST 

competition. 

Isogeny based candidates: Isogeny-based cryptography uses 

maps between elliptic curves to build public key 

cryptography. The isogeny problem is to find an isogeny 

between two elliptic curves that are known to be isogenous. 

Isogeny-based cryptography is today a fertile branch of 

cryptography which can provide promising cryptographic 

candidates post quantum algorithms. The first publically 

accessible proposals in this domain date back to 2006 [16], 

[17]. The so called SIKE [18] algorithm is an isogeny based 

candidate submitted to NIST competition and it is in the third 

round as an alternate candidate. 

Hash based candidates: hash based signatures (HBS) is a 

promising approach to construct post quantum cryptographic 

algorithms. The security of hash based signature schemes is 

well understood because it is dependent to famous security 

notions corresponding to hash functions, such as collision and 

pre-image resistance. Due to their importance, many hash 

based signature schemes [19], [20] has been already 

standardized by the National Institute of Standards en 

Technologies NIST [21]. 

Lattice based candidates: this is the most attractive and 

prolific area to design post-quantum cryptographic 

candidates. In fact, lattices provide more parameters than 

codes, which means that they might offer mathematical 

problems better adapted to a given situation, but also provide 

more attack surface. Among the well-known mathematical 

hard problems in lattice based cryptography, we find the 

Shortest Vector Problem (SVP), the Closest Vector Problem 

(CVP), Learning with Error Problem (LWE) and Ring 

Learning with Error problem (RLWE). These assumptions are 

widely spread as safe problems to design secure and practical 

lattice based cryptographic schemes that could resist to future 

attacks from quantum computing. In the literature we find 

many candidates, NTRU [22], NewHope [23], Crystals-Kyber 
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[24], GSW [25] that were designed from lattice underlying 

problems. Recently, 12 lattice based cryptographic schemes in 

all of the 26 candidates are in the second round of NIST’s 

competition. Furthermore, lattice based candidates are the 

only type schemes contained in the three types of primitives 

required by NIST: public key encryption, digital signature and 

key exchange. 

Multivariate system based candidates: Multivariate 

cryptography refers to public-key cryptography whose public 

keys represent a multivariate and quadratic polynomial 

system. The main computational problem underlying 

multivariate cryptography is finding a solution to a system of 

multivariate quadratic equations over finite fields. This 

problem is known to be NP-hard. Currently, the underlying 

schemes are not practical, they suffer from space complexity 

problems of large public keys and time complexity problems 

of their long decryption times. On the signatures front 

however, things look a bit better. Rainbow [26] and GeMSS 

[27] are two of the seven submitted schemes to NIST 

competition that have been selected to pass to the third round 

PQC process. 

In this paper, we provide a quantum computing resilient public 

key encryption scheme like ELGAMAL design [3], but its 

security is not relied on the discrete logarithm assumption. We 

will design our cryptosystem from a new NP-Hard 

assumption. The underlying mathematical problem is the fresh 

M1FP candidate that has been recently introduced by Eric 

Jarpe [28]. 

The rest of this paper will be organized as follows: section 3 

introduces the proposed encryption scheme. Starting with a 

mathematical background in the subsection A, passing 

through the description of our scheme in the subsection B and 

its correctness in the subsection C, and finally arriving to some 

properties of the provided cryptosystem in the subsection D. 

In section 4, we propose a toy example to lead the reader from 

the theoretical part to a practical case of our scheme that 

simplifies the comprehension of the suggested algorithm. 

Finally, the last section (section 5) concludes the paper. 

3. The Proposed Encryption Scheme 

3.1. Mathematical Background 

• The set of integers is noted ℤ. 

• The set of real numbers is noted ℝ. 

• A rational number is a real number that could be expressed 

as a quotient or fraction 
𝑝

𝑞
 of two integers 𝑝 and 𝑞. 

• The set of rational numbers is noted ℚ. 

• An irrational number is a real number that is not rational, 

i.e. it could not be expressed as the ratio of two integers. 

• The set of irrational numbers is noted ℝ\ℚ. 

Definition 1: the integer part of a real number 𝑥 ∈ ℝ is 

[𝑥] = max {𝑦 ∈ ℤ ∶ 𝑦 ≤ 𝑥}. 

Definition 2: For any real number 𝑥 ∈ ℝ, the number 𝑥 −
[𝑥] < 1 is the decimal part of 𝑥. It will be noted 𝑥 𝑚𝑜𝑑 1, 

so: 

𝑥 𝑚𝑜𝑑 1 = 𝑥 − [𝑥] 

Theorem: for any real number 𝑥 and integers 𝑎 and 𝑏: 

(𝑎𝑥 𝑚𝑜𝑑 1)𝑏 𝑚𝑜𝑑 1 = (𝑏𝑥 𝑚𝑜𝑑 1)𝑎 𝑚𝑜𝑑 1. 

Proof: interested reader can find the proof at [28] (theorem 

A3). 

3.2. Modulo 1 Factoring Problem 

• Given 𝑥 and 𝑐, both in ℝ\ℚ  

The problem of guessing 𝑎 ∈ ℤ such that 𝑐 = 𝑎𝑥 𝑚𝑜𝑑 1 is 

called the Modulo 1 Factoring Problem (M1FP). 

This problem is proved to be NP-Hard [28]. 

3.3. The Proposed Scheme 

We propose in this part a public key encryption scheme like 

ELGAMAL cryptosystem, but its security is not based on the 

discrete logarithm problem. The security of our scheme is 

based on the hardness of the modulo 1 factoring problem. 

Suppose Alice and Bob want to communicate with our public 

key encryption scheme to exchange confidential message M. 

Key generation: 

The first step in the encryption scheme is to produce a pair of 

keys: the public key, and the secret key. The first will be used 

to encrypt the messages and the second to decrypt them. 

• To generate her pair of keys, Alice will start by taking an 

irrational number 𝑥 ∈ ℝ\ℚ . 

• Alice will then draw an integer 𝑎 ∈ ℤ, which will be his 

private key 𝑠𝑘, and will calculate ℎ = 𝑎𝑥 𝑚𝑜𝑑 1. 

• Finally, Alice will publish 𝑝𝑘 = {𝑥, ℎ} as a public key. 

Encryption: 

Bob therefore has access to Alice's public key 𝑝𝑘 = {𝑥, ℎ}. To 

encrypt a plaintext M, of n digits, encoded in decimal basis, 

he proceeds as follows: 

• Bob starts by choosing a random integer 𝑟 

• Then he will compute 𝐶1 = 𝑟𝑥 𝑚𝑜𝑑 1 and 𝑅 = 𝑟ℎ 𝑚𝑜𝑑 1 

• Bob takes, 𝑅𝑛, the first n digits of the decimal part of 𝑅. 

• Then he computes 𝐶2 = 𝑀 ⊕ 𝑅𝑛, such that ⊕ is a bitwise 

addition modulo 10. 

• Finally, he sends to Alice the encrypted message 𝐶 =
(𝐶1, 𝐶2) 

Decryption: 

Having access to 𝐶 = (𝐶1, 𝐶2) and 𝑠𝑘, Alice can decrypt the 

encrypted message 𝐶 as follows: 

• She computes: 𝑅′ = 𝑠𝑘. 𝐶1𝑚𝑜𝑑 1 

• Then she takes,  𝑅′𝑛, the first n digits of the decimal part 

of 𝑅′. 
Finally, Alice can obtain the original plaintext 𝑀 = 𝐶2 ⊖ 𝑅′𝑛, 

such that ⊖ is a bitwise subtraction modulo 10. 

3.4. Correctness of The Scheme 

In this part we will proof that the decryption step is correct and 

really gives the original message. 

i.e we should proof that 𝑀 = 𝐶2 ⊖ 𝑅′𝑛 

we have 𝐶2 = 𝑀 ⊕ 𝑅𝑛 

⟹ 𝐶2 ⊖ 𝑅′
𝑛 = 𝑀 ⊕ 𝑅𝑛  ⊖ 𝑅′

𝑛 

⟹ 𝐶2 ⊖ 𝑅′
𝑛 = 𝑀 ⊕ (𝑅𝑛  ⊖ 𝑅′

𝑛) 

We have also,  𝑅′ = 𝑠𝑘. 𝐶1𝑚𝑜𝑑 1 

= 𝑠𝑘. 𝑟. 𝑥 𝑚𝑜𝑑 1 

= 𝑟. 𝑠𝑘. 𝑥 𝑚𝑜𝑑 1 

= 𝑟ℎ 𝑚𝑜𝑑 1 = 𝑅 

Consequently, 𝑅𝑛 = 𝑅′𝑛 by definition. 

Then, 𝐶2 ⊖ 𝑅′
𝑛 = 𝑀 ⊕ (𝑅𝑛  ⊖ 𝑅′

𝑛) = 𝑀 ⊕ 0 = 𝑀   ☐ 



135 
International Journal of Communication Networks and Information Security (IJCNIS)                                             Vol. x, No. x, April 2022 

 

3.5. Some Properties of the Proposed Scheme 

Probabilistic scheme: this scheme is probabilistic. Due to the 

random integer 𝑟 used in the encryption algorithm, the same 

message, when encrypted several times, will yield different 

ciphertexts. 

Security of the scheme: to inverse our cryptosystem, the 

attacker should know the afore defined 𝑅′
𝑛. To find 𝑅′

𝑛, he 

should compute 𝑅′ given the public parameters of the 

crytosystem. But to compute 𝑅′ = 𝑠𝑘. 𝐶1𝑚𝑜𝑑 1 the attacker 

don’t have access to the secret key 𝑠𝑘, so he should resolve 

the Modulo 1 Factoring Problem, which is proved to be NP-

hard [28]. This problem seems to be resilient to quantum 

computing attackers [28]. Consequently, our proposed 

encryption scheme is secure under the hardness of M1FP and 

even with the presence of a quantum computer i.e. its security 

is relied to the difficulty resolving of the Modulo 1 Factoring 

Problem.  

Additive homomorphism: the proposed scheme is additively 

homomorphic [29]. This is a very useful property in electronic 

voting. In fact, if we add two ciphertexts, the obtained 

ciphertext will be the encrypted result of the addition of the 

two underlying original plaintexts. i.e. 𝐶 ⊕ 𝐶′ = 𝐸(𝑀) ⊕

𝐸(𝑀′) = 𝐸(𝑀 ⊕ 𝑀′). 

The addition could be performed as follows: 

𝐶 ⊕ 𝐶′

= (𝐶1 ⊕ 𝐶′
1, 𝐶2 ⊕ 𝐶′

2) 

= (𝑟𝑥 𝑚𝑜𝑑 1 ⊕ 𝑟′𝑥 𝑚𝑜𝑑 1, (𝑀 ⊕ 𝑅𝑛) ⊕ (𝑀′ ⊕ 𝑅′
𝑛)) 

= ((𝑟 ⊕ 𝑟′)𝑥 𝑚𝑜𝑑 1, (𝑀 ⊕ 𝑀′) ⊕ (𝑅𝑛 ⊕ 𝑅′
𝑛))  

4. A Toy Example 

In this section we will provide a practical example to illustrate 

how to use the new scheme. 

Suppose that Alice will generate a pair of keys (𝑠𝑘, 𝑝𝑘) and 

shares the public key 𝑝𝑘 with Bob, who will encrypt a secret 

message 𝑀 = "𝐼 𝑎𝑚 𝐵𝑜𝑏" and sends it to Alice. 

Alice’s Key Generation: 

Alice will choose: 

𝑥 = ln(5) 𝑚𝑜𝑑 1
= 0.60943791243410037460075933322619 … 

𝑎 = 5940941723, and will calculate: 
ℎ = 𝑎𝑥 𝑚𝑜𝑑 1
= 9561576844.55776740343558059024511834388453. . 𝑚𝑜𝑑 1
= 0.55776740343558059024511834388453 … 𝑚𝑜𝑑 1 

the key pair of Alice is (𝑠𝑘, 𝑝𝑘) = (𝑎, {𝑥, ℎ}). 

Alice will share with Bob 𝑝𝑘 = {𝑥, ℎ}. 

Encryption of Bob’s message: 

Suppose Bob has a message 𝑀 = "𝐼′𝑚 𝐵𝑜𝑏" and wants to 

encrypt it, with Alice’s public key, before sending it to Alice. 

As a first step Bob will encode it to ASCII, so: 

𝑀 = 073 039 109 032 066 111 098. The message 𝑀 

contains 21 digits, so 𝑛 = 21. 

Next, he will choose a random number 𝑟 = 8710936522 and 

compute:  

𝐶1 = 𝑟𝑥 𝑚𝑜𝑑 1
= 0.31364287132363564473236599596853 … 𝑚𝑜𝑑 1 

And 

𝑅 = 𝑟ℎ 𝑚𝑜𝑑 1
= 0.36810723784051831395590772780466 … 𝑚𝑜𝑑 1 

Consequently, the first 21 digits of the decimal part of 𝑅 are: 

𝑅𝑛 = 368107237840518313955. 

Then, Bob will encrypt the message 𝑀 as: 

𝐶2 = 𝑀 ⊕ 𝑅𝑛 

= 073039109032066111098
⊕ 368107237840518313955
= 331136336872574424943 

Finally, Bob will send to Alice his encrypted message: 

𝐶 = (
0.31364287132363564473236599596853 … 𝑚𝑜𝑑 1

 331136336872574424943
) 

Decryption at Alice’s side: 

At the reception, Alice will take 𝐶1 from 𝐶 and compute: 

𝑅′ = 𝑠𝑘. 𝐶1𝑚𝑜𝑑 1
= 0,36810723784051831395588967197719 … 𝑚𝑜𝑑 1 

Next, she will take the first 21 digits of the decimal part of 𝑅′ 
are: 𝑅′𝑛 = 368107237840518313955. 

Then, Alice will obtain the message M in ASCII’s encoding 

format as follows: 

𝑀 = 𝐶2 ⊖ 𝑅′
𝑛 

= 331136336872574424943
⊖ 368107237840518313955
= 073039109032066111098 

Finally, Alice will decode the ASCII message to a text and 

obtain the plaintext originally encrypted by Bob: 

𝑀 = "𝐼′𝑚 𝐵𝑜𝑏". 

5. Conclusion 

In this paper, we proposed a probabilistic like ELGAMAL 

public key encryption scheme. The security of our 

cryptosystem is based on the hardness of resolving the modulo 

1 factoring problem (M1FP). The M1FP is proved to be NP-

hard. Our cryptosystem is resilient to post quantum attacks 

unlike the classical ELGAMAL cryptosystem for which the 

security is based on the discrete logarithm problem. 

In the case of discrete logarithm problem on finite fields, the 

number of secrets in the field is limited by the order of the 

finite field q. Therefore, using Grover’s algorithm, we can 

easily drive a cryptanalysis of the cryptosystem in the 

presence of a quantum computer. However, this cryptanalysis 

is not applied to our cryptosystem due to the infinity of the 

decimal part of a transcendental number. 

This work is a gateway to the use of the promising M1FP 

problem in the construction of post-quantum encryption 

schemes. In a future work, we think construct the underling 

signature scheme to our cryptosystem. 
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