
258
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

Machine Learning Techniques for Malware

Detection with Challenges and Future Directions

Mohammed A. Alqahtani1

1Department of Computer Information Systems, College of Computer Science and Information Technology,

Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

Abstract: In the recent times Cybersecurity is the hot research

topic because of its sensitivity. Especially at the times of digital

world where everything is now transformed into digital medium.

All the critical transactions are being carried out online with

internet applications. Malware is an important issue which has the

capability of stealing the privacy and funds from an ordinary person

who is doing sensitive transactions through his mobile device.

Researchers in the current time are striving to develop efficient

techniques to detect these kinds of attacks. Not only individuals are

getting offended even the governments are getting effected by these

kinds of attacks and losing big amount of funds. In this work

various Artificial intelligent and machine learning techniques are

discussed which were implements for the detection of malware.

Traditional machine learning techniques like Decision tree, K-

Nearest Neighbor and Support vector machine and further to

advanced machine learning techniques like Artificial neural

network and convolution neural network are discussed. Among the

discussed techniques, the work got the highest accuracy is 99%

followed by 98.422%, 97.3% and 96% where the authors have

implemented package-level API calls as feature, followed by

advanced classification technique. Also, dataset details are

discussed and listed which were used for the experimentation of

malware detection, among the many dataset DREBIN had the most

significant number of samples with 123453 Benign samples and

5560 Malware samples. Finally, open challenges are listed, and the

future directions are highlighted which would encourage a new

researcher to adopt this field of research and solve these open

challenges with the help of future direction details provided in this

paper. The paper is concluded with the limitation and conclusion

section.

Keywords: Artificial neural network, convolution neural

network, cybersecurity, malware, machine learning, support vector

machine.

1. Introduction

Technologies related to smart cities are combined with

Android OS applications as these applications are supporting

the smart city requirements. Android is playing an essential

role in various fields in the current development phase of the

earth. These applications are helping different sectors like

competent government, intelligent transportation, and other

energy resources management [1][2]. The facilities provided

by Android are allowing developers to utilize them in their

applications. Still, at the same time, it is acting as a source to

attackers like malware which is targeting the Android to

cause serious threats which are leading to financial loss,

leakage of critical data, and security concerns for nations [3].

Based on the excellent features offered by Android and

flexible to adopt technologies, it has captured as much as

80% of smartphone users. But, at the same time, it has

become a significant source for malware attacks [4]. Based

on this report [5], as many as four million fresh malicious

applications were developed during 2019. The average time

in which the hackers create an infected APP is around every

eight seconds. This statistic of malware attacks and the

development of malicious applications are alarming and

becoming a source of a significant threat to cyber-security.

So, well-managed and efficient detection methods are need

of the hour for Android malware, and it needs urgent

attention from computer professionals to develop tools to

detect these attacks significantly to improve mobile security

[6]. Another study conducted by Juniper Networks Mobile

Threat Centre (MTC) [7] has reported as many as 155 % of

the increase in mobile malware attacks in 2011 compared to

previous years in almost all the platforms. Also, with regards

to Android malware, there is an increase of about 3000 %

during 2011. Based on these statistics and numbers, a

significant increase in malware was reported in third-party

Android applications enjoying the same privileges as an

actual application available in the Google Play Store. The

reason for this increase in the numbers is, in the past, any

Android developer had the privilege to develop an

application and post them immediately at the official

Android Market without screening the application for the

presence of malware and inspecting the application. Another

reason for the drastic increase in malware is due to the

blending of Google Android dominant market and

smartphones and their share, which was around 68.8%

during 2012, and the absence of efficient security control

methodology to control the applications which are being

posted on Android application markets. In a recent study, the

reports state that as many as 700,000 apps have crossed 15

billion downloads in the Google Play Store. As these

numbers are increasing so also the money stealing malware

is also growing based on the security firm Fortinet which

was done during 2006-2011.

Malware detection methods are classified into two categories

based on the process by which they are detected, like

signature-based method or behavior-based method. In the

current scenario, signature-based malware detection is

working fine for the previously detected malware, which

was done with the help of anti-malware vendors. But the

polymorphic malware is not yet detected, which can change

the signatures. Also, new malware which is expected to

occur in the future cannot be detected by these traditional

methodologies. So, the best solution that is recommended by

researchers is utilizing the heuristic analysis along with the

machine learning techniques that could provide better

solutions with higher efficiency for detection. As practice

has shown, the traditional approach to the field of malware

detection, which is based on signature analysis [8], is not

acceptable for detecting unknown computer viruses.

259
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

In the current times, mobile security researchers are working

hard to counter the risk of malicious Apps. They are

proposing various defense approaches especially novel

methodologies to detect malware. These methodologies are

based on machine learning techniques which are proving to

be very efficient in various research fields in solving their

problems. Further to machine learning, they are also

implementing advanced techniques like deep learning, which

is attracting security researchers of multiple areas to

implement this technique [9] [10]. The process of utilizing

machine learning techniques for the detection of state-of-the-

art malware attacks could be generally classified into three

categories: Static feature [11] [12], dynamic feature [13]

[14], and mixed feature [15] [16]. The most critical aspect of

machine learning to get good accuracy in the result is feature

selection. It is also used during training the model. The more

accurate the features are, the more robust the model is, and

the more would be the classification accuracy [17] [18] [19].

The feature selection is a crucial step in machine learning to

enhance the performance of the model and also to make a

robust model all the irrelevant features and redundant

features should be removed, and sophisticated features

which play a significant role should be selected. This process

is time-consuming as the result of machine learning depends

on this step. The outline of this paper is as shown in Fig. 1.

The significant contributions of this study are as follows:

• Databases related to malware detection are listed in the

paper along with the methodologies and techniques applied

on these datasets to detect malware.

• The author has collected the relevant techniques for the

detection of malware.

• The techniques focused in this study are tradition

classification, Artificial neural network and Convolution

neural network

• Relevant and latest features extraction techniques

applied for the classification of malware are discussed with

their results.

• The author has listed the current open challenges for

detecting malware.

• The author has listed future directions for a potential

researcher to motivate and provide enough information to

take this research work further by solving the open

challenges.

• The author tried to represent all the essential

information into tabular format with the reference number.

Figure 1. General overview of the paper

The rest of the paper is as follows: section 1 gives the

complete introduction about the research field, section 2

discusses the primary classification techniques with their

technical details, section 3 provides the database with more

information which is applied for malware detection, and the

researchers who used these databases for experimentation,

section 4 gives the detail description of researchers who

applied various classification technique to detect malware,

section 5 discusses the open challenges and future scope of

the work, section 6 has the conclusion section, followed by

section 7 as limitations and 8 with future scope, followed by

the reference list.

2. Related Work

Machine learning techniques are currently applied in various

applications. So, Malware detection is no exception. It is

playing an essential role in detecting malware more

efficiently compared to traditional techniques. In this

section, malware detection based on various machine

learning techniques like Support vector machine, Artificial

neural network, and Convolution neural network is

discussed with the features extraction details and the results

achieved.

2.1 Malware detection based on classical techniques

The authors in this work [20] introduced a methodology that

has the capability of extracting the features automatically.

The system was developed using JavaScript, and the

detection is static. This system takes the input as .apk

Android executable files. The following are the features

extracted by the system: API count for each method related

to phone management and API code of relation with phone

control and API related to privacy information. Further, after

the extraction of features, the author has used the J48

Decision Tree classification method for classifying using the

Weka library. The authors followed 10-fold cross-validation.

The ultimate results of this methodology are 82.7 %

accuracy in classifying the malware, and the false-negative

rate is 17.3%.

In another work [21], a rooted Android device was used with

Linux-based tools to capture the calls received on the

system. The feature vectors were collected by capturing the

number from each call received by the system with the help

of the Android application. The following were the most

relevant system calls captured based on the experimentation:

read (), open(), access(), and chow(). To distinguish between

a benign and malware version, the authors applied a 2-means

clustering algorithm.

The authors in this work [22] designed a real-time anomaly

detector. The technique is based on a 1-Nearest Neighbor

classifier. The total number of features extracted was 13.

Two features were examined at the user's end depending on

the phone's active or inactive position and based on the SMS

which are sent while the phone was inactive. The

methodology was based on two models, first to capture the

features at every 1-second interval, and the other is captured

at every one-minute interval. The system was evaluated for

ten genuine malware samples, and the authors claim to

detect as much as 93% of malware detected correctly, while

the false-positive rate was 0.0001.

In another work [23], the authors worked on 88 features with

an unrooted device. These features were experimented on

two machines which were real and among two different

users. The testing was done with 16 benign and 4 self-made

malware. The features were monitored by the model at an

interval for every 2 seconds. The following are the classifiers

used by the authors k-Means, Logistic Regression,

Histograms, Decision Tree, Bayesian Networks, and Naive

Bayes. Apart from the classifiers, the authors also applied

260
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

filters for the selection of relevant features by comparing

them with Chi-Square, Fisher Score, and Information Gain.

Based on the experimentation, the authors claim 80%

detection of malware with the available 88 features. The

false-positive rate was 0.12.

The authors in this work [24] also did a comparative analysis

between different classification algorithms. They used 500

Android .apk files to make the classification and processing.

In this work, 160 permissions were used as feature vectors.

The comparison was made among Random Forest, J48

Decision Tree, and Classification and Regression Tree

(CART) algorithms. But unfortunately, the results were not

claimed.

A malware detection study was conducted by [26] for

Android platform. The classification technique applied here

is SVM, and the features used for classification were a

combination of vulnerable API calls and risky permission of

calls. Extensive experimentations were carried to validate

the proposed methodology which can detect the malware and

further identify the malicious Android applications more

efficiently. The dataset used for this experiment was taken

from [27]. The experiments were also conducted on datasets

downloaded from benign apps from Google play to validate

and do some comparative analysis.

Similarly, in this study [25] data mining technique is applied

to detect the malicious software and the authors applied

experimentation and investigation to detect the malware by

applying the SVM algorithm. The purpose of this work was

to detect the malware rate for the SVM method. The result of

this study after applying SVM algorithm was the probability

of detecting around 74-83% malware. The detection is done

by the models developed with SVM and using enough

datasets of malicious software’s. Related Techniques are

listed in table 1.

2.2 Malware detection based on artificial neural

networks

The authors in this work [28], investigate the behavior of

malicious data. The experimentation was conducted on

features extracted from Global wavelet transform and GIST.

The dataset used in this experimentation was Mahenur, it

consists of 3131 samples of binaries with 24 unique malware

families. Feedforward Artificial Neural Network technique

was applied for the experiment. The authors claim up to

96.35% of accuracy in detecting and classifying the

malware.

In this work [29], the authors have applied a sequence

mining algorithm for the detection of malware patterns. The

feature used in this experimentation is the instruction

sequence extracted from the sample files. Then, All-Nearest-

Neighbor (ANN) classifier is applied to detect the malware

based on the features extracted in the patterns form. The

framework was based on pattern mining methodology along

with ANN classifier. The proposed method is then evaluated

by the real and unseen malware samples. The results were

outstanding; wherein this method outperformed all the other

alternate data mining approaches. The dataset used to do the

experimentation was collected from Windows PE samples

which were 10,307 among which 8847 were malicious files,

and 1460 were benign files.

The authors in this work [30] have applied various classical

machine learning classifiers also deep neural network and

proposed a system to detect malware attacks on Android

systems. The significant contribution was extracting the

relevant features, which are also sensitive. They have

designed and developed a static analysis tool for the feature

extraction step. The outcome of this approach is around

97.3% of accuracy for the true positive rate.

In another work [31] for malware detection, the authors here

have applied a different approach wherein the sensitive

packages which cause the malware attacks are detected.

These are called package-level API calls, which are found in

common inside malicious apps. This approach is also

capable of extracting another package level that gives the

feature details for a large set of Android malware. This

technique gave good results with around 99% of accuracy

and a false positive rate of 2.2%.

In another work [27], the significant contribution was

working on extracting features. The features were extracted

from the manifest file and from the source code of the

application. These features were then trained with an SVM

classifier. The classifier was able to classify and detect

malware based on the features provided, and further, it

achieved good accuracy and performance for the detection of

malware.

The authors in this work applied a different approach to

detect the malware [32], semantic features were extracted

from the weighted contextual API. These APIs were used to

draw dependency graphs further to classify them as Android

malware or not. The proposed system is capable of

effectively fighting against malware.

Another feature extraction technique was proposed by [33],

to detect malware. Here the authors have applied the Markov

chain to the sequence of API calls and then extract the

relevant features. After removing these features, then

traditional classification methodology is used to classify and

detect the malware.

In this work [34], features were extracted from permissions

and API calls. These features were extracted from the files

stored in the Android manifest file. These extracted features

were then applied for classification using the K-nearest

neighbor algorithm. These classifiers are used to classify

benign and malware apps. The results were further improved

after applying the K-means algorithm. The results are

summaries as shown in Tab. 2.

2.3 Malware detection based on convolution neural

network

In recent times CNN is widely used in many applications

because of its capability to handle big datasets and pattern-

matching tasks. The latest application of CNN is on IoT and

the usage of the internet by the common users. These

internet facilities have attracted many users and collected

Hugh amount of data and at the same time opened gates for

numerous vulnerabilities for attackers and make cyber-

attacks. There is no robust security solution to handle these

kinds of attacks and detection methodologies for the

developing IoT environments, which has invited many

developers and researchers to find efficient solutions for

numerous DDoS attacks. So, CNN plays a vital role in this

aspect by detecting the possible DDoS malware attacks for

large datasets using CNN-based algorithms. The following

are few works done by the researcher for detecting malware

using CNN algorithms.

In this work [35], the authors have proposed a methodology

to detect malware. The approach followed is a light-weight

malware detection, wherein initially, the malware is

converted into a one-channel gray-scale image. These

261
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

images are then used to extract features that ultimately

represent light-weight CNN to detect the malware and its

family. The outcome of this methodology is the accuracy of

94.0% under the two-class classification, while the accuracy

achieved was 81.8% for the three-class classification. These

results were then compared with [36] with a similar

methodology for the classification of malware. The

difference among these two methodologies was the

difference in the number of

layers as [36] used very deep network, and the pre-

processing step was very complex.

Another similar work is conducted by [35], wherein the

authors took raw features for classification. This method can

detect only two types of malware very effectively because of

the simplicity of the classification method.

This methodology is very suitable for IoT devices wherein

only the first layer is used for malware detection. Some other

works also represent similar kinds of contributions where a

great deal of research is done based on neural network [37]

[38] [39]. Similar work was done by [40], by utilizing CNN

with a large-scale methodology. This technique was

developed to classify malware based on random projections.

However, the accuracy did not improve even after increasing

the number of hidden layers. In another work [41], the

authors applied feed-forward DNNs for malware detection

and classification using static methodology. But, they could

not provide significant results and improvement inaccuracy.

Multi-tasking approach was introduced by [42], wherein the

authors applied multi-tasking learning with the combination

of feedforward and neural network. The number of layers

utilized in this approach was four hidden layers, but the

results were not discussed very clearly.

In recent types, the authors in this work [43] have introduced

a feature extraction technique (word2vec). These features

were extracted based on DL and represent more like

malware which is based on opcodes. The proposed

methodology included a gradient boosting algorithm and k-

fold cross-validation to assess and evaluate the

methodology's performance. The dataset used in this

experimentation was minimal, and the authors claim a 96%

accuracy which seems to be better than other similar works.

In this work [44], the authors introduced a new approach of

converting the API call sequence into RGB images. This

conversion is done by mapping the corresponding protection

levels depending on the permissions required for the API

call. Then these API call sequences, along with the

protection level, were converted into RGB images. The

authors have used CNN and developed a model to detect the

malware. The accuracy produced by this methodology was

around 93%. The dataset used for experimentation was 7192

benign and 24461 malicious samples.

In another work [45], a similar strategy was applied for

feature extraction. Here the authors have utilized the static

method to extract the features. The authors have extracted

138 features into four different categories and then converted

these permissions features into 12x12 PNG images. Then,

CNN is applied to train the model and detect the malware.

For the experimentation 2500, Android applications were

used, and the dataset had 2000 malicious and 500 benign

samples. The results achieved were 93% accuracy in

detecting the malware.

Similarly, in this work [46], the authors also converted the

.dex files into RGB color codes and then into color images.

These images were at a fixed size. Then the images were put

into CNN as inputs for the extraction of automatic features

and further to the training process. Here the dataset used for

experimentation was 2 million benign and malicious

Android applications. The outcome if this experimentation

was accuracy of 98.4225% of malware detection.

Another methodology to extract features was introduced in

[47], where texture fingerprints were applied to remove the

malware features. The texture image information extracted

from the sample applications codes was utilized in this

methodology. To detect the Android malware, these codes

were mapped with the uncompressed gray value, and further,

they were combined with the API. These combinations of

code and API call features led to the detection of malware.

The technique applied in this methodology is a deep belief

network. The dataset used contained 6956 samples and the

proposed model yield 95.6% of malware detection accuracy.

The authors in this work [48], did similar work by

converting the APK code into images and then applying

CNN to classify the images and detect the malware. The

dataset used in this experimentation was 720 benign samples

and 720 malicious samples. The model got an accuracy of

92.67% for detecting the malware. In another work [49], the

semantic graph technique is applied to extract the features

from the Android application, and then CNN is used to train

the model. The dataset is collected from various sources like

Marvin, Drebin, VirusShare, and ContagioDump. This

methodology got an accuracy of 99% in detecting the

malware. In another graph-based technique [50], the features

were extracted from API call graphs and applied the features

to deep neural network, and the dataset consisted of 33,139

malicious and 25,000 benign samples. The results got 98.9%

of accuracy in detecting the malware. The summary of the

above-discussed techniques is as shown in Tab. 3.

In this work [51], a dynamic android malware analysis

technique is proposed for the detection of possible malware.

Here the authors have constructed OS-level and Java-level

semantic views. The system is capable of tracking the

changes in the files such as threads and processes. It can

detect the malware through system calls and Dalvik

instructions. These details are provided for the dynamic

analysis.

3. Datasets

To effectively evaluate the performance of the classical

machine learning and deep learning techniques, a large

dataset is needed with relevant information consisting of

various types of samples. Unfortunately, there is no such

dataset available publicly to conduct research in

cybersecurity and malware detection. The reason for this

unavailability is the privacy-preserving policies. Since each

organization has some individual privacy policies, it is

difficult to collect a large dataset for malware detection. In

the current times, malware has increased, as statistics show,

keeping all these growing malware and their families

together in one place is a difficult task. Although researchers

are making a significant contribution to this field but still

their findings are not recognized because of the shortage of a

single dataset which can accommodate all the required

samples.

So, there is a need for such repositories to help the

researchers to accomplish their tasks more efficiently. There

are many researchers who could manage to acquire some

data for processing and detecting the malware, so here are

262
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

some of the works that have used some available datasets

and their training and testing details.

In this work [52], the authors have utilized the publicly

available dataset named Ember. This dataset consists of both

malicious and benign files. It has 70,140 benign files and

69,860 malicious files. These files are used to train the

model, and the dataset is divided into training and testing

files. They have divided the dataset as 60% for training and

40% as testing by applying Scikit-learn. The number of files

that came under training is 42,140 benign while 41,860 as

malicious files, while for the testing dataset 28,000 files for

benign and 28,000 as malicious.

In another work [53], the authors tried to find the kind of

malware or to determine the family with which this malware

belongs. To evaluate the findings, they have utilized the

dataset in two formats, one set which consists of both the

benign and malicious files together and in another set only

malicious files the details are as shown in Tab. 4 and Tab. 5,

respectively. The authors tried to find whether a given app is

malicious or not? And look for the most relevant attribute

which can help in determining the family of the detected

malware. The experiments were conducted, and the results

were evaluated on two datasets Malgenome [54] and Drebin

[27]. These two datasets made around 33,000 files combined

from the two datasets. The authors also tried to validate

their findings with another two more datasets acquired from

virus share.com, Contagio Minidump [55].

The authors in this work [56] did a similar study wherein

they developed a model to detect whether the downloaded

application is benign or malware. They have used an online

malware scanning application called VirusTotal [57] in the

experimentation stages. To evaluate their work 20,000

malware samples were used from VirusShare [58] and 1,260

from the Malgenome project files [59], and additionally

20,000 files from Google Play App Store [60]; these files

were selected during the time period of March 2015 till April

2016.

It is a fact that most of Android application are non-

malicious. This reality is becoming a challenge for Android

malware detection, especially for deep learning technique.

To detect Android malware, large amount of data is needed,

and these data samples should be constantly updated with

malicious samples. This would help the deep learning

models to detect the Android malware. But unfortunately,

most of the datasets are not much large, which is a challenge

for deep learning experts. The following are some of the

datasets available for researchers to use with their technical

details along with their acquisition dates.

DREBIN dataset [27], is considered as the commonly used

dataset for detecting Android malware, it consists of 5,560

malicious samples while 123,453 benign samples. This

dataset was collected during August 2010 till October 2012.

 Another dataset available for malware detection is

Android Malware Genome Project data [63].

 This dataset consists of 1260 samples related to malicious

while 863 benign samples. The malicious samples are

grouped into 49 different categories. The dates of its

acquisition are from August 2010 until October 2011.

Contagio [64], is another available dataset for malware

detection. It has around 1150 malicious samples. The

collection time for this dataset is 2011.

 In its additional version [65] this dataset consisted of about

24553 malicious samples. These samples were grouped into

135 categories related to the malicious family. The

collection period of these samples where from 2010 till

2016.

Another dataset related to malware detection is available,

called as Android PRAGuard dataset [66].

The total malicious sample is 10479, which were collected in

the year 2015. Similarly, the Marvin dataset [16] is also

available for malware detection. It is a mixed dataset

consisting of both malicious and benign files together. It has

10572 malicious samples and 75996 benign samples. The

collection time is in the year 2015. Another available

dataset is ISCX Android Botnet Dataset [67]. It consists of

1929 malicious samples. These samples are categorized into

14 different categories. The collection time is from 2010 till

2014. The summary of the above discussed datasets is as

shown in Tab. 6.

4. Methodologies

The technical details related to different machine learning

techniques with the equations and the details related to the

equation for SVM, ANN, and CNN.

4.1 Decision tree

A Decision Tree is a tree-based classification in structure

wherein each vertex of the tree is considered as an attribute,

and the corresponding branch gives the value of that

attribute [53]. The root is the topmost vertex of the tree,

which stores the most important information. The difference

in the entropy is stored on the root of the tree. This root

stores the critical feature which is used for splitting the

training data in the most optimal way. The bottom nodes of

the tree are known as leaves, as shown in Fig. 2. The classes

are represented as the leaves at the bottom of the tree. The

process of classification is traversing the decision tree from

top to bottom of the tree by satisfying the instance needed to

classify. The equation of information gain used in a DT to

optimally split instances in a tree-structured manner is given

below.

Here, Gain(P,Q) is the reduction in entropy in order to sort P

on attribute Q as in equation 1. Features with increasing

information gain value are chosen as nodes in a top-down

manner.

Figure 2. Decision tree architecture

4.2 Support vector machine

In cybersecurity, SVM is considered as the most popular

classification algorithm. It is a supervised learning

algorithm. The ultimate goal of applying this algorithm is to

separate the hyperplane in the feature space among different

classes [69]. The hyperplane is the main constraint in getting

optimized results. In this technique, the hyperplane is chosen

based on the distance between the hyperplanes, which

should be maximum for the closest data points. As shown in

263
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

the Fig. 3. The following are the parameters b, w, x as in

equation 2. Where b is the hyperplane and w is the weight

and x is the data points. As shown in the equation points (x1,

y1), (x2, y2),: : : ,(xn, yn). Here x is an element of real

values R and y = (1, 1) aslabels. The ultimate target of SVM

is to precisely classify the training data where y = + 1 using

wxi + b ≥ 1 and when y = - 1 using wxi + b ≤ 1. So, for all i,

yi(wxi + b) ≥ 1 using the distance measure performed by the

following:

 (2)

The most important advantage of SVM is it ability to

classify the data more accurately and the simplicity in

implementation when compared with other classification

algorithms. The accuracy is very good when the number of

features (m) are higher than the number of samples (n) in the

dataset. These numbers could be represented as m >>n.

SVM is very much utilized in cybersecurity and also in other

fields of research like healthcare, biology, and pattern

recognition.

Figure 3. SVM architecture

Further to the advantages of SVM it can create better

hyperplanes with the time complexity of O(N2)[70]. The

comparison between all these techniques are listed in Tab. 7.

4.3 Artificial neural network

Artificial neural network (ANNs) are a collection of nodes.

The neurons of the brain simulate these nodes. ANN is a

combination of three basic layers, which are named input,

hidden and output layers. The hidden layer can be changed

and increased to more than one layer, depending on the

design of the algorithm. The sequence of operation is as

follows: initially, the input layer transfers its output to the

hidden layer, and accordingly, each subsequent layer passes

it output to the next layer, and ultimately the final output is

passed to the output layer, and this is the results of the

classification as shown in Fig. 4. Before SVM was invented

during the 1990s ANN was very popular at that time, but

further to the enhancement of ANN with feed-forward and

convolutional neural network, again, ANN gained its

popularity. ANN is very much utilized in the cybersecurity

field. The learning process is the main phase in any machine

learning algorithm so in ANN also, this process takes inputs

(x1, x2,: : :, xn) with a given output label as y. Then weight

vectors (w1,w2, : :,wn) are used to weight the input vectors.

The weights play an important role in the learning process,

as these are adjusted in such a way that the learning error is

minimized E = ∑_(i=1)^n▒〖ld_i-y_i l〗, where the error is

defined as the difference between the actual output (yi) of

the neuron and the output which is desired (di). The

adjustment of the weights is made by gradient algorithm,

which follows back-propagation methodology, wherein the

learning process is repeated backward and forward

directions and the error is followed, this process is done until

the error shows lower than the stipulated threshold value.

The adjustment of the weights is made based on the

following equation

(3)

∆w_(i,j)= ηδjxi.j, i is the input node, and j is the hidden

node. The parameters are shown in equation 3.

Figure 4. Artificial Neural Network architecture

4.4 Convolution neural network

Deep Learning is a subclass of Machine Learning, it is

basically applied to handle applications with large training

datasets. The process followed by DL is hierarchical in

nature which is based on feature abstraction and feature

representation. In the contrary, traditional ML algorithms

performance gets degraded when the training dataset is very

large and because of the dimensionality of the data. Hence,

to resolve this issue of data size, DL algorithms are applied,

which usually use graphical processing units (GPUs) for

processing the big data. Convolution neural network is the

most applied algorithm among DL algorithms, especially to

handle cybersecurity applications. CNN is composed of

two main layers: Convolution layer and the Pooling layer.

The main functionality of convolution layer is to convolute

the input data. This convolution is done with the assistance

of numerous similar-size kernels. The outcome of this

convolution is the retrieval of features from the input data.

These features are the outcome of applying high value to a

given position if the desired feature is available at that

position and location and also in the reverse form [71]. The

following are the main parameters in calculating the

optimized features: m for kernel width and height, h is the

output for the convolution, x represents the input, and

finally, w is the convolution kernel as shown in the eq 4.

The next layer in CNN is the pooling layer, it is used to

down-sample the feature sizes. It is done by applying two

types of pooling techniques one if max-pooling and the other

is average pooling. Max-pooling selects the value which is

maximum among the values retrieved from the previous

layer. The average pooling takes the average values of the

last layer values. The pooling mechanism is applied to get

the maximum and average deals from the previous layers

which is under the kernel value [71]. Mathematically as in

equation 5:

 (5)

Apart from the above-mentioned layers, CNN has activation

functions also. The most commonly used activation function

is rectified linear unit. This activation function is represented

264
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

by the equation f (x) = max(0, a). A typical CNN

architecture is as shown in the below Fig. 5. CNN has many

advantages over other algorithms except computational cost,

which is a disadvantage of CNN

5. Open challenges and future research

directions

Cybersecurity is a hot research topic although lot of work has

been done in the past. But, still there are many open

challenges available and need to be addressed. In this section

few of them are highlighted and future directions are listed to

help a potential researcher to focus on these issues and adopt

these directions. In Tab. 8 all the open challenges and future

directions are listed.

5.1 Performance evaluation framework

The evaluation metric used to calculate the performance of the

cybersecurity technique and accuracy of the proposed

methodology needs standardizations. There needs robust

evaluation metrics. Since the recently proposed evaluation

metric does not cover all the aspects of cybersecurity

especially with different domains. This is making it difficult to

compare the proposed methodology with system of different

domain. The challenge is to develop the best way to evaluate

the proposed method and compare it with state-of-the-art

techniques. A universal evaluation method is needed to check

the robustness and performance of the proposed technique

under different scenarios. The research community needs

such evaluation techniques that could confirm the robustness

and performance capability of the current and future

methodologies among different scenarios and domains. The

following are the three research directions were researchers

can explore further to overcome this challenge: Developing

tools and protocols and checking them with the attack and

without attacks and see the performance, Listing the common

criteria for efficient performance and document them,

establishing open online platform for other researchers to

suggest their methodologies and let them participate in this

cause.

5.2 Generalization

Generalization concerning the proposed techniques is another

challenge. In this, the proposed methodology doesn’t perform

well under different circumstances like failing with novel

samples, attacks, and dataset contents. These models are

trained on specific training data, which is tuned, and the

model is proposed, which fails to counter any change in the

testing data if any real issues come like novel malware

samples. The performance of the model degrades at some

points, which is a big challenge and needs a solution.

Additionally, the proposed cybersecurity model for

ransomware attacks would fail if tested for spyware-related

attacks. Cybersecurity models proposed are usually trained on

known threats, which if tested on actual samples, would fail to

perform. Since the nature of the attack is not predicted, it is

now a challenge for researchers to counter this issue. The

following are the research direction which would help the

researcher in exploring their research in this direction:

Exploring a wide range of attacks and developing models

based on this study and proposing mathematical security

models which are capable to handle these attacks efficiently.

5.3 Design of Security

The traditional systems proposed for cybersecurity systems

which start with data collections till the classification followed

by feature extraction, should be rechecked with the

consideration of adversaries. For example, the features

extracted should be not only generalized but also capable of

handling the vulnerabilities to attacks. The solution to this

challenge would be updating the system occasionally by

adding the latest features relevant to the attack. These features

should be able to solve the computational complexity issues

and be faster and automated.

5.4 Advanced machine learning

Traditional machine learning techniques applied for

cybersecurity issues with systems built on modeling non-

linear adversary behavior and not trustworthy features lead to

over-fitting and degrading performance and reliability. This is

a challenge and needs attention from researchers. To

overcome this crisis, Advanced Machine Learning (AML)

needs to be developed. Currently, a minimal amount of work

has been done on AML like recognition of features, dictionary

learning and DL for cybersecurity. The future scope of AML

is to explore robust feature extraction techniques for different

datasets.

5.5 Robustness of security with DL

Although DNN systems give high accuracy for predicting

malware attacks and other security tasks, recent studies have

shown these techniques to be vulnerable for inputs with subtle

perturbation. These adversarial examples are acting as real

threats to DL techniques and need a proper solution. The

scientific reason for this issue is studied by few researchers

who say that the linear nature of the DNN-classifier is the

primary source of the problem. The solution is to develop

more robust DNN models, and there is a vast scope in creating

these kinds of models which can handle adversarial issues

more efficiently.

5.6 Privacy preserving in cybersecurity

In recent research, it is evident that ML and DL-based

cybersecurity systems have proved to be very efficient in

classifying malware. But, on the other hand, these techniques

could not handle the privacy issues related to datasets as the

privacy of the datasets used in the systems is getting leaked

and no proper methodology is available to address this issue.

If any advanced techniques are applied to save the leakage of

private data, then the accuracy is getting affected. Therefore,

more research is needing to keep the privacy-preserving issue

and not affecting the accuracy of the proposed method.

5.7 Encyclopedic datasets

Cybersecurity is heavily dependent on real datasets. There are

few existing datasets for cybersecurity, but they lack in big

sizes and rich features like fully labelled, structured and

complete with diversity and details about the attacks, their

domains, and usage capabilities that should resemble the

actual data. The following are the biggest hurdling in creating

such datasets: high reliability, difficulty creating accurate and

true labels, and access to applications in natural environments.

These things needed to be taken care to develop a more robust

dataset to handle real cybersecurity issues.

265
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

5.8 Interdisciplinary research

Cybersecurity technologies should be merged with different

technologies and make it a multidisciplinary field of research:

there and many advantages in doing so. Cybersecurity

research along with fundamental research, including a

significant contribution from computer science, ML, and

psychology, should be done together. These multidisciplinary

modes of research would enhance the quality by increasing

the reliability and development of efficient methods against

numerous security threats and attacks.”

6. Conclusions and Future work

Cybersecurity is a real research topic wherein real problems

are encounters that reflect directly to common people and

some government authorities. Malware is threats for mobile

users wherein critical and sensitive information is shared and

downloaded. So, the attackers are targeting mobile devices

in the form of malware attacks. Researchers in the current

time are developing the latest techniques to detect this

malware. In this context, this paper gives and detailed

information about the latest techniques and their outcome.

Machine learning techniques are now implemented almost

all the fields as it is showing promising results. So, in this

paper, machine learning techniques that are applied to detect

malware are discussed. The datasets on which the

experimentation is conducted are discussed and listed to help

future researchers. The traditional machine learning

techniques like Decision tree, Support vector machine are

discussed with the feature extraction techniques and their

details, followed by the latest convolution neural network

techniques. Finally, a list of open challenges is discussed,

and future directions are suggested to help a potential

researcher to follow.

In this work, various machine learning techniques are

discussed, which were implemented for detecting malware

attacks. But, some of the methods which are discussed here

did not disclose the results, and some of the techniques do

not discuss the features, and some of them do not show the

actual dataset used for the experimentation.

As some of the discussed technique lack few important

information. In the future, this information could be explored

further to draft a complete report about the available datasets

and their details of acquisitions, and complete information

about feature extraction techniques in a systematic format

and then categized based on the similarity of extraction and

feature details. Then machine learning techniques could be

explored more for recent updates and possible extra

information for the readers to get the most recent

information.

7. Acknowledgement

The author would like to thank SAUDI ARAMCO

Cybersecurity Chair for funding this project.

References

[1] M. Daraghmeh, I. Al Ridhawi, M. Aloqaily, Y. Jararweh

and A. Agarwal, “A power management approach to

reduce energy consumption for edge computing servers,”

in Proc. FMEC, Rome, Italy, pp. 259–264, 2019.

[2] F. A. Turjman, H. Zahmatkesh and L. Mostarda,

“Quantifying uncertainty in internet of medical things and

big-data services using intelligence and deep learning,”

IEEE Access, vol. 7, pp. 115749–115759, 2019.

[3] M. N. Alenezi, H. Alabdulrazzaq, A. A. Alshaher, and M.

M. Alkharang. "Evolution of Malware Threats and

Techniques: A Review," International Journal of

Communication Networks and Information Security, vol.

12, no. 3, pp. 326-337, 2020.

[4] M. Nassiri, H. HaddadPajouh, A. Dehghantanha, H.

Karimipour, R. M. Parizi and G. Srivastava, “Malware

elimination impact on dynamic analysis: An experimental

machine learning approach,” in Handbook of Big Data

Privacy, Springer, pp. 359–370, 2020.

[5] B. D. Deebak, F. A. Turjman, M. Aloqaily and O. Alfandi,

“An authentic-based privacy preservation protocol for

smart e-healthcare systems in IoT,” IEEE Access, vol. 7,

pp. 135632–135649, 2019.

[6] Z. Lv, W. Mazurczyk, S. Wendzel and H. Song, “Guest

Editorial: Recent Advances in Cyber-Physical Security in

Industrial Environments,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 12, pp. 6468–6471, 2019.

[7] “Juniper, ‘Juniper Networks 2011 Mobile Threats Report,’

Juniper Networks Mobile Threat Center (MTC), 2012.”

[8] I. Martin, J. A. Hernández and S. de los Santos, “Machine-

Learning based analysis and classification of Android

malware signatures,” Future Generation Computer

Systems, vol. 97, no. 1, pp. 295–305, 2019.

[9] K. Xu, Y. Li, R. H. Deng and K. Chen, “Deeprefiner:

Multi-layer android malware detection system applying

deep neural networks,” in Proc. EuroS&P, London, U.K,

pp. 473–487, 2018.

[10] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A.

Khan et al., “Static malware detection and attribution in

android byte-code through an end-to-end deep system,”

Future Generation Computer Systems, vol. 102, no. 3, pp.

112–126, 2020.

[11] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han and X.

Zhang, “Exploring permission-induced risk in android

applications for malicious application detection,” IEEE

Transactions on Information Forensics and Security, vol.

9, no. 11, pp. 1869–1882, 2014.

[12] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur and A.

Bharmal, “AndroSimilar: robust statistical feature

signature for Android malware detection,” in Proc. SIN,

Aksaray Turkey, pp. 152–159, 2013.

[13] M. Y. Wong and D. Lie, “IntelliDroid: A Targeted Input

Generator for the Dynamic Analysis of Android

Malware.,” in Proc. NDSS, San Diego, California, USA,

pp. 21–24, 2016.

[14] H. Cai, N. Meng, B. Ryder and D. Yao, “Droidcat:

Effective android malware detection and categorization via

app-level profiling,” IEEE Transactions on Information

Forensics and Security, vol. 14, no. 6, pp. 1455–1470,

2018.

[15] S. Chen, M. Xue, Z. Tang, L. Xu and H. Zhu,

“Stormdroid: A streaminglized machine learning-based

system for detecting android malware,” in Proc. ASIS

CCS, Xi'an China, pp. 377–388, 2016.

[16] M. Lindorfer, M. Neugschwandtner and C. Platzer,

“Marvin: Efficient and comprehensive mobile app

classification through static and dynamic analysis,” in

Proc. COMPSAC, Taichung, Taiwan, pp. 422–433, 2015.

[17] P. Vinod, A. Zemmari and M. Conti, “A machine learning

based approach to detect malicious android apps using

discriminant system calls,” Future Generation Computer

Systems, vol. 94, no. 5, pp. 333–350, 2019.

[18] D. Ucci, L. Aniello and R. Baldoni, “Survey of machine

learning techniques for malware analysis,” Computers &

Security, vol. 81, no. 6, pp. 123–147, 2019.

[19] P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, “A novel

dynamic Android malware detection system with

ensemble learning,” IEEE Access, vol. 6, pp. 30996–

31011, 2018.

266
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

[20] D. Kim, J. Kim and S. Kim, “A malicious application

detection framework using automatic feature extraction

tool on android market,” In Proc. ICCSIE, Xian, China,

2013.

[21] I. Burguera, U. Zurutuza and S. Nadjm-Tehrani,

“Crowdroid: behavior-based malware detection system for

android,” in Proc. SPAM, Chicago Illinois USA, pp. 15–

26, 2011.

[22] G. Dini, F. Martinelli, A. Saracino and D. Sgandurra,

“MADAM: a multi-level anomaly detector for android

malware,” in Proc. MMM-ACNS, St. Petersburg, Russia,

pp. 240–253, 2012.

[23] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer and Y.

Weiss, “‘Andromaly’: a behavioral malware detection

framework for android devices,” Journal of Intelligent

Information Systems, vol. 38, no. 1, pp. 161–190, 2012.

[24] W. Z. Zarni Aung, “Permission-based android malware

detection,” International Journal of Scientific &

Technology Research, vol. 2, no. 3, pp. 228–234, 2013.

[25] B. Sanjaa and E. Chuluun, “Malware detection using

linear SVM,” in Ifost, vol. 2, pp. 136–138, 2013.

[26] W. Li, J. Ge and G. Dai, “Detecting malware for android

platform: An svm-based approach,” in Proc. CSCloud,

New York, NY, USA, pp. 464–469, 2015.

[27] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K.

Rieck and C. Siemens, “Drebin: Effective and explainable

detection of android malware in your pocket.,” in Ndss,

vol. 14, pp. 23–26, 2014.

[28] A. Makandar and A. Patrot, “Malware analysis and

classification using artificial neural network,” in Proc. I-

TACT-15, Bangalore, India, pp. 1–6, 2015.

[29] Y. Fan, Y. Ye and L. Chen, “Malicious sequential pattern

mining for automatic malware detection,” Expert Systems

with Applications, vol. 52, pp. 16–25, 2016.

[30] H. Fereidooni, M. Conti, D. Yao and A. Sperduti,

“ANASTASIA: ANdroid mAlware detection using STatic

analySIs of Applications,” in Proc. NTMS, Larnaca,

Cyprus, pp. 1–5, 2016.

[31] Y. Aafer, W. Du and H. Yin, “Droidapiminer: Mining api-

level features for robust malware detection in android,” in

Proc. ICST, Sydney, NSW, Australia, pp. 86–103, 2013.

[32] M. Zhang, Y. Duan, H. Yin and Z. Zhao, “Semantics-

aware android malware classification using weighted

contextual api dependency graphs,” in Proc. ACM

SIGSAC, Scottsdale Arizona USA, pp. 1105–1116, 2014.

[33] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De

Cristofaro, G. Ross and G. Stringhini, “Mamadroid:

Detecting android malware by building markov chains of

behavioral models,” arXiv Prepr. arXiv1612.04433, 2016.

[34] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee and K. P. Wu,

“Droidmat: Android malware detection through manifest

and api calls tracing,” in Proc. ASIAJCIS, Washington,

D.C. USA, pp. 62–69, 2012.

[35] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y.

Feng and K. Sakurai, “Lightweight classification of IoT

malware based on image recognition,” in Proc.

COMPSAC, Tokyo, Japan, pp. 664–669, 2018.

[36] S. Yue, “Imbalanced malware images classification: a

CNN based approach,” arXiv preprint arXiv:1708.08042,

vol. 1708, pp. 1–5, 2017.

[37] S. Poudyal, K. P. Subedi and D. Dasgupta, “A framework

for analyzing ransomware using machine learning,” in

Proc. IEEE SSCI, Bengaluru, India, pp. 1692–1699, 2018.

[38] S. Poudyal, D. Dasgupta, Z. Akhtar and K. Gupta, “A

multi-level ransomware detection framework using natural

language processing and machine learning,” in Proc.

MALCON, Fajardo, Puerto Rico, pp. 1-6, 2019.

[39] S. Poudyal, Z. Akhtar, D. Dasgupta and K. D. Gupta,

“Malware analytics: review of data mining, machine

learning and big data perspectives,” in Proc. SSCI,

Xiamen, China, pp. 649–656, 2019.

[40] G. E. Dahl, J. W. Stokes, L. Deng and D. Yu, “Large-scale

malware classification using random projections and

neural networks,” in Proc. ICASSP, Vancouver, Canada,

pp. 3422–3426, 2013.

[41] J. Saxe and K. Berlin, “Deep neural network based

malware detection using two dimensional binary program

features,” in Proc. MALWARE, Fajardo, PR, USA, pp.

11–20, 2015.

[42] W. Huang and J. W. Stokes, “MtNet: a multi-task neural

network for dynamic malware classification,” in Proc.

DIMVA, Sebastian, Spain, pp. 399–418, 2016.

[43] B. Cakir and E. Dogdu, “Malware classification using

deep learning methods,” in Proc. ACMSE, Kentucky,

USA, pp. 1–5, 2018.

[44] P. Zegzhda, D. Zegzhda, E. Pavlenko and G. Ignatev,

“Applying deep learning techniques for Android malware

detection,” in Proc. ICPS, Cardiff, U. K, pp. 1–8, 2018.

[45] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y.

Park and H. Jeon, “CNN-based android malware

detection,” in Proc. ICSSA, Altoona, PA, USA, pp. 60–65,

2017.

[46] T. H. D. Huang and H. Y. Kao, “R2-d2: Color-inspired

convolutional neural network (cnn)-based android

malware detections,” in Proc. IEEE BigData, Seattle,

USA, pp. 2633–2642, 2018.

[47] L. Shiqi, T. Shengwei, Y. Long, Y. Jiong and S. Hua,

“Android malicious code Classification using Deep Belief

Network,” KSII Transactions on Internet & Information

Systems, vol. 12, no. 1, 2018.

[48] Y. S. Yen and H. M. Sun, “An Android mutation malware

detection based on deep learning using visualization of

importance from codes,” Microelectronics Reliability, vol.

93, pp. 109–114, 2019.

[49] Z. Xu, K. Ren, S. Qin and F. Craciun, “CDGDroid:

Android malware detection based on deep learning using

CFG and DFG,” in Proc. ICFEM, Gold Coast, Australia,

pp. 177–193, 2018.

[50] A. Pektas and T. Acarman, “Deep learning for effective

Android malware detection using API call graph

embeddings,” Soft Computing, vol. 24, no. 2, pp. 1027–

1043, 2020.

[51] L. K. Yan and H. Yin, “Droidscope: Seamlessly

reconstructing the {OS} and dalvik semantic views for

dynamic android malware analysis,” in Proc. Security'12,

Washington, USA, pp. 569–584, 2012.

[52] R. Vinayakumar, M. Alazab, K. P. Soman, P.

Poornachandran and S. Venkatraman, “Robust intelligent

malware detection using deep learning,” IEEE Access, vol.

7, pp. 46717–46738, 2019.

[53] E. B. Karbab, M. Debbabi, A. Derhab and D. Mouheb,

“MalDozer: Automatic framework for android malware

detection using deep learning,” Digital Investigation, vol.

24, pp. S48--S59, 2018.

[54] M. K. Khan, M. Zakariah, H. Malik, and K. K. R. Choo.

"A novel audio forensic data-set for digital multimedia

forensics." Australian Journal of Forensic Sciences, vol.

50, no. 5, pp. 525-542, 2018.

[55] “https://contagiominidump.blogspot.ca.”

[56] T. Kim, B. Kang, M. Rho, S. Sezer and E. G. Im, “A

multimodal deep learning method for android malware

detection using various features,” IEEE Transactions on

Information Forensics and Security, vol. 14, no. 3, pp.

773–788, 2018.

[57] “VirusTotal. Accessed: Sep. 2017. [Online]. Available:

https://www. virustotal.com/ko.”

[58] “VirusShare. Accessed: Sep. 2017. [Online]. Available:

https://virusshare. com.”

[59] “Mal-Genome Project. Accessed: Sep. 2017. [Online].

Available: http:// www.Malgenomeproject.org.”

[60] “Google Play Store. Accessed: Sep. 2017. [Online].

Available: https:// play.google.com/store.”

267
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

[61] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, “DL-Droid:

Deep learning based android malware detection using

real devices,” Computers & Security, vol. 89, pp.

101663, 2020.

[62] “McAfee Labs Threats Predictions Report | McAfee Labs.”

[63] Y. Zhou and X. Jiang, “Dissecting android malware:

Characterization and evolution,” in Proc. IEEE SP, San

Francisco, USA, pp. 95–109, 2012.

[64] Y. Li, J. Jang, X. Hu and X. Ou, “Android malware

clustering through malicious payload mining,” in Proc.

RAID, Atlanta, GA, USA, pp. 192–214, 2017.

[65] F. Wei, Y. Li, S. Roy, X. Ou and W. Zhou, “Deep ground

truth analysis of current android malware,” in Proc.

DIMVA, Bonn, Germany, pp. 252–276, 2017.

[66] D. Maiorca, D. Ariu, I. Corona, M. Aresu and G.

Giacinto, “Stealth attacks: An extended insight into the

obfuscation effects on android malware,” Computers &

Security, vol. 51, pp. 16–31, 2015.

[67] A. F. A. Kadir, N. Stakhanova and A. A. Ghorbani,

“Android botnets: What urls are telling us,” in Proc.

NSS, Xi’an, China, pp. 78–91, 2015.

[68] L. Li et al., “Androzoo++: Collecting millions of android

apps and their metadata for the research community,”

arXiv Prepr. arXiv1709.05281, 2017.

[69] T. Hastie, R. Tibshirani and J. Friedman, The elements of

statistical learning: data mining, inference, and

prediction. Springer Science & Business Media, 2009.

[70] A. L. Buczak and E. Guven, “A survey of data mining

and machine learning methods for cyber security

intrusion detection,” IEEE Communications surveys &

tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[71] “Ganegedara T. Intuitive guide to convolution neural

networks. Towards data science. Available at:

https://towards datascience.com/light-on-math-machine-

learning-intuitiveguide-to-convolution-neural-networks-

e3f054dd5daa (2020, accessed 28 July 2020).”

268
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

Table 1. Classical techniques for detecting malware

Table 2. Artificial neural network techniques for malware detection

Table 3. Convolution neural network techniques for malware detection

Table 4. Datasets for malware detecting the tasks

Dataset No. of

Malware

No. of

Benign

Total

Malgenome 1258 37627 38885

Drebin 5555 37627 43182

MalDozer 20089 37627 57716

All 33066 37627 70693

Table 5. Datasets for attributes of task

Dataset No. of

Malware

No. of

Family

Malgenome 985 9

Drebin 4661 20

MalDozer 20089 32

S. No Feature Techniques Results Ref

1. .apk Android executable

files

J48 Decision Tree classification 82.7 %

accuracy

[20]

2. ten genuine malware

samples

1-Nearest Neighbor classifier 93% of

accuracy

[22]

3. 88 features with unrooted

device

k-Means, Logistic Regression, Histograms,

Decision Tree, Bayesian Networks and

Naive Bayes

80% of

accuracy

[23]

4. 500 Android .apk files Random Forest, J48 Decision Tree,

and Classification and Regression Tree

(CART)

NA [24]

5. NA SVM algorithm 74-83% of

accuracy

[25]

S. No Feature Dataset Techniques Results Ref

1. Malware is converted

into one-channel gray-

scale image

NA CNN 94.0% [35]

2. word2vec technique NA gradient boosting

algorithm

96% [43]

3. API call sequence into

RGB images

7192 benign and 24461

malicious samples

CNN 93% [44]

4. static method to extract

the features

2000 malicious and

500 benign samples

CNN 93% [45]

5. converted the .dex files

into RGB color codes

2 million benign and

malicious Android

application

CNN 98.4225% [46]

S. No Feature Dataset Techniques Results Ref

1. Global wavelet

transforms

Mahenur Artificial Neural Network 96.35% [28]

2. Instruction

sequence

8847 malicious

files and 1460

benign files

All-Nearest-Neighbor

(ANN) classifier

97.3% [29]

3. Package-level

API calls

 NA Artificial Neural Network 99% of the accuracy [31]

4. Semantic features NA Artificial Neural Network capable of effectively

fighting against

malware

 [32]

5. Markov chain NA Artificial Neural Network classify and detect the

malware

 [33]

269
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

Table 6. Different datasets available

Table 7. Comparison of different techniques

S.

No

Dataset Year Benign

ware

Malwa

re

Ref

1. Android

Malware

Genome

Project

2010 863 1260 [63]

2. DREBIN 2010 123453 5560 [27]

3. Contagio 2011 - 1150

4. Android

Malware

Dataset

2010 - 24553 [64]

[15]

5. VirusShare 2016 - 65536 [7]

6. Android

PRA Gaurd

Dataset

2015 - 10479 [16]

7. Marvin 2015 50501 7406 [17]

8. ISCX

Android

Botnet

2014 - 1929 [18]

9. Andro Zoo 2018 25000 - [68]

Methods Domain Advantages Disadvantages

DT A rule-based tree-structured classification

model trained based on information gain

of all features in training data

Computational cost is less

and easy to implement.

We need to save all the

information of the trained model.

Space complexity is high.

SVM It aims to find separating

hyperplane in the feature space

among its classes so that

distance between the

hyperplane and its nearest data

Suitable for small sample size

but large feature dimensions

Selecting optimal kernel size (k-

value) is difficult

ANN It consists of one or more hidden layers

between the input and output layer. Stores

input data information as weights in the

hidden layer using the backpropagation

algorithm

Suitable for pattern

recognition problem with

high accuracy

Computational complexity is high

compared to other algorithms

CNN

The convolution layer of CNN extracts

features from training data in a generative

fashion using several hidden layers and a

pooling layer that pulls that information to

predict output

Very useful for image

classification and pattern

recognition

Computationally complex.

Performance degrades with low

sample size

270
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 13, No. 2, August 2021

Table 8. Future directions and open challenges

Figure 5. Convolution Neural Network

S.

No

Domain Open Challenges Future Directions and Recommendations

1. Evaluating the

performance

 Traditional performance metrics

are failing for new attacks, domains

and environments

• Developing new tools.

• Listing the commo criteria.

• Establishing open online system for new

researchers to contribute in this cause.

2. Designing the

Security

Cybersecurity techniques proposed

are failing to handle new threats

and degrading the performance

when tested with different kind of

threats

• Exploring wide range of attacks.

• Proposing mathematical security models

3. Machine learning

techniques and its

advancements

Traditional ML techniques are

failing since the attackers are

fooling the models and making it to

overfit.

• Develop Advanced Machine Learning

techniques with the capability of robust

feature extraction techniques and

handling overfitting issue

4. Deep learning

model’s robustness

The linear nature of DNN-classifier

is the main source of the issue.
• Develop more robust DNN models

5. Preserving the

privacy aspects

These techniques could not handle

the privacy issued related to

datasets as the privacy of the

datasets used in the systems are

getting leaks

• More research is needing to save the

privacy-preserving issue and not

effecting the accuracy of the proposed

method

6. Dataset issues They are lacking in big sizes and

also with rich features like fully

labelled, structured and complete

with diversity and details about the

attacks, its domains

• Develop more robust dataset to handle

real cybersecurity issues.

