
 11

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Lightweight Scheme for Smart Home Environments

using Offloading Technique

Ahmad A. Al-daraiseh1, Rasel Chowdhury2, Hakima Ould-Slimane3, Chamseddine Talhi4, and Mohamammed

Bany Taha5

1,5Faculty of IT, American University of Madaba, Jordan

2,3,4Department of Software Engineering and Information Technology, Ecole de technologie sup´erieure, Canada´

Abstract: Internet of Things (IoT) as an emerging technology has

been transforming the different aspects of our world from simple

preprogrammed coffee machine to smart farming. Due to the human

nature that strives for more convenience, humans are becoming more

dependent on these automated IoT devices and smart environments

such as smart phones, wearable devices, smart homes etc. In order to

provide better QoS, these devices need to work together and share

data internally and with different service and cloud providers. Since

these devices are resource constrained, IoT technology heavily

depends on the cloud for processing, analytics and storage. Data

produced and shared by such devices may contain lots of personal

identity information (PII). Usually, the users of these devices are

unaware of the sensitivity of information that is being transmitted or

do not possess control over the data that is being sent to the service

provider, or to the cloud. Although, the cloud services and service

providers are supposed to be very secure, and there is a number of

security measures implemented to secure end to end

communications, IoT lacks the mechanism for securing the data

generated by different devices and for proper access control. In this

article we are proposing an approach for the security, privacy and

access control of users’ data using Attribute Based Encryption

(ABE). Smart homes are used as a case study.

Keywords: Data privacy preserving, Attribute-Based Encryption,

Encryption Outsourcing, Applied cryptography, Smart Home

1. Introduction

The Internet of Things (IoT) is one of the most popular of all

the emerging technologies due to the increasing demand for

smart devices and the availability of robust cloud services and

internet connectivity. In the majority of applications, IoT

devices are resource constrained to cut on cost. Cloud

Computing platforms play a crucial role to satisfy the massive

and dynamic demand produced by different resources

constrained devices. IoT applications exist in many different

fields of which many are focused on human convenience [1].

In this paper, smart home is considered as a case study. Smart

home is part of IoT domain where a house is automated with

the help of sensors, actuators and smart devices ranging from

light control, HVAC systems to intrusion detection systems

which allow the home owner to have a great deal of control

over the house.

In a smart home environment, a large amount of data is

received and sent to and from different sensors and devices.

Also, many commands are communicated to control different

devices such as coffee machines, garage door, lights and many

others. The data generated by different devices may contain

personal and confidential information also known as

Personally Identifiable Information (PII) [2], which can be

used to interpret the behavior of the persons living in the smart

home.

To leverage the popularity of IoT smart devices, Cloud and

internet connectivity, many third-party service providers were

established to provide different services based on the needs of

the smart home residents. As shown in figure 1, where data

from different devices is sent to a smart home gateway which

relays it to the Cloud where a third-party service provider can

access it. Several technologies emerged for the

communications of IoT devices such as 6LoWPAN, BLE,

ZigBee, XBee, CoAP [3]. The majority of IoT devices and

technologies are prone to security flaws. [4]. Due to its privacy

and sensitivity, it is very clear that IoT’s data needs to be very

well secured.

Figure 1. Generic smart home

Attribute Based Encryption (ABE) is a more suitable solution

to provide the privacy and access control for smart home’s

data than other cryptography solutions [5]. None the less,

ABE is known to be computationally heavy, and hence,

applying it to provide the required privacy and confidentiality

of this data will put more pressure on the smart devices in use.

Knowing that the majority of IoT’s devices are constrained

devices, applying ABE on such devices is big challenge.

Moreover, in smart homes, smart devices transfer data very

frequently and this makes the situation more challenging. In

this article, we provide fine grained access control to smart

home environment using ABE to guarantee the confidentiality

of the data before it is sent to the cloud. In our architecture,

we assume that smart home components do not have the

resources for performing costly encryption, and hence, the

data is encrypted partially at the smart home gateway and most

of the computation cost is delegated to a proxy server. In our

architecture, we guarantee that the data cannot be revealed by

the proxy or the Cloud platform that host the data. The rest of

the paper is organized as follows: Section 2. discusses the

related literature where ABE schemes were proposed for use

on constrained devices. After which, in section 3, concepts of

Smart Home
Gateway

 12

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

CP-ABE and KP-ABE are discussed. In section 4, the

proposed architecture and results are presented.

2. Related Work

Recently, a large number of researchers discussed the security

issue in smart home environment [6] [7] [8]. Singh et al

discussed the twenty important security considerations for IoT

[9]. The authors mainly focused on access control and

encryption of IoT device and considered how it would add

more complexity to the existing solutions. Lin et al [10]

discussed the privacy issues and security challenges in smart

home environment such as confidentiality and access control.

The authors showed few examples of vulnerabilities to be

considered.

In 2006 Goyal et al proposed the first Key Policy Attribute

Based Encryption (KP-ABE) scheme [11]. In KP-ABE the

data is encrypted with attributes to generate the cipher-text

(CT) and the client’s Secret Key (SK) contains the access

policy. If the attributes in CT satisfy the access policy in SK.

This kind of ABE allows the authority that generated SK to

determine who can decrypt CT.

In 2007, Bethencourt et al proposed the first Cipher-text

Policy Attribute Based Encryption (CP-ABE) [12]. In this

scheme, the data is encrypted with an access policy chosen by

the user (encryptor) to generate the CT, and the secret key

contains a list of attributes. The client’s secret key SK can

decrypt CT if and only if its attributes satisfy the policy that

was chosen by the encryptor.

Ambrosin et al illustrated the performance of ABE schemes in

IoT devices like Raspberry Pi, Intel Edison etc [13] using two

types of ABE namely, CP-ABE and KP-ABE. The authors

showed how performance and efficiency of the two schemes

are different on different boards, in addition, the authors

proved that the efficiency of these schemes is very weak on

IoT devices (smart home components) comparing with regular

computers (desktop computer). Moreover, their experiments

showed that the performance of ABE scheme depends on

several factors such as number of attributes and the

cryptography curve used in the scheme. Yao et al [14]

proposed KP-ABE scheme for IoT devices. The scheme based

on Elliptic Curve. It has no bilinear pairing which explain the

results presented by the authors compared to standard ABE

scheme. However, their results showed that the computation

increased as the number of attributes used to encrypt the data

with increased. Thus, in case we have large number of

attributes (i.e, >30) the scheme will be impractical. Tauati et

al [15] proposed CP-ABE scheme for constrained devices.

The scheme offloads the computation overhead to the nearest

trusted node. Such nodes or devices called assistant nodes.

The assistant nodes are unconstrained devices that can

perform the encryption part on behalf of the constrained

nodes. Chowdhury et al [16] integrated ABE with well-known

smart home middleware openHAB and experimented with

different settings using a test scenario.

Zhou et al [8] proposed CP-ABE for mobile cloud

environment to reduce the computation cost on mobile

devices; the authors idea is that each access tree consists of

left and right sub-tree. Based on their assumption the right

sub-tree usually has leave nodes (attributes) less than the left

sub-tree. They took advantage of this assumption and

encrypted only the right sub-tree on mobile device as it is a

constrained device (according to the authors) and left the left

sub-tree to be encrypted somewhere else such as a proxy

server. In this scheme, the mobile device performs a small part

of the cryptographic operations as the right access tree has less

attributes than the left access tree to generate CTDO. The proxy

server performs CP-ABE encryption on left sub-tree to

generate CTEPS and combine it with CTDO. The final CT will

be CT = CTDO ∧ CTEPS. Zhou et al assumed that the root node

is usually an AND gate so two ciphertext cab be merged by

this AND gate. In fact, the root node could be an OR or an

AND which means this scheme is restricted to limited

applications. To fix this problem, Jin et al [17] proposed a new

scheme that dealt with the restriction of Zhou’s scheme. Jin et

al proposed the idea of dummy attributes as the right sub-tree,

in this case the real access tree will be on the left sub-tree only

and the dummy attributes in the right sub-tree only. The

constrained device will encrypt the data with the dummy

attribute and the proxy will perform the cryptography

operations of the left sub-tree. The data owner will not be

revealed since it is encrypted with dummy attributes. The

authors assume that every user has dummy attributes. Several

schemes were proposed based on dummy attributes idea such

as [18] [19] [20].

3. Preliminary

3.1 Ciphertext Attribute Based Encryption (CPABE)

CP-ABE is a form of ABE, the user encrypts her data with an

access policy. A client interested to decrypt this data must

have a secret key that satisfy the policy in CT. Figure 2 show

visual representation of CP-ABE. CP-ABE performs

encryption and decryption in four steps as follows: Setup →

(PK,MSK): Setup algorithm takes security parameters to

generate Public Key (PK) and Master Secret Key (MSK). PK

is available for any user and is used as an input for the

encryption algorithm. MSK is used to generate Secret Key

(SK) through the key Generation algorithm. KeyGeneration

Figure 2. CP-ABE

Figure 3. KP-ABE

(PK, MSK, ω)→ SK: KeyGeneration take the PK, MSK, and

ω as input. ω is a list of attributes of the user. The output of this

algorithm is the secret key SK. SK is unique for each user.

Encryption (PK, M, α)→ CT: In this algorithm the user

encrypts his/her data with α where α is the access policy. The

output of this algorithm is the ciphertext(CT). Decryption

(CT, SK)→ M: In this algorithm the client uses her secret key

to recover the message.

 13

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

3.2 Key Policy Attribute Based Encryption (KPABE)

 KP-ABE is the second form of ABE; the user encrypts her

data with a list of attributes. The secret key associated with the

access policy thus the trust authority who generate the SK will

decide who encrypt the data. Figure 3 shows visual

representation of KP-ABE. The following steps explain the

main four algorithms of KP-ABE.

Setup → (PK,MSK): Setup algorithm uses security

parameters to generate PK and SK.

KeyGeneration (PK, MSK, α)→ SK: KeyGeneration

algorithm used to generate SK. The input of this algorithm PK,

MSK, and the α. The algorithm generate SK.

Encryption (PK, M, ω)→ CT: In this algorithm the

user encrypts the data using ω to generate CT.

Decryption (CT, SK)→ M: In this algorithm the client uses

his/her SK to decrypt CT. If the attributes that the CT is

associated with satisfy the policy that the SK is associated

with then the client can decrypt CT and recover the message,

otherwise the client will not be able to recover the message.

3.3 Access Tree

Several access trees were proposed for ABE schemes. As was

mentioned previously, in CP-ABE the user encrypts the data

with access policy where the secret key of the client is

associated with a list of attributes. In our scheme we use the

access structure proposed in [17]. To briefly review the

construction of an access tree let’s assume T is the access tree.

T consists of multiple nodes at different levels, each non-leave

node is either an AND or an OR gate, the leave nodes are the

attributes. If the client’s secret key has attributes that satisfy

the access tree then the client will be able to decrypt the data.

To prevent collisions, the Trusted Authority (TA) generates a

random value to blend with each attribute in the secret key.

Figure 4 shows the construction of access tree that is proposed

in [17].

Figure 4. Access Tree

3.4 Cryptography curves

Wang et al [21] experimented with different types of curves

with ABE and evaluated their performance. In this article, two

kinds of curves are used. The first one is super singular curve

which is a symmetric curve and the second one is asymmetric

one called MNT.

4. The Proposed Architecture

Figure 5 shows our architecture for smart home systems. The

architecture is divided into six modules as follows:

Data Collector Module (DCM): this module is used for

receiving data from the sensors. DCM acts as a middleware in

the smart home gateway. The module runs multiple threads

for accepting connections from the sensors, then it verifies and

authenticates the sensors’ information and prepares the data

into a specific format then forwards to Gateway Encryption

module of the home gateway.

Gateway Encryption Module (GEM): this module is

responsible for encrypting the data coming from the DCM.

When some data is received from the DCM, it checks a

database to get the dummy attribute associated with sensor

that generated the data. Then the module encrypts it with the

dummy attribute and sends it to the Proxy Encryption Module

(PEM).

Figure 5. Proposed Architecture

Proxy Encryption Module (PEM): this module is

responsible for encrypting the data from GEM using the actual

policy/attributes that were set by the owner. PEM checks the

message for the sensors’ policy and uses that policy to

encrypts the data and send it to the Cloud.

KeyGen Module (KM): this module is responsible for

generating the PK, MK which are required by the GEM for

encrypting the data and SKs for the services for decrypting.

During generating the SK the KM incorporates the dummy

attributes as well.

Privacy Module (PM): this module interacts with the admin

for setting up the primitives required by the GEM and KM.

Decryption Module (DM): this module decrypts the

ciphertext using the secret key.

Python was used for the implementation of the modules charm

[22] [23] was also utilised for its crypto modules. The data

from the sensors are converted to bytes before it is fed into the

GEM. Serialization and de-serialization were used when

passing CT around to make it harder for an attacker to break

it. In order to evaluate the performance of this framework, a

custom data collector (DCM) which serves as a middleware

was utilised. this way, this framework can be used as plug and

play with any other smart home middleware. Transmission

Control Protocol (TCP) was used for its reliable data transfer.

Different types of sensors placed in different locations of the

house were used to simulate a smart home. All the sensors

send data to the gateway, which is in our case, a Raspberry Pi

which acts as the DCM and GEM and, where, a desktop PC is

used to act as the PEM. The configurations of the gateway and

desktop is displayed in table 1 and 2. Table 3 shows the type

of data generated by the sensors and their identifications. this

architecture was evaluated with different types of ABE. One

dummy attribute is used for GEM which is a unique attribute

OR

Dept. Chair AND

Computer
Science Professor

AND

Dummy

 14

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

assigned to each sensor. Based on access, those dummy

attributes are assigned for the key generation. In addition,

three services will be used that have access to the sensor’s data

based on the ABE policy. The configuration for CP-ABE

settings CP-ABE is shown in table 5 and in table 4 is for KP-

ABE.

Table 1. Hardware and Software Specifications of Gateway

Processor 1.2GHz 64 bit quad-core ARMv8

RAM 1GB

Storage 16GB eMMC flash Storage

Operating System Raspberian Debian OS

Table 2. Hardware and Software Specifications of Proxy

Processor 3.2GHz Ci7

RAM 16GB RAM

Storage 320GB

Operating System Ubuntu

Table 3. Sensor Information and data types

Sensor type Sensor ID Data type

Light Light1....Light8 String [Dim, Bright,

Very Bright]

Temperature Temp1....Temp7 Float [2 decimal

places]

Contact [Door] Cont1....Cont8 String [Open/close]

Smoke

Detection

Smoke1....Smoke4 String [low,

medium, heavy]

Water Flow Water Integer

Electricity

consumption

Elec Integer

Gas Flow Gas Integer

Table 4. KP-ABE settings

Sensor

ID

Dummy Attribute Actual Attribute

Light1 D1 Attribute1

Attribute10

Temp1 D9 Attribute1

Attribute10

Cont1 D16 Attribute1

Attribute10

Smoke1 D24 Attribute1

Attribute10

Water D28 Attribute1

Attribute10

Elec D29 Attribute1

Attribute10

Gas D30 Attribute1

Attribute10

Home admin is responsible for setting up the attributes and

policies required for the KM and PEM by using the PM. PM

is a graphical user interface as shown in figure 6 for KP-ABE

setup where the home admin can select the attributes for the

sensors and write policies for the services for generating the

secret key. For CP-ABE the interface is reversed; attributes

for services and policy for the sensors. KG is responsible for

setting up the environment by generating the PK and MK, and

then transferring them to the GEM. KM is also responsible for

generating the secret key of the services and transmitting to

the designated service in a secured manner. DCM acts a smart

home middleware and collects data from the sensors and

forwards it to the GEM. GEM is responsible for encrypting

the data using one dummy attribute/policy and then the data

is transferred to the PEM. PEM does the encryption with

actual attributes/policy which is set by the home admin and

then the encrypted data is stored in the Cloud. The services

can only decrypt the data from the Cloud if they have the

decryption module running in their system and have a valid

key, which satisfies the requirements of ABE. Figure 7 shows

the view of different modules and services. On the left hand

side of the Figure 7 is the visual representation of DCM and

the rest are different services that have access to different

sensors. If a service has access to a specific sensor it can view

the value otherwise an error message is shown based on the

access policy of the service.

Table 5. CP-ABE settings

Sensor

ID

Dummy

Policy

Actual Policy

Light1 D1 Attribute1 AND Attribute2 AND

... Attribute10

Temp1 D9 Attribute1 AND Attribute2 AND

... Attribute10

Cont1 D16 Attribute1 AND Attribute2 AND

... Attribute10

Smoke1 D24 Attribute1 AND Attribute2 AND

... Attribute10

Water D28 Attribute1 AND Attribute2 AND

... Attribute10

Elec D29 Attribute1 AND Attribute2 AND

... Attribute10

Gas D30 Attribute1 AND Attribute2 AND

... Attribute10

Figure 6. Policy Module

Figure 7. Screen shot of data collector and different services

15

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

5. Experimentation and Evaluation

In order to evaluate this framework, a number of experiments

were carried out and the impact on CPU, Memory, and latency

of the KP-ABE, CP-ABE and a revised version of KP-ABE

was monitored. In these experiments the following values

were used: 30 attributes/policy, 30 sensors and a max of 150

sample for the ABE settings. Different KP-ABE and CP-ABE

schemes were tested using this architecture to check which

scheme is more suitable in smart home scenario. Moreover,

super singular curve and MNT curve were used. A python

script was used to determine the resource utilization in all

experiments. To calculate the latency, the time at which the

data enters the DC and the time at which the encryption is fully

completed were recorded and the difference provided the

latency. Also, a USB tester was used to calculate the power

consumption of the Raspberry Pi.

Figure 8 shows the resource utilization (CPU, Memory and

gateway (Raspberry pi), part by the gateway and part by the

Latency) when using CP-ABE with different offloading plans.

proxy, and finally, all the encryption by the proxy server.

Although the least load is given when all the encryption is

done by the proxy, this plan should be avoided as the proxy

server can’t always be trusted. so the next best is to have part

of the encryption done by the local gateway and part by the

proxy server(PEM). Figure 9 shows the frequency of data sent

to the middleware based on the number of sensors and their

rate of sending data. In this experiment, 30 sensors were used

and their data sample rate varied from 3 to 12 per minute.

Figure 10 shows the size of the cipher text CT using a constant

message of 10 characters with varying the attributes/policy. it

is clear that YCT achieved the least size.

Figure 8. Comparison of offloading techniques

Figure 9. Data interval

Figure 10. Ciphertext size

Figure 11. Secret Key size

Figure 12. Key generation Time

Figure 13. Full encryption

16

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Figure 14. Offloaded encryption

Figure 15. Full encryption CPU utilization

Figure 16. Offloaded encryption CPU utilization

Figure 17. Full encryption memory utilization

Figure 18. Offloaded encryption memory utilization

Figure 19. Full encryption power consumption

Figure 20. Offloaded encryption power consumption

Figure 21. Full encryption latency

17

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

Figure 22. Offloaded encryption latency

Figure 11 displays the secret key size with different

attributes/policy. Again YCT achieved the least size for the

key. Figure 12 shows time required for key generation vs

number of attributes (from 1 to 500) at the gateway. It is also

clear here that YCT took the least amount of time in the

majority of experiments. Figures 13 and 14 display the

execution time of full encryption and offloaded encryption. it

is very clear that the time is minimal when offloading is used.

Also, YCT takes less time in both cases. Figures 15, 16, 17

and 18 show the resource utilization vs sample rate. Data

interval of 2 seconds to 0.05 seconds were used with both full

and offloaded encryption. the Figures show that with full

encryption data interval up to 0.7 can be achieved. beyond 0.7

both CP and KP had the CPU at full capacity. on the other

hand, when offloading is used even when the data interval is

0.05 both CP and KP didn’t reach 100% however, YCT did at

both 0.07 and 0.05 intervals. Figure 19 and 20 display the

power utilization of the gateway vs sample rate. Less energy

was consumed by the gateway when offloading was done as

expected. Figure 21 and 22 show the latency of the system vs

the data interval.
From the results of figure 9, we see that the interval of data

coming increases from 2 seconds to 0.5 seconds when the

frequency increased from 20 seconds to 5 seconds. In Figure

8 we can see that if the system performs all the computation at

the remote server, the resource utilization and latency are

decreased by 40%. Figure 12 shows that as the number of

policy/ attributes get larger the execution time of Secret Key

Generation increases. From Figure 11 and 10 we can see that

with the increase of attribute/ policy the size of the message

also increases and CP-ABE has the highest in size compared

to YCT and KP-ABE. If we perform all encryption at the

Gateway (see Figure 13) the execution time increases

gradually with the number of attributes where if we do partial

encryption at the gateway and offload the rest to the proxy (see

Figure 14) the execution time is decreased ten times at the

gateway. From the Figure 15 and 16, we can see that the cpu

utilization of CP-ABE 20% higher than other ABE schemes at

data interval 2 to 0.5 and then gradually increases in the GEM

for both cases. Also we can notice that the CPU consumption

is lower when we do partial encryption rather than full

encryption. In Figure 18 and 17 the memory utilization is

almost similar for all the schemes and it is below 40% of the

total memory available. From Figure 20 and 19 we can say

that the power consumption does not go above 2.7 watt when

the data interval is at 0.05 seconds. Further evaluation can be

drawn from figure 21 and 22 which show the latency which is

required for the whole process. We can see that the CP-ABE

has the highest latency among the schemes and YCT has the

lowest for both cases. If a use case has a threshold of 10 second

latency then:

For full encryption minimum data interval for

– CP-ABE is 1 second

– KP-ABE is 0.7 second

– YCT-ABE is 0.5 second

For partial encryption minimum data interval for

– CP-ABE is 0.7 second

– KP-ABE is 0.7 second

– YCT-ABE is 0.3 second

In conclusion, doing partial encryption at the gateway and

offloading the rest to the proxy reduces the resource

consumption and mainly latency of the data by 30% than

doing full encryption process in the gateway.

6. Conclusions

In this article, an optimizing mechanism for ABE using partial

encryption at the gateway and delegating/ offloading the rest

of the heavy encryption process to the proxy using smarthome

as a case study is presented. The proposed solution shows that

further optimization of ABE schemes on resource constrained

devices is required. the experiments carried out show that

offloading is a must when using ABE schemes on constrained

devices. As for future work, we will investigate different

techniques and mechanisms to use IoT devices available at

smart home to optimize further in terms of latency and

ultimately not to be dependant on the proxy server for its

computation power.

References

[1] M. Abdelhaq, R. Alsaqour, N. Albrahim, M. Alshehri, M.

Alshehri, S. Alserayee, E. Almutairi, and F. Alnajjar, “The

impact of selfishness attack on mobile ad hoc network,”

International Journal of Communication Networks and

Information Security, vol. 12, no. 1, pp. 42–46, 2020.

[2] L. Wilbanks, “The impact of personally identifiable

information,” IT Professional, vol. 9, pp. 62–64, July 2007.

[3] “Iot standards and protocols.” [online]

https://www.postscapes.com/internet-of-thingsprotocols/.

Accessed: 01-29-2018.

[4] C. J. Barnes, “Smart home alone: The worlds gateway to more

efficient use of energy and mayhem,” 2017.

[5] M. Ambrosin, A. Anzanpour, M. Conti, T. Dargahi, S. R.

Moosavi, A. Rahmani, and P. Liljeberg, “On the feasibility of

attribute-based encryption on internet of things devices,” CoRR,

vol. abs/1611.08098, 2016.

[6] W. Ali, G. Dustgeer, M. Awais, and M. A. Shah, “Iot based

smart home: Security challenges, security requirements and

solutions,” in 2017 23rd International Conference on

Automation and Computing (ICAC), pp. 1–6, Sept 2017.

[7] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet

of things for smart home: Challenges and solutions,” Journal of

Cleaner Production, vol. 140, pp. 1454 – 1464, 2017.

[8] C. Wilson, T. Hargreaves, and R. Hauxwell-Baldwin, “Benefits

and risks of smart home technologies,” Energy Policy, vol. 103,

pp. 72 – 83, 2017.

[9] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty

security considerations for cloud-supported

internet of things,” IEEE Internet of Things Journal, vol. 3, pp.

269–284, June 2016.

18

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 14, No. 1, April 2022

[10] H. Lin and N. W. Bergmann, “Iot privacy and security

challenges for smart home environments,” Information, vol. 7,

no. 3, 2016.

[11] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-based encryption for fine-grained access control of

encrypted data,” in Proceedings of the 13th ACM Conference

on Computer and Communications Security, CCS ’06, (New

York, NY, USA), pp. 89–98, ACM, 2006.

[12] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertextpolicy

attribute-based encryption,” in Proceedings of the 2007 IEEE

Symposium on Security and Privacy, SP ’07, (Washington, DC,

USA), pp. 321–334, IEEE Computer Society, 2007.

[13] M. Ambrosin, M. Conti, and T. Dargahi, “On the feasibility of

attribute-based encryption on smartphone devices,” in

Proceedings of the 2015 Workshop on IoT Challenges in Mobile

and Industrial Systems, IoT-Sys ’15, (New York, NY, USA),

pp. 49–54, ACM, 2015.

[14] X. Yao, Z. Chen, and Y. Tian, “A lightweight attributebased

encryption scheme for the internet of things,” Future

Generation Computer Systems, vol. 49, pp. 104 – 112, 2015.

[15] L. Touati, Y. Challal, and A. Bouabdallah, “C-cp-abe:

Cooperative ciphertext policy attribute-based encryption for the

internet of things,” in 2014 International Conference on

Advanced Networking Distributed Systems and Applications,

pp. 64–69, June 2014.

[16] R. Chowdhury, H. Ould-Slimane, C.

 Talhi, and M. Cheriet, Attribute-Based Encryption for

Preserving Smart Home Data Privacy, pp. 185–197. Cham:

Springer International Publishing, 2017.

[17] Y. Jin, C. Tian, H. He, and F. Wang, “A secure and lightweight

data access control scheme for mobile cloud computing,” in

2015 IEEE Fifth International Conference on Big Data and

Cloud Computing, pp. 172–179, Aug 2015.

[18] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure,

scalable, and fine-grained data access control in cloud

computing,” in Infocom, 2010 proceedings IEEE, pp. 1– 9, Ieee,

2010.

[19] W. Liu, J. Liu, Q. Wu, B. Qin, and Y. Zhou, “Practical direct

chosen ciphertext secure key-policy attributebased encryption

with public ciphertext test,” in European Symposium on

Research in Computer Security, pp. 91–108, Springer, 2014.

[20] S. Roy and M. Chuah, “Secure data retrieval based on

ciphertext policy attribute-based encryption (cp-abe) system for

the dtns,” tech. rep., Citeseer, 2009.

[21] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance

evaluation of attribute-based encryption: Toward data privacy

in the iot,” in Communications (ICC), 2014 IEEE International

Conference on, pp. 725–730, IEEE, 2014.

[22] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M.

Rushanan, M. Green, and A. D. Rubin, “Charm: a framework

for rapidly prototyping cryptosystems,” Journal of

Cryptographic Engineering, vol. 3, no. 2, pp. 111– 128, 2013.

[23] “Charm: A tool for rapid cryptographic prototyping.” [online]

https://github.com/JHUISI/charm. Accessed:

01-29-2017.

