
474
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

An Enhanced Block Pre-Processing of PRESENT

Algorithm for Fingerprint Template Encryption in

the Internet of Things Environment

Norliza Katuk* and Ikenna Rene Chiadighikaobi

School of Computing, Universiti Utara Malaysia, Malaysia

 *Corresponding author

Abstract: Many previous studies had proven that The PRESENT

algorithm is ultra-lightweight encryption. Therefore, it is suitable for

use in an IoT environment. However, the main problem with block

encryption algorithms like PRESENT is that it causes attackers to

break the encryption key. In the context of a fingerprint template, it

contains a header and many zero blocks that lead to a pattern and

make it easier for attackers to obtain an encryption key. Thus, this

research proposed header and zero blocks bypass method during the

block pre-processing to overcome this problem. First, the original

PRESENT algorithm was enhanced by incorporating the block pre-

processing phase. Then, the algorithm’s performance was tested

using three measures: time, memory usage, and CPU usage for

encrypting and decrypting fingerprint templates. This study

demonstrated that the proposed method encrypted and decrypted the

fingerprint templates faster with the same CPU usage of the original

algorithm but consumed higher memory. Thus, it has the potential to

be used in IoT environments for security.

Keywords: Internet of Things, security, fingerprint template,

encryption, lightweight

1. Introduction

Small computing devices are becoming more widespread and

emerged as an essential part of the Internet of Things (IoT). It

is the backbone of applications in various domains like

healthcare, agriculture, transportation, smart cities [1]. In this

type of network, devices send a large volume of sensitive

data; therefore, data security is the researchers’ main concern,

primarily through encryption algorithms [2]. However,

traditional symmetric encryption algorithms are not suitable

for IoT devices due to hardware limitations. They cannot

achieve acceptable hardware conditions and performance

with their limited power supply [3]. Therefore, lightweight

encryption algorithms become the best option to ensure the

security of such information [1, 4-6] that is generated by such

small devices [5, 7].

Furthermore, resource-constraint environments require

lightweight cryptography to accommodate features of

compact implementation, small memory, and low power

supply [1]. The lightweight cryptography addresses the

limitation of that traditional cryptography which cannot be

used in this environment due to high implementation costs [8,

9]. Examples of lightweight block encryption algorithms

include PRESENT, CLEFIA, MIBS, and LBlock [10]. Many

lightweight encryption algorithms have been invented so far

to be applied in various settings. Panahi et al. [11] listed

eighty-one algorithms with their features to demonstrate the

available algorithms for lightweight implementation. One of

the popular ultra-lightweight encryption algorithms is

PRESENT [12], with simple encryption key scheduling [1,

13] compared to others. Various types of data sent within

devices in IoT networks need to be protected in terms of

confidentiality using encryption algorithms. One crucial data

is user credential information such as password and personal

identification number (PIN) to verify their identity before

using the network or system resources. In addition to

passwords and PINs, many IoT systems use biometric factors

such as facial images and fingerprints for user authentication

purposes. The biometrics authentication system performs a

matching process between the captured fingerprint or facial

images (using a scanner or camera) with the authentication

information stored in the database. This biometric

information is called a template, which is stored in the form

of the hexadecimal string [14]. This study mainly focuses on

the fingerprint template captured by optical fingerprint

scanners and then stored in the form of hexadecimal strings,

not the fingerprint images.

Further, this study also aims to protect the templates

generated by the scanners through an appropriate encryption

algorithm. However, the initial part on how the scanners

perform feature recognition and extraction processes is

beyond this study’s scope. It is because IoT applications use

an optical fingerprint sensor attached to a microcontroller for

user authentication. Fingerprint sensors are an industry

standard, which has been widely used and adopted. However,

the significant gap in the current fingerprint templates

generated by the industry-standard optical fingerprint sensors

is that they are still in plain text, exposing them to security

attacks and consequently causing user identity theft. Hence,

they should be protected using appropriate encryption

algorithms. Based on this situation, there is an urgent need to

look into how these templates could be protected within the

constraint-resource environment.

This study aims to improve the PRESENT algorithm so that

it can be adapted to encrypt fingerprint templates generated

by optical scanners in an IoT environment. Recent studies

have found that PRESENT is an ultra-lightweight encryption

algorithm that can be used in IoT environments [1, 3, 10, 11,

15]. However, the performance of this algorithm in

encrypting fingerprint templates in the form of hexadecimal

strings has not been explored. Furthermore, to the best of our

knowledge, the existing research has only focused on

encrypting fingerprint images using public datasets like

Fingerprint Verification Competition (FVC). Nevertheless,

no research has explored the encryption algorithms suitable

for fingerprint templates generated by these optical scanners.

Thus, the results of this research can contribute to the

improvement of data security protection in industry-standard

optical scanners.

475
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

2. Related Works

This section will describe two basic things in this study:

background on the PRESENT algorithm and fingerprint

template encryption. In addition, it will also list findings from

similar studies to establish a fundamental knowledge of the

studies proposed in this article and their related development.

2.1 The PRESENT Algorithm

PRESENT is an ultra-lightweight block encryption algorithm

with a lower implementation cost than similar algorithms [12,

16]. The algorithm performed substitution and permutation

processes on the plaintext of a block of 8-byte in 31 rounds

with the encryption key to generate its ciphertext. The overall

encryption process using the PRESENT algorithm is

illustrated in Figure 1.

Figure 1. The PRESENT encryption process [12, 16]

The PRESENT algorithm uses 80-bit or 128-bit key size for

performing the encryption. However, this study focuses 80-

bit key to accommodate the IoT resource-constraint

environment. The key is stored in a key register K with

individual bytes are stored in decreasing order as represented

in (1).

𝐾 = 𝑘79 𝑘78 …………………..𝑘1𝑘0 (1)

The algorithm will extract 64-bit subkey Kj in which j is the

number of a round of the key scheduling process as rendered

in (2).

𝐾𝑗 = 𝑘63 𝑘62,…………………..𝑘1𝑘0 = 𝑘78 𝑘78 …………………..𝑘17𝑘16 (2)

After that, the algorithm updates the key register K as stated

in (3), (4) and (5) in producing the addRoundKey function.

[𝑘79 𝑘78,…………………..𝑘1𝑘0] = [𝑘18 𝑘17,…………………..𝑘20𝑘19] (3)

[𝑘79 𝑘78𝑘77𝑘76] = 𝑆[𝑘79 𝑘78𝑘77𝑘76] (4)
[𝑘19 𝑘18𝑘17𝑘16𝑘15] = [𝑘19 𝑘18𝑘17𝑘16𝑘15]

⊕ 𝑟𝑜𝑢𝑛𝑑_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (5)

The output of addRoundKey will be XORed with the

plaintext before the input text undergoing the SBoxLayer and

pLayer process. The SBoxLayer performed a substitution

process using substitution rules in Table 1.

Table 1. PRESENT S-BoxLayer [12, 16]
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The output of SBoxLayer goes into the pLayer process using

the rules in Table 2. The entire encryption process using the

PRESENT algorithm is represented by Algorithm 1.

Table 2. PRESENT pLayer [12, 16]
i P(i) i P(i) i P(i) i P(i)

0 0 16 4 32 8 48 12

1 16 17 20 33 24 49 28

2 32 18 36 34 40 50 44

3 48 19 52 35 56 51 60

4 1 20 5 36 9 52 13

5 17 21 21 37 25 53 29

6 33 22 37 38 41 54 45

7 49 23 35 39 57 55 61

8 2 24 6 40 10 56 14

9 18 25 22 41 26 57 30

10 34 26 38 42 42 58 46

11 50 27 54 43 58 59 62

12 3 28 7 44 11 60 15

13 19 29 23 45 27 61 31

14 35 30 39 46 43 62 47

15 51 31 55 47 59 63 63

Algorithm 1: PRESENT encryption process [12]

generateRoundKeys()

for i = 1 to 31

do

addRoundKey(state,Ki)

sBoxLayer(state)

pLayer(state)

end for

addRoundKey(state,K32)

Since its introduction in 2007, the PRESENT algorithm has

gained researchers’ attention to apply it in various domains

and improve its’ encryption and decryption performance. As

a result, there have been positive and encouraging

developments in terms of the studies’ results. Furthermore,

researchers take various aspects of the algorithm into account

to sustain the algorithm in providing security protection for

data, especially in the IoT environment. Table 1 lists the

studies that improved the PRESENT algorithm and their

contributions to the body of knowledge.

Table 3. Summary of related works on the PRESENT

encryption algorithm
Study Description Contributions

Wang [16] The study introduced a
reduced-round variant of

PRESENT and conducted

differential cryptanalysis
of the algorithm on an 80-

bit key.

The study managed to
break the algorithm at 16-

round, however, not the

31-round.

Yap et al. [7] This study proposed a
block cipher (BC) suitable

for electronic product

code (EPC) name EPCBC
based on the PRESENT

algorithm.

 The algorithm encrypts a
48-bit block size and 96-

bit key and is proven

secure against related-key
differential attacks.

Z’aba et al.
[8]

This study proposed an
encryption and decryption

circuit of the PRESENT

algorithm named I-

PRESENTTM.

This study provides time
and cost savings of circuit

usage due to

implementing encryption

and decryption using the

same circuit.

Tang et al.

[4]

This study proposed a

dynamic S-box to replace
the S-BoxLayer in the

PRESENT algorithm by

applying crossover and
mutation in the genetic

algorithm concept.

The enhanced PRESENT

encryption algorithm has
an avalanche effect and

the ability to resist

differential and linear
attacks.

Chatterjee
and

Chakraborty

[9]

The study enhanced the
PRESENT algorithm by

reducing the encryption

round, modifying the Key
Register updating

technique, and adding a

new layer between S-
BoxLayer and P-Layer.

The improved algorithms
have been able to improve

the performance of the

original PRESENT.

Jain et al.

[17]

The study developed a

differential distinguisher

algorithm based on a deep

learning approach to

The algorithm was able to

attack PRESENT

encrypted text up to five

rounds. However, the

476
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

launch differential attacks

on 3-6 rounds of

PRESENT encrypted text.

algorithm was not able to

attack the complete

rounds of the PRESENT

encrypted text.

Maro [18] The study used the

Boolean satisfiability
problem to evaluate the

reliability of the

PRESENT encryption
algorithm.

It models the encryption

process using algebraic
analysis of the PRESENT

algorithm.

Kwon et al.

[5]

The study implemented

the PRESENT encryption
algorithm on AVR

microcontroller that

supports Electronic Code
Book and Counter.

The study implemented a

compact PRESENT
algorithm with improved

execution time.

Maro [19] This study compared the

power consumption of

AES and PRESENT
encryption algorithms

using ELMO tool.

This study estimates the

probability of instructions

leakages for the AES and
PRESENT

implementations.

Chen [6] The study proposed a key
library generation

algorithm for PRESENT

encryption that was stored
in the chip.

The evaluation of the
algorithm was tested on

image data to demonstrate

that the algorithm is
suitable for encrypting

images within an IoT

environment.

Hussam [20] The study proposed an
encryption algorithm

based on PRESENT and

TWINE for securing data
in the cloud environment.

The study proposed a
lightweight encryption

algorithm that is secure

and suitable for protecting
data within the cloud

environment.

Tao [10] The study suggested the
use of a dynamic key

update method for the

PRESENT algorithm
applied in a vehicular

network.

The dynamic key
increases the difficulty to

detect and decrypt the key

to prevent data from being
decrypted, stolen and

tampered with.

Panahi et al.
[11]

This study compared the
performance of ten

lightweight algorithms for

IoT environments. One of
them was PRESENT, and

they were tested on two

microcontrollers.

Among the findings, the
study found that

PRESENT had the highest

encryption execution time
of the other nine tested

algorithms; nevertheless,

it had the lowest
encryption throughput.

Sahmi et al.

[2]

This study proposed a

method to secure message

queue telemetry transport
protocol using AugPAKE

algorithm and PRESENT

encryption.

This method provides

mutual authentication

between the publisher and
subscriber and protects

the published message’s

confidentiality and
integrity.

Sruthi and

Rajasekaran
[15]

The study proposed a

Signcryption scheme that
employed PRESENT to

encrypt data and use

Elliptic-curve
cryptography (ECC) to

encrypt the key.

The outcomes of the study

suggested that the
encryption time was

improved using the

proposed scheme, which
makes it suitable for the

resource-constraints

environment.

The studies summarized in Table 1 resolve different aspects

of using the PRESENT algorithm in various domains.

However, many researchers found that block encryption

algorithms often face key-differential attacks capable of

breaking standard encryption algorithms such as AES-128

and KASUMI [7]. Key-differential attacks is a cryptanalysis

technique used on blocks encryption by studying input

differences and their relationship to output to retrieve the

secret cryptographic key of the encrypted text [17]. Just like

other block encryption algorithms, PRESENT also faces the

same problem. Thus, this study attempts to solve this problem

so that the encryption algorithm is robust, and attackers would

not be able to retrieve the encryption key.

2.2 Fingerprint Template Encryption

The fingerprint is widely used as an authentication method

due to its unique features [14] and part of the human body

facilitating the authentication process. Unlike the smartcards

that might be lost or stolen and password forgot due to

password overload, a fingerprint is considered convenient

[14]. The fingerprint information of a user is called a

fingerprint template. Yau [21] and Yau [22] defined a

fingerprint template as “a set of stored fingerprint features

extracted from the fingerprint of a user. It is stored during the

enrollment process to represent the actual owner of the

fingerprint.” Generally, it is user fingerprint information

stored in the database during the enrolment process [14]. The

way of recognizing the fingerprint features varies depending

on the fingerprint sensors used in capturing the fingerprint

images. Nonetheless, the fingerprint features would be stored

in a template of hexadecimal string formats. The entire

process of fingerprint recognition [21, 22] is illustrated in

Figure 2.

Figure 2. The process of fingerprint recognition [21, 22]

The sensor will scan the finger during the recognition process

to obtain a digital image for the fingerprint pattern. Then, the

extractor algorithm will identify the fingerprint

characteristics. Various methods can be used to determine

fingerprint characteristics; however, the popular ones are

based on minutia. Next, the fingerprint properties will be

converted into binary or hexadecimal string form [14]. Figure

3 shows how the process of transforming a fingerprint image

into a template. Fingerprint sensors are available in three

types of technology: optical, capacitive and ultrasonic [23].

Each technology uses a different method to recognize a

fingerprint, define a fingerprint feature and convert that

feature into a template form. However, international

standards have provided a fingerprint template format to

facilitate the interoperability process by fingerprint sensors’

manufacturers. For example, the International Organization

for Standardization (ISO) [24] and The American National

Standards Institute (ANSI) [25] provide the standard of

minutiae template exchange format to allow interoperability

of worldwide adoption of different fingerprint recognition

systems.

Figure 3. An example of finger minutia [26]

2.3 The Gap

Optical and capacitive sensors are two common types of

sensors available in the market. Capacitive sensors are widely

used in smartphones [27], while optical sensors are used more

frequently in IoT environments [28]. This study focuses on

optical sensors and fingerprint templates generated by these

sensors to represent user fingerprint features. In particular,

477
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

this study investigates the template produced by the optical

sensor of the AS608 model with the characteristics described

in Figure 4. These sensors are readily available in the market

at a price of around USD10-20. In addition, it can also be

connected to a microcontroller board and programmed to be

used as a fingerprint recognition system within an IoT

environment.

The template size generated by these sensors is 512 bytes in

the form of a hexadecimal string. Figure 5 shows an example

of an actual fingerprint template generated by these sensors.

This template is in plaintext form, which is an unencrypted

template. Thus this template is vulnerable to various threats

and security attacks that can cause user identity theft [14].

Thus, this study focuses on encrypting this template to protect

its confidentiality, thus avoiding identity theft problems and

other potential security issues. Furthermore, this study intends

to use PRESENT [12], a lightweight encryption algorithm

suitable for IoT environments [1, 2, 11, 13].

PRESENT is a block encryption algorithm that accepts one

block’s input equals 8 bytes with an 80-bits key. Thus, a

fingerprint template with 512 bytes will generate 64 blocks of

data to be encrypted with the PRESENT algorithm separately,

as shown in Table 3. No padding is needed in this data as all

blocks are in the equal size of 8 bytes. This study used a

Python’s code for the PRESENT algorithm as programmed

by Buchanan [29] and key “AC08170000000088EF21”.

Figure 6 shows the encrypted fingerprint template.

Figure 4. The AS608 optical fingerprint sensor module with

its specification

The main problem in block encryption is that the block’s

ciphertext generated a pattern of similar block string

that leads to a key-differential attack, i.e. the attacker

performs a cryptanalysis process to guess the encryption

key by comparing the encrypted blocks [16, 30]. In the

example of fingerprint template (i.e., Sample 1) in

Figure 5 and Table 4, there are twenty times occurrences

of “0000000000000000”. Hence, this block was

encrypted to “8c99215c7a117a6a”. Attackers are aware

that fingerprint templates would have many occurrences

of “0000000000000000” due to the minutia pattern of

the fingerprint.

Figure 5. An example of a plain fingerprint template

acquired using an optical sensor (Sample 1)

Figure 6. The encrypted fingerprint template (i.e., Sample

1) using PRESENT

Further, it is also known that the fingerprint template

contained header information of “FFFFFFFFFFFFFFFF”,

which encrypted as “21edccff63f05a6a”. Therefore, the key-

differential analysis could be done quickly by comparing

these two blocks. Generally, block encryption is safe from

brute-force attacks [31]; however, encrypted fingerprint

templates reveal a pattern that facilitates this attack. Hence,

there is a need to improve the PRESENT algorithm to be used

ideally for fingerprint templates generated using optical

sensors, which has been the aim of this study.

3. The Enhanced PRESENT Encryption

Algorithm

This study proposes a block pre-processing phase by

managing the individual fingerprint template block so that it

is suitable to be encrypted with the PRESENT algorithm. It

avoids blocks containing the same ciphertext that could lead

to the key-differential attacks in which the key of the

encryption process is breakable. As mentioned previously, the

fingerprint template contains many blocks with zero values

that produce many blocks with the same ciphertext (when

they are encrypted). They can be recognized that represented

zeros, as shown in Table. Apart from that, it is also known

that the fingerprint templates have a header block containing

the series of “F” sixteen times.

Table 5. An example of ten blocks of a fingerprint

template with their corresponding ciphertext
Block Template Encrypted Descriptions

1 FFFFFFFFFFFFFFFF 21edccff63f05a6a The first block

is always
known as a

header block

2 FF03612BA0017F01 e43258f64ceb8c77 The encrypted

block is
unique

3 8B00000000000000 5cb53b4f270bd69b The encrypted

block is

unique

4 0000000000000000 8c99215c7a117a6a The encrypted

block is

unique for the
first time in

its appearance

5 0000000000000000 8c99215c7a117a6a The encrypted
block is the

same as block

4

6 0000000000000000 8c99215c7a117a6a The encrypted

block is the

same as
blocks 4 and 5

7 0000000000000000 8c99215c7a117a6a The encrypted

block is the

same as
blocks 4, 5,

and 6

478
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

8 24000700AF000101 9493fbe2904b3331 The encrypted

block is

unique

9 0101010101010101 4b8aa0cf225a0aa5 The encrypted

block is

unique

10 0101010101010118 fae5ea622f9051db The encrypted
block is

unique

Based on the ciphertext (i.e. Encrypted column) in Table 5,

attackers would analyze the patterns of the block and look at

the header block and the repeated ciphertext that would

assume them as the zero-blocks. It is known that the

PRESENT key is 80 bits; therefore, they can use the available

information of the ciphertext along with the functions in the

algorithm to get the encryption key like simple mathematical

(6), (7), and (8):

8 𝑏𝑦𝑡𝑒𝑠 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡
= 𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (8 𝑏𝑦𝑡𝑒𝑠 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑘𝑒𝑦) (6)

21𝑒𝑑𝑐𝑐𝑓𝑓63𝑓05𝑎6𝑎
= 𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑘𝑒𝑦) (7)

8c99215c7a117a6a
= 𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (0000000000000000, 𝑘𝑒𝑦) (8)

The attackers would attempt to find a key that matches the

two pairs of plaintext and ciphertext in (7) and (8). Therefore,

there is a need to prevent the encrypted blocks from having

the same pattern in these two equations, which has been the

main objective of this study. In doing this, a method named

header and zero block bypass is proposed. The method skips

“0000000000000000” and “FFFFFFFFFFFFFFFF” blocks

for encryption and maintains the blocks in plaintext. The

process begins with dividing the template TB into sixty-four

blocks (B1,…B64) as (9). Then, an inspection rule is applied

on each block as in (10). The method bypasses the header and

the zero blocks while blocks with non-zero values will be

encrypted. Algorithm 2 shows the flow of the method, while

Figure 7 illustrates the entire process in a flow chart. This

method is reversible; hence the decryption process would be

in its opposite flow.

𝑇𝐵 = [𝐵1, 𝐵2, ⋯ , 𝐵63, 𝐵64] (9)

 𝑍𝐵 = {
1 𝑖𝑓 𝐵𝑖 ≠ "0000000000000000" 𝑜𝑟 𝐵𝑖 ≠ “FFFFFFFFFFFFFFFF”

0 𝑖𝑓 𝐵𝑖 = "0000000000000000" 𝑜𝑟 𝐵𝑖 = “FFFFFFFFFFFFFFFF”
(10)

Algorithm 2: Header and zero blocks bypass method in

the PRESENT encryption process

Input : 512-byte fingerprint template string

Output : 512-byte encrypted fingerprint template string

divideStringIntoBlocks()

for i = 1 to 64

 do

 checkForHeader-ZeroBlock()

 appendEncryptedBlock()

 skip

generateRoundKeys()

for i = 1 to 31

do

addRoundKey(state,Ki)

sBoxLayer(state)

pLayer(state)

end for

addRoundKey(state,K32)

appendEncryptedBlock()

In this study, the original PRESENT algorithm was not

modified. However, converting the string into an encrypted

form was enhanced to avoid specific patterns of known blocks

of the header and zeros. As a result, although the encrypted

fingerprint template string revealed the header and the zero

blocks, it does not jeopardize the security of the other

individual blocks of the template. This is because they are

unique and do not have any patterns that could break the

encryption key. Hence, this study deduces that the fingerprint

template string is protected.

Figure 7. The flow chart of header and zero blocks bypass

method

4. Evaluations

4.1 Methods

The evaluation intends to measure the performance of the

proposed header and zero block bypass method. Existing

studies had proven that the PRESENT algorithm is robust

against cryptanalysis; hence, such analysis was omitted. This

study instead focuses on how the enhanced algorithm

performed in the IoT setting. Three standard evaluation

measures were used: encryption time, the percentage of

memory usage, and central processing unit (CPU) usage. The

encryption time measures the period to transform the plain

fingerprint template string into an encrypted form of a string

in seconds. The memory usage was the amount of memory

that the encryption process used. At the same time, CPU

usage is the amount of CPU that the encryption process used.

Finally, both were measured in percentage.

4.2 Tools

This study adopted the PRESENT module from

www.lightweightcrypto.org [29]. A complete program was

written in Phyton, and it imported the module for performing

the algorithm. The programme was first written in the

development machine to speed up the code development.

Then, the code was transferred to the evaluation machine of a
Rasberry Pi 3 that represent the IoT setting. Table 3

summarises the specification of the development and

evaluation machines.

Table 6. The specification of the development and

evaluation machines
Features Development Machine Evaluation Machine

OS Name Microsoft Windows 10 Home

Single Language

Raspbian GNU/Linux

10 (buster)

System
Type

x64-based PC 32-bit (ARMV7l),
Debian V10.2

Processor 11th Gen Intel(R) Core(TM)

i7-1165G7 @ 2.80GHz, 2803
Mhz, 4 Core(s), 8 Logical

Processor(s)

Broadcom BCM2837

64bit Quad Core
Processor

Installed

Physical
Memory

(RAM)

16.0 GB 1Gbytes DDR2

Python
Version

Python’s Integrated
Development and Learning

Environment (IDLE) v3.9.6.

Thonny with Python
3.7.3

http://www.lightweightcrypto.org/

479
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

4.3 Dataset

This study collected fingerprints from five volunteers using

the AS608 optical fingerprint sensor module specified in

Figure 4. The sensor generated 512-byte fingerprint templates

for all five volunteers. Each template was divided into 64

blocks equally; hence, no padding was used during the

encryption process as the block size is equal. The key size of

the PRESENT encryption was 10 bytes, represented 80 bits.

The key string was “AC08170000000088EF21”. All the

fingerprint template strings are stored in text files.

4.4 Procedure

The encryption time, memory and CPU of the encryption

process was measured using Python’s psutil module. Two

separate Python programmes were coded to perform the

encryption of the original PRESENT and the enhanced

algorithms. Another two programmes performed the

decryption process of the two versions of the algorithm. The

psutil functions were used before and after the encryption and

decryption process.

5. Results and Discussion

This evaluation focuses on comparing the performance of the

enhanced PRESENT with the original encryption algorithm

within an IoT environment. First, the study calculated the

number of zero blocks in each of the fingerprint templates in

the dataset. It ranged between twenty and thirty-two zero

blocks out of the sixty-four as listed in Table 7. Therefore, it

is necessary to understand the variability of zero blocks in the

fingerprint templates so that the performance of the

encryption algorithm can be observed accurately.

Table 7. The number of zero blocks in the fingerprint

template dataset
Fingerprint Template Number of “0000000000000000” blocks

1 20

2 32

3 31

4 29

5 26

Next, the study recorded the encryption time, memory usage,

and CPU usage for encrypting the five fingerprint templates

using the original PRESENT and the enhanced PRESENT.

Then, the study calculated the mean and standard deviation

(s.d.) of performance measures as listed in Table 8. On

average, the original PRESENT encrypted the entire sixty-

four blocks of the fingerprint templates in 0.59228 seconds.

On the other hand, the enhanced PRESENT took 0.33501

seconds, less time in encrypting them than the original

algorithm. However, the memory usage of the enhanced

algorithm was 27.5% as compared to 26.9%, which is higher

than the original algorithm. Nevertheless, the CPU usage of

the enhanced algorithm is much lower than the original

algorithm, with 27.7% and 34.6%, respectively.

Table 8. Encryption time and their memory and CPU usages
Fingerp

rint

Templat

e

PRESENT Enhanced PRESENT

Encrypt

ion

Time (s)

Mem

ory

Usage

(%)

CPU

Usag

e (%)

Encrypt

ion

Time (s)

Mem

ory

Usage

(%)

CPU

Usag

e (%)

1 0.61116 26.4 31.6 0.40373 27.6 33.1

2 0.6033 26.8 29.9 0.30051 27.6 27.0

3 0.57979 26.9 29.7 0.2988 27.5 26.7

4 0.58984 27.3 42.8 0.31304 27.4 25.6

5 0.57733 27.1 39.1 0.35896 27.4 25.9

Mean 0.59228 26.9 34.6 0.33501 27.5 27.7

s.d. 0.01469 0.339

12

5.970

51

0.04549 0.100

00

3.094

03

The exact procedure was also conducted on the decryption

process, whereby the study recorded the time, memory usage,

and CPU usage for decrypting the five fingerprint templates

using the original PRESENT and the enhanced PRESENT.

Then, the study calculated the mean and standard deviation of

performance measures as listed in Table 9. On average, the

original PRESENT decrypted the entire sixty-four blocks of

the fingerprint templates in 0.59695 seconds. On the other

hand, the enhanced PRESENT took 0.34008 seconds, less

time in encrypting them than the original algorithm.

Furthermore, the memory usage of the enhanced algorithm

was 27.7%, about a similar number to the original algorithm,

which was 27.4%. The similarity was also observed in the

CPU usage, where the enhanced algorithm consumed 29.7%,

and the original algorithm had 29.4%.

Table 9. Decryption time and their memory and CPU usages
Fingerp

rint

Templat

e

PRESENT Enhanced PRESENT

Decrypt

ion

Time (s)

Mem

ory

Usage

(%)

CPU

Usag

e (%)

Decrypt

ion

Time (s)

Mem

ory

Usage

(%)

CPU

Usag

e (%)

1 0.58863 27.4 26.9 0.4219 27.7 35.4

2 0.60461 27.3 33.6 0.29066 27.6 26.3

3 0.59023 27.4 26.4 0.31169 27.8 27.0

4 0.60603 27.4 26.4 0.32273 27.7 33.6

5 0.59527 27.3 33.6 0.35341 27.7 26.2

Mean 0.59695 27.4 29.4 0.34008 27.7 29.7

s.d. 0.00804 0.054
77

3.857
72

0.05104 0.070
71

4.438
47

Finally, the study conducted statistical tests using IBM SPSS

Statistics 27 to validate the differences in the performance

measures. A series of Mann-Whitney U tests were conducted

on the performance measure data in Tables 8 and 9, and the

results are presented in the last column of Table 10. The test

results revealed that the enhanced PRESENT encryption

algorithm took a significantly faster encryption time than the

original algorithm. However, in turn, it used significantly

higher memory usage than the original algorithm.

Nevertheless, the different percentage in CPU does not lead

to a significant difference. The exact test results were also

demonstrated in the decryption process.

Table 10. Mann-Whitney U test on the results
Performance

Dimensions

PRESENT Enhanced

PRESENT

Statistics

Encryption Time
(s)

0.59228 0.33501 Z=-2.611, p =
0.08,

Significant

Encryption

Memory Usage
(%)

26.9 27.5 Z=-2.627, p =

0.08,
Significant

Encryption CPU

Usage (%)

34.6 27.7 Z=-1.984, p =

0.056

Decryption Time
(s)

0.59695 0.34008 Z=-2.611, p =
0.08,

Significant

Decryption
Memory Usage

(%)

27.4 27.7 Z=-2.685, p =
0.08,

Significant

Decryption CPU
Usage (%)

29.4 29.7 Z=-0.106, p
=1.00

6. Conclusion

This study suggested the block pre-processing phase for

enhancing the PRESENT encryption algorithm to protect the

secrecy of fingerprint templates within an IoT environment.

It performed the process faster, with similar CPU usage and

480
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

avoiding the block patterns in the encrypted templates that

lead to key differential attacks. However, the drawback of the

enhanced algorithm is that it increases memory usage. The

study can be enhanced as potential future works by increasing

the number of fingerprint template samples. Further, other

measures could be used to evaluate the performance of the

enhanced algorithm.

Acknowledgements

The authors thank the Ministry of Higher Education Malaysia

for funding this study under the Fundamental Research Grant

Scheme (Ref: FRGS/1/2018/ICT03/UUM/02/1, UUM S/O

Code: 14208), and Research and Innovation Management

Centre, Universiti Utara Malaysia for the administration of

this study

References

[1] I. R. Chiadighikaobi, and N. Katuk, “A scoping study on

lightweight cryptography reviews in IoT,” Baghdad Science

Journal, Vol. 18, No. 2, pp. 989-1000, 2021.

[2] I. Sahmi, A. Abdellaoui, T. Mazri, and N. Hmina, “MQTT-

PRESENT: Approach to secure internet of things applications

using MQTT protocol,” International Journal of Electrical &

Computer Engineering, Vol. 11, No. 5, pp. 4577-4586, 2021.

[3] L. Sliman, T. Omrani, Z. Tari, A. E. Samhat, and R. Rhouma,

“Towards an ultra lightweight block ciphers for Internet of

Things,” Journal of Information Security and Applications,

Vol. 61, No. Sept., pp. 102897, 2021.

[4] Z. Tang, J. Cui, H. Zhong, and M. Yu, “A random PRESENT

encryption algorithm based on dynamic S-BOX,”

International Journal of Security and Its Applications, Vol. 10,

No. 3, pp. 383-392, 2016.

[5] H. Kwon, Y. Kim, S. C. Seo, and H. Seo, “High-speed

implementation of PRESENT on AVR microcontroller,”

Mathematics, Vol. 9, No. 4, pp. 374, 2021.

[6] H. Chen, “An enhanced encryption algorithm with key update

scheme for Internet of Things,” Journal of Physics:

Conference Series, Vol. 1757, No. 1, pp. 012144, 2021.

[7] H. Yap, K. Khoo, A. Poschmann, and M. Henricksen,

“EPCBC-a block cipher suitable for electronic product code

encryption,” International Conference on Cryptology and

Network Security, pp. 76-97, 2011.

[8] M. R. Z’aba, N. Jamil, M. E. Rusli, M. Z. Jamaludin, and A.

A. M. Yasir, “I-present™: An involutive lightweight block

cipher,” Journal of Information Security, Vol. 5, No. 3, pp.

114-122, 2014.

[9] R. Chatterjee, and R. Chakraborty, “A modified lightweight

PRESENT cipher for IoT security,” 2020 International

Conference on Computer Science, Engineering and

Applications (ICCSEA), Gunupur, India, pp. 1-6, 2020.

[10] H. Tao, “Design and implementation of vehicle data

transmission protocol based on PRESENT algorithm,” 2021

IEEE Asia-Pacific Conference on Image Processing,

Electronics and Computers (IPEC), Dalian, China, pp. 968-

971, 2021.

[11] P. Panahi, C. Bayılmış, U. Çavuşoğlu, and S. Kaçar,

“Performance evaluation of lightweight encryption algorithms

for IoT-Based applications,” Arabian Journal for Science and

Engineering, Vol. 46, No. 4, pp. 4015-4037, 2021.

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A.

Poschmann, M. J. Robshaw, Y. Seurin, and C. Vikkelsoe,

“PRESENT: An ultra-lightweight block cipher,”

Cryptographic Hardware and Embedded Systems - CHES

2007, Vienna, Austria, pp. 450-466, 2007.

[13] M. K. Hasan, M. Shafiq, S. Islam, B. Pandey, Y. A. Baker El-

Ebiary, N. S. Nafi, R. Ciro Rodriguez, and D. E. Vargas,

“Lightweight cryptographic algorithms for guessing attack

protection in complex Internet of Things applications,”

Complexity, Vol. 2021, 2021.

[14] A. Siswanto, N. Katuk, and K. R. Ku-Mahamud, “Chaotic-

based encryption algorithm using Henon and logistic maps for

fingerprint template protection,” International Journal of

Communication Networks and Information Security, Vol. 12,

No. 1, pp. 1-9, 2020.

[15] M. Sruthi, and R. Rajasekaran, “Hybrid lightweight

Signcryption scheme for IoT,” Open Computer Science, Vol.

11, No. 1, pp. 391-398, 2021.

[16] M. Wang, “Differential cryptanalysis of reduced-round

PRESENT,” International Conference on Cryptology in

Africa, Casablanca, Morocco, pp. 40-49, 2008.

[17] A. Jain, V. Kohli, and G. Mishra, “Deep Learning based

differential distinguisher for lightweight cipher PRESENT,”

IACR Cryptol. ePrint Arch., Vol. 2020, pp. 846, 2020.

[18] E. Maro, “Modeling of algebraic analysis of PRESENT cipher

by SAT solvers,” IOP Conference Series: Materials Science

and Engineering, Vol. 734, No. 1, pp. 012101, 2020.

[19] E. Maro, “Modelling of power consumption for Advanced

Encryption Standard and PRESENT ciphers,” IOP Conference

Series: Materials Science and Engineering, Vol. 1155, No. 1,

pp. 012060, 2021.

[20] M. Hussam, “New lightweight hybrid encryption algorithm for

cloud computing (LMGHA-128bit) by using new 5-D

hyperchaos system,” Turkish Journal of Computer and

Mathematics Education (TURCOMAT), Vol. 12, No. 10, pp.

2531-2540, 2021.

[21] W.-Y. Yau, “Fingerprint Templates,” Encyclopedia of

Biometrics, S. Z. Li and A. Jain, eds., pp. 523-528, Boston,

MA: Springer US, 2009.

[22] W.-Y. Yau, “Fingerprint Templates,” Encyclopedia of

Biometrics, S. Z. Li and A. K. Jain, eds., pp. 679-684, Boston,

MA: Springer US, 2015.

[23] Konsyse. “Fingerprint Scanners 101: Capacitive vs. Optical

vs. Ultrasonic,”, 2021, URL:

https://www.konsyse.com/articles/fingerprint-scanners-101-

capacitive-vs-optical-vs-ultrasonic/, [Online; accessed on

July 10, 2021].

[24] ISO/IEC 19794-2:2005, “Information technology -- Biometric

data interchange formats -- Part 2: Finger minutiae data.,” The

International Organization for Standardization, ed., 2005.

URL: https://www.iso.org/standard/38746.html, [Online;

accessed on July 10, 2021].

[25] INCITS Standard ANSI, “378: 2004-Information technology-

Finger minutiae format for data interchange,” The American

National Standards Institute, ed., 2004, URL:

https://webstore.ansi.org/standards/incits/ansiincits3782004,

[Online; accessed on July 10, 2021].

[26] D. Thakkar. “Fingerprint reader technology comparison:

Optical fingerprint scanner; capacitive-based fingerprint

reader and multispectral imaging sensor,” 2020, URL:

https://www.bayometric.com/fingerprint-reader-technology-

comparison/, [Online; accessed on July 10, 2021].
[27] M. Masoud, Y. Jaradat, A. Manasrah, and I. Jannoud, “Sensors

of smart devices in the Internet of Everything (IoE) era: Big

opportunities and massive doubts,” Journal of Sensors, Vol.

2019, pp. 6514520, 2019.

[28] S. Aleksic, “A survey on optical technologies for IoT, smart

industry, and smart infrastructures,” Journal of Sensor and

Actuator networks, Vol. 8, No. 3, pp. 47, 2019.

[29] W. J. Buchanan. “PRESENT-Asecuritysite,” 2021, URL:

https://asecuritysite.com/encryption/present, [Online;

accessed on July 10, 2021].

[30] S. Emami, S. Ling, I. Nikolić, J. Pieprzyk, and H. Wang, “The

resistance of PRESENT-80 against related-key differential

attacks,” Cryptography and Communications, Vol. 6, No. 3,

pp. 171-187, 2014/09/01, 2014.

[31] M. N. Alenezi and F.S. Al-Anzi, “A Study of Z-Transform

Based Encryption Algorithm”, International Journal of

Communication Networks and Information Security, Vol. 13

No. 2, pp. 302-309, 2021.

https://www.konsyse.com/articles/fingerprint-scanners-101-capacitive-vs-optical-vs-ultrasonic/
https://www.konsyse.com/articles/fingerprint-scanners-101-capacitive-vs-optical-vs-ultrasonic/
https://www.iso.org/standard/38746.html
https://webstore.ansi.org/standards/incits/ansiincits3782004
https://www.bayometric.com/fingerprint-reader-technology-comparison/
https://www.bayometric.com/fingerprint-reader-technology-comparison/
https://asecuritysite.com/encryption/present

481
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 3, December 2021

Table 4. 64 blocks (B1,…B4) of a fingerprint template ready for PRESENT encryption
B1

FFFFFFFF

FFFFFFFF

B2

FF03612B

A0017F01

B3

8B000000

00000000

B4

00000000

00000000

B5

00000000

00000000

B6

00000000

00000000

B7

00000000

00000000

B8

24000700

AF000101

B9

01010101

01010101

B10

01010101

01010118

B11

8AEF01FF

FFFFFF02

B12

008271A6

68DE8125

B13

A69E76AB

AA3E6E35

B14

EC9E5FBA

C15E6DC2

B15

C03E76C6

AC1E9C4E

B16

543E55D8

025E3CAC

B17

1A9F4C38

99DF61C7

B18

583FAACC

A8FF8452

B19

6BDFA956

693F8338

B20

6ADC7FC5

D6BD8932

B21

93BA8B44

2A5A8BC7

B22

157A8749

2ADA8635

B23

28984C51

01F52641

B24

817F2A4B

011F2647

B25
981D32BA

98D82738

B26
17B93046

18792AB7

B27
C25634CF

0CF637CD

B28
98F73BEC

EF01FFFF

B29
FFFF0200

823A5159

B30
F7325019

7313C02C

B31
9E1848D8

1F1C5118

B32
3B1DD454

B91F568F

B33
19999A21

DE6D9592

B34
1FFFFFFF

FFFFFFFF

B35
FFFFFFFF

00000000

B36
00000000

00000000

B37
00000000

00000000

B38
00000000

00000000

B39
00000000

00000000

B40
00000000

00000000

B41
00000000

00000000

B42
00000000

00000000

B43
00000000

00F00000

B44
00E91F00

1000D201

B45
20010000

00141DEF

B46
01FFFFFF

FF020082

B47
0303552A

00012001

B48
86000000

00000000

B49

00000000

00000000

B50

00000000

00000000

B51

00000000

00000000

B52

00000000

00000000

B53

0D000200

81000CCC

B54

00F0003F

FCF3FFFF

B55

FFFFFBAA

AAAAAAAA

B56

AAAA9655

55555555

B57

54445500
40040000

B58

00000000
00000000

B59

00000000
00000000

B60

00000000
00000000

B61

00000000
00000000

B62

00000000
00000000

B63

1344EF01
FFFFFFFF

B64

0200824C
10AB3E0C

