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Abstract: In the recent times Cybersecurity is the hot research 

topic because of its sensitivity. Especially at the times of digital 

world where everything is now transformed into digital medium. 

All the critical transactions are being carried out online with 

internet applications. Malware is an important issue which has the 

capability of stealing the privacy and funds from an ordinary person 

who is doing sensitive transactions through his mobile device. 

Researchers in the current time are striving to develop efficient 

techniques to detect these kinds of attacks. Not only individuals are 

getting offended even the governments are getting effected by these 

kinds of attacks and losing big amount of funds. In this work 

various Artificial intelligent and machine learning techniques are 

discussed which were implements for the detection of malware. 

Traditional machine learning techniques like Decision tree, K-

Nearest Neighbor and Support vector machine and further to 

advanced machine learning techniques like Artificial neural 

network and convolution neural network are discussed. Among the 

discussed techniques, the work got the highest accuracy is 99% 

followed by 98.422%, 97.3% and 96% where the authors have 

implemented package-level API calls as feature, followed by 

advanced classification technique. Also, dataset details are 

discussed and listed which were used for the experimentation of 

malware detection, among the many dataset DREBIN had the most 

significant number of samples with 123453 Benign samples and 

5560 Malware samples. Finally, open challenges are listed, and the 

future directions are highlighted which would encourage a new 

researcher to adopt this field of research and solve these open 

challenges with the help of future direction details provided in this 

paper. The paper is concluded with the limitation and conclusion 

section. 
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1. Introduction 
 

Technologies related to smart cities are combined with 

Android OS applications as these applications are supporting 

the smart city requirements. Android is playing an essential 

role in various fields in the current development phase of the 

earth. These applications are helping different sectors like 

competent government, intelligent transportation, and other 

energy resources management [1][2]. The facilities provided 

by Android are allowing developers to utilize them in their 

applications. Still, at the same time, it is acting as a source to 

attackers like malware which is targeting the Android to 

cause serious threats which are leading to financial loss, 

leakage of critical data, and security concerns for nations [3]. 

Based on the excellent features offered by Android and 

flexible to adopt technologies, it has captured as much as 

80% of smartphone users. But, at the same time, it has 

become a significant source for malware attacks [4]. Based 

on this report [5], as many as four million fresh malicious 

applications were developed during 2019. The average time 

in which the hackers create an infected APP is around every 

eight seconds. This statistic of malware attacks and the 

development of malicious applications are alarming and 

becoming a source of a significant threat to cyber-security. 

So, well-managed and efficient detection methods are need 

of the hour for Android malware, and it needs urgent 

attention from computer professionals to develop tools to 

detect these attacks significantly to improve mobile security 

[6]. Another study conducted by Juniper Networks Mobile 

Threat Centre (MTC) [7] has reported as many as 155 % of 

the increase in mobile malware attacks in 2011 compared to 

previous years in almost all the platforms. Also, with regards 

to Android malware, there is an increase of about 3000 % 

during 2011. Based on these statistics and numbers, a 

significant increase in malware was reported in third-party 

Android applications enjoying the same privileges as an 

actual application available in the Google Play Store. The 

reason for this increase in the numbers is, in the past, any 

Android developer had the privilege to develop an 

application and post them immediately at the official 

Android Market without screening the application for the 

presence of malware and inspecting the application. Another 

reason for the drastic increase in malware is due to the 

blending of Google Android dominant market and 

smartphones and their share, which was around 68.8% 

during 2012, and the absence of efficient security control 

methodology to control the applications which are being 

posted on Android application markets. In a recent study, the 

reports state that as many as 700,000 apps have crossed 15 

billion downloads in the Google Play Store. As these 

numbers are increasing so also the money stealing malware 

is also growing based on the security firm Fortinet which 

was done during 2006-2011. 

Malware detection methods are classified into two categories 

based on the process by which they are detected, like 

signature-based method or behavior-based method. In the 

current scenario, signature-based malware detection is 

working fine for the previously detected malware, which 

was done with the help of anti-malware vendors. But the 

polymorphic malware is not yet detected, which can change 

the signatures. Also, new malware which is expected to 

occur in the future cannot be detected by these traditional 

methodologies. So, the best solution that is recommended by 

researchers is utilizing the heuristic analysis along with the 

machine learning techniques that could provide better 

solutions with higher efficiency for detection. As practice 

has shown, the traditional approach to the field of malware 

detection, which is based on signature analysis [8], is not 

acceptable for detecting unknown computer viruses.  
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In the current times, mobile security researchers are working 

hard to counter the risk of malicious Apps. They are 

proposing various defense approaches especially novel 

methodologies to detect malware. These methodologies are 

based on machine learning techniques which are proving to 

be very efficient in various research fields in solving their 

problems. Further to machine learning, they are also 

implementing advanced techniques like deep learning, which 

is attracting security researchers of multiple areas to 

implement this technique [9] [10]. The process of utilizing 

machine learning techniques for the detection of state-of-the-

art malware attacks could be generally classified into three 

categories: Static feature [11] [12], dynamic feature [13] 

[14], and mixed feature [15] [16]. The most critical aspect of 

machine learning to get good accuracy in the result is feature 

selection. It is also used during training the model. The more 

accurate the features are, the more robust the model is, and 

the more would be the classification accuracy [17] [18] [19]. 

The feature selection is a crucial step in machine learning to 

enhance the performance of the model and also to make a 

robust model all the irrelevant features and redundant 

features should be removed, and sophisticated features 

which play a significant role should be selected. This process 

is time-consuming as the result of machine learning depends 

on this step. The outline of this paper is as shown in Fig. 1. 

The significant contributions of this study are as follows: 

• Databases related to malware detection are listed in the 

paper along with the methodologies and techniques applied 

on these datasets to detect malware. 

• The author has collected the relevant techniques for the 

detection of malware. 

• The techniques focused in this study are tradition 

classification, Artificial neural network and Convolution 

neural network 

• Relevant and latest features extraction techniques 

applied for the classification of malware are discussed with 

their results. 

• The author has listed the current open challenges for 

detecting malware. 

• The author has listed future directions for a potential 

researcher to motivate and provide enough information to 

take this research work further by solving the open 

challenges.  

• The author tried to represent all the essential 

information into tabular format with the reference number. 
  

 
 

Figure 1. General overview of the paper 
 

The rest of the paper is as follows: section 1 gives the 

complete introduction about the research field, section 2 

discusses the primary classification techniques with their 

technical details, section 3 provides the database with more 

information which is applied for malware detection, and the 

researchers who used these databases for experimentation, 

section 4 gives the detail description of researchers who 

applied various classification technique to detect malware,  

section 5 discusses the open challenges and future scope of 

the work, section 6 has the conclusion section, followed by 

section 7 as limitations and 8 with future scope, followed by 

the reference list. 

2. Related Work 

Machine learning techniques are currently applied in various 

applications. So, Malware detection is no exception. It is 

playing an essential role in detecting malware more 

efficiently compared to traditional techniques. In this 

section, malware detection based on various machine 

learning techniques like Support vector machine, Artificial 

neural network, and Convolution neural network is 

discussed with the features extraction details and the results 

achieved.  
 

2.1 Malware detection based on classical techniques 

The authors in this work [20] introduced a methodology that 

has the capability of extracting the features automatically. 

The system was developed using JavaScript, and the 

detection is static. This system takes the input as .apk 

Android executable files. The following are the features 

extracted by the system: API count for each method related 

to phone management and API code of  relation with phone 

control and API related to privacy information. Further, after 

the extraction of features, the author has used the J48 

Decision Tree classification method for classifying using the 

Weka library. The authors followed 10-fold cross-validation. 

The ultimate results of this methodology are 82.7 % 

accuracy in classifying the malware, and the false-negative 

rate is 17.3%.  

In another work [21], a rooted Android device was used with 

Linux-based tools to capture the calls received on the 

system. The feature vectors were collected by capturing the 

number from each call received by the system with the help 

of the Android application. The following were the most 

relevant system calls captured based on the experimentation: 

read (), open(), access(), and chow(). To distinguish between 

a benign and malware version, the authors applied a 2-means 

clustering algorithm.  

The authors in this work [22] designed a real-time anomaly 

detector. The technique is based on a 1-Nearest Neighbor 

classifier. The total number of features extracted was 13. 

Two features were examined at the user's end depending on 

the phone's active or inactive position and based on the SMS 

which are sent while the phone was inactive. The 

methodology was based on two models, first to capture the 

features at every 1-second interval, and the other is captured 

at every one-minute interval. The system was evaluated for 

ten genuine malware samples, and the authors claim to 

detect as much as 93% of malware detected correctly, while 

the false-positive rate was 0.0001. 

In another work [23], the authors worked on 88 features with 

an unrooted device. These features were experimented on 

two machines which were real and among two different 

users. The testing was done with 16 benign and 4 self-made 

malware. The features were monitored by the model at an 

interval for every 2 seconds. The following are the classifiers 

used by the authors k-Means, Logistic Regression, 

Histograms, Decision Tree, Bayesian Networks, and Naive 

Bayes. Apart from the classifiers, the authors also applied 
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filters for the selection of relevant features by comparing 

them with Chi-Square, Fisher Score, and Information Gain. 

Based on the experimentation, the authors claim 80% 

detection of malware with the available 88 features. The 

false-positive rate was 0.12. 

The authors in this work [24] also did a comparative analysis 

between different classification algorithms. They used 500 

Android .apk files to make the classification and processing. 

In this work, 160 permissions were used as feature vectors. 

The comparison was made among Random Forest, J48 

Decision Tree, and Classification and Regression Tree 

(CART) algorithms. But unfortunately, the results were not 

claimed.  

A malware detection study was conducted by [26] for 

Android platform. The classification technique applied here 

is SVM, and the features used for classification were a 

combination of vulnerable API calls and risky permission of 

calls. Extensive experimentations were carried to validate 

the proposed methodology which can detect the malware and 

further identify the malicious Android applications more 

efficiently. The dataset used for this experiment was taken 

from [27]. The experiments were also conducted on datasets 

downloaded from benign apps from Google play to validate 

and do some comparative analysis.  

Similarly, in this study [25] data mining technique is applied 

to detect the malicious software and the authors applied 

experimentation and investigation to detect the malware by 

applying the SVM algorithm. The purpose of this work was 

to detect the malware rate for the SVM method. The result of 

this study after applying SVM algorithm was the probability 

of detecting around 74-83% malware. The detection is done 

by the models developed with SVM and using enough 

datasets of malicious software’s. Related Techniques are 

listed in table 1.  
 

2.2 Malware detection based on artificial neural 

networks 
 

The authors in this work [28], investigate the behavior of 

malicious data. The experimentation was conducted on 

features extracted from Global wavelet transform and GIST. 

The dataset used in this experimentation was Mahenur, it 

consists of 3131 samples of binaries with 24 unique malware 

families. Feedforward Artificial Neural Network technique 

was applied for the experiment. The authors claim up to 

96.35% of accuracy in detecting and classifying the 

malware.   

In this work [29], the authors have applied a sequence 

mining algorithm for the detection of malware patterns. The 

feature used in this experimentation is the instruction 

sequence extracted from the sample files. Then, All-Nearest-

Neighbor (ANN) classifier is applied to detect the malware 

based on the features extracted in the patterns form. The 

framework was based on pattern mining methodology along 

with ANN classifier.  The proposed method is then evaluated 

by the real and unseen malware samples. The results were 

outstanding; wherein this method outperformed all the other 

alternate data mining approaches. The dataset used to do the 

experimentation was collected from Windows PE samples 

which were 10,307 among which 8847 were malicious files, 

and 1460 were benign files. 

The authors in this work [30] have applied various classical 

machine learning classifiers also deep neural network and 

proposed a system to detect malware attacks on Android 

systems. The significant contribution was extracting the 

relevant features, which are also sensitive. They have 

designed and developed a static analysis tool for the feature 

extraction step. The outcome of this approach is around 

97.3% of accuracy for the true positive rate.   

In another work [31] for malware detection, the authors here 

have applied a different approach wherein the sensitive 

packages which cause the malware attacks are detected. 

These are called package-level API calls, which are found in 

common inside malicious apps. This approach is also 

capable of extracting another package level that gives the 

feature details for a large set of Android malware. This 

technique gave good results with around 99% of accuracy 

and a false positive rate of 2.2%.  

In another work [27], the significant contribution was 

working on extracting features. The features were extracted 

from the manifest file and from the source code of the 

application. These features were then trained with an SVM 

classifier. The classifier was able to classify and detect 

malware based on the features provided, and further, it 

achieved good accuracy and performance for the detection of 

malware.   

The authors in this work applied a different approach to 

detect the malware [32], semantic features were extracted 

from the weighted contextual API. These APIs were used to 

draw dependency graphs further to classify them as Android 

malware or not. The proposed system is capable of 

effectively fighting against malware.   

Another feature extraction technique was proposed by [33], 

to detect malware. Here the authors have applied the Markov 

chain to the sequence of API calls and then extract the 

relevant features. After removing these features, then 

traditional classification methodology is used to classify and 

detect the malware.  

In this work [34], features were extracted from permissions 

and API calls. These features were extracted from the files 

stored in the Android manifest file. These extracted features 

were then applied for classification using the K-nearest 

neighbor algorithm. These classifiers are used to classify 

benign and malware apps. The results were further improved 

after applying the K-means algorithm. The results are 

summaries as shown in Tab. 2.  
  

2.3 Malware detection based on convolution neural 

network 
 

In recent times CNN is widely used in many applications 

because of its capability to handle big datasets and pattern-

matching tasks. The latest application of CNN is on IoT and 

the usage of the internet by the common users. These 

internet facilities have attracted many users and collected 

Hugh amount of data and at the same time opened gates for 

numerous vulnerabilities for attackers and make cyber-

attacks. There is no robust security solution to handle these 

kinds of attacks and detection methodologies for the 

developing IoT environments, which has invited many 

developers and researchers to find efficient solutions for 

numerous DDoS attacks. So, CNN plays a vital role in this 

aspect by detecting the possible DDoS malware attacks for 

large datasets using CNN-based algorithms. The following 

are few works done by the researcher for detecting malware 

using CNN algorithms. 

In this work [35], the authors have proposed a methodology 

to detect malware. The approach followed is a light-weight 

malware detection, wherein initially, the malware is 

converted into a one-channel gray-scale image. These 
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images are then used to extract features that ultimately 

represent light-weight CNN to detect the malware and its 

family. The outcome of this methodology is the accuracy of 

94.0% under the two-class classification, while the accuracy 

achieved was 81.8% for the three-class classification. These 

results were then compared with [36] with a similar 

methodology for the classification of malware. The 

difference among these two methodologies was the 

difference in the number of  

layers as [36] used very deep network, and the pre-

processing step was very complex.    

Another similar work is conducted by [35], wherein the 

authors took raw features for classification. This method can 

detect only two types of malware very effectively because of 

the simplicity of the classification method.  

This methodology is very suitable for IoT devices wherein 

only the first layer is used for malware detection. Some other 

works also represent similar kinds of contributions where a 

great deal of research is done based on neural network [37] 

[38] [39]. Similar work was done by [40], by utilizing CNN 

with a large-scale methodology. This technique was 

developed to classify malware based on random projections. 

However, the accuracy did not improve even after increasing 

the number of hidden layers. In another work [41], the 

authors applied feed-forward DNNs for malware detection 

and classification using static methodology. But, they could 

not provide significant results and improvement inaccuracy. 

Multi-tasking approach was introduced by [42], wherein the 

authors applied multi-tasking learning with the combination 

of feedforward and neural network. The number of layers 

utilized in this approach was four hidden layers, but the 

results were not discussed very clearly.   

In recent types, the authors in this work [43] have introduced 

a feature extraction technique (word2vec). These features 

were extracted based on DL and represent more like 

malware which is based on opcodes. The proposed 

methodology included a gradient boosting algorithm and k-

fold cross-validation to assess and evaluate the 

methodology's performance. The dataset used in this 

experimentation was minimal, and the authors claim a 96% 

accuracy which seems to be better than other similar works.  

In this work [44], the authors introduced a new approach of 

converting the API call sequence into RGB images. This 

conversion is done by mapping the corresponding protection 

levels depending on the permissions required for the API 

call. Then these API call sequences, along with the 

protection level, were converted into RGB images. The 

authors have used CNN and developed a model to detect the 

malware. The accuracy produced by this methodology was 

around 93%. The dataset used for experimentation was 7192 

benign and 24461 malicious samples.  

In another work [45], a similar strategy was applied for 

feature extraction. Here the authors have utilized the static 

method to extract the features. The authors have extracted 

138 features into four different categories and then converted 

these permissions features into 12x12 PNG images. Then, 

CNN is applied to train the model and detect the malware. 

For the experimentation 2500, Android applications were 

used, and the dataset had 2000 malicious and 500 benign 

samples. The results achieved were 93% accuracy in 

detecting the malware.  

Similarly, in this work [46], the authors also converted the 

.dex files into RGB color codes and then into color images. 

These images were at a fixed size. Then the images were put 

into CNN as inputs for the extraction of automatic features 

and further to the training process. Here the dataset used for 

experimentation was 2 million benign and malicious 

Android applications. The outcome if this experimentation 

was accuracy of 98.4225% of malware detection.  

Another methodology to extract features was introduced in 

[47], where texture fingerprints were applied to remove the 

malware features. The texture image information extracted 

from the sample applications codes was utilized in this 

methodology. To detect the Android malware, these codes 

were mapped with the uncompressed gray value, and further, 

they were combined with the API. These combinations of 

code and API call features led to the detection of malware. 

The technique applied in this methodology is a deep belief 

network. The dataset used contained 6956 samples and the 

proposed model yield 95.6% of malware detection accuracy. 

The authors in this work [48], did similar work by 

converting the APK code into images and then applying 

CNN to classify the images and detect the malware. The 

dataset used in this experimentation was 720 benign samples 

and 720 malicious samples. The model got an accuracy of 

92.67% for detecting the malware. In another work [49], the 

semantic graph technique is applied to extract the features 

from the Android application, and then CNN is used to train 

the model. The dataset is collected from various sources like 

Marvin, Drebin, VirusShare, and ContagioDump. This 

methodology got an accuracy of 99% in detecting the 

malware. In another graph-based technique [50], the features 

were extracted from API call graphs and applied the features 

to deep neural network, and the dataset consisted of 33,139 

malicious and 25,000 benign samples. The results got 98.9% 

of accuracy in detecting the malware.   The summary of the 

above-discussed techniques is as shown in Tab. 3. 

In this work [51], a dynamic android malware analysis 

technique is proposed for the detection of possible malware. 

Here the authors have constructed OS-level and Java-level 

semantic views. The system is capable of tracking the 

changes in the files such as threads and processes. It can 

detect the malware through system calls and Dalvik 

instructions. These details are provided for the dynamic 

analysis.  
 

3. Datasets  
 

To effectively evaluate the performance of the classical 

machine learning and deep learning techniques, a large 

dataset is needed with relevant information consisting of 

various types of samples. Unfortunately, there is no such 

dataset available publicly to conduct research in 

cybersecurity and malware detection. The reason for this 

unavailability is the privacy-preserving policies. Since each 

organization has some individual privacy policies, it is 

difficult to collect a large dataset for malware detection. In 

the current times, malware has increased, as statistics show, 

keeping all these growing malware and their families 

together in one place is a difficult task. Although researchers 

are making a significant contribution to this field but still 

their findings are not recognized because of the shortage of a 

single dataset which can accommodate all the required 

samples. 

So, there is a need for such repositories to help the 

researchers to accomplish their tasks more efficiently. There 

are many researchers who could manage to acquire some 

data for processing and detecting the malware, so here are 
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some of the works that have used some available datasets 

and their training and testing details. 

In this work [52], the authors have utilized the publicly 

available dataset named Ember. This dataset consists of both 

malicious and benign files. It has 70,140 benign files and 

69,860 malicious files. These files are used to train the 

model, and the dataset is divided into training and testing 

files. They have divided the dataset as 60% for training and 

40% as testing by applying Scikit-learn. The number of files 

that came under training is 42,140 benign while 41,860 as 

malicious files, while for the testing dataset 28,000 files for 

benign and 28,000 as malicious. 

In another work [53], the authors tried to find the kind of 

malware or to determine the family with which this malware 

belongs. To evaluate the findings, they have utilized the 

dataset in two formats, one set which consists of both the 

benign and malicious files together and in another set only 

malicious files the details are as shown in Tab. 4 and Tab. 5, 

respectively. The authors tried to find whether a given app is 

malicious or not? And look for the most relevant attribute 

which can help in determining the family of the detected 

malware. The experiments were conducted, and the results 

were evaluated on two datasets Malgenome [54] and Drebin 

[27]. These two datasets made around 33,000 files combined 

from the two datasets.  The authors also tried to validate 

their findings with another two more datasets acquired from 

virus share.com, Contagio  Minidump [55]. 

The authors in this work [56] did a similar study wherein 

they developed a model to detect whether the downloaded 

application is benign or malware. They have used an online 

malware scanning application called VirusTotal [57] in the 

experimentation stages. To evaluate their work 20,000 

malware samples were used from VirusShare [58] and 1,260 

from the Malgenome project files [59], and additionally 

20,000 files from Google Play App Store [60]; these files 

were selected during the time period of March 2015 till April 

2016.    

It is a fact that most of Android application are non-

malicious. This reality is becoming a challenge for Android 

malware detection, especially for deep learning technique. 

To detect Android malware, large amount of data is needed, 

and these data samples should be constantly updated with 

malicious samples. This would help the deep learning 

models to detect the Android malware. But unfortunately, 

most of the datasets are not much large, which is a challenge 

for deep learning experts. The following are some of the 

datasets available for researchers to use with their technical 

details along with their acquisition dates. 

DREBIN dataset [27], is considered as the commonly used 

dataset for detecting Android malware, it consists of 5,560 

malicious samples while 123,453 benign samples. This 

dataset was collected during August 2010 till October 2012. 

 Another dataset available for malware detection is 

Android Malware Genome Project data [63]. 

 This dataset consists of 1260 samples related to malicious 

while 863 benign samples. The malicious samples are 

grouped into 49 different categories. The dates of its 

acquisition are from August 2010 until October 2011.  

Contagio [64], is another available dataset for malware 

detection. It has around 1150 malicious samples. The 

collection time for this dataset is 2011. 

 In its additional version [65] this dataset consisted of about 

24553 malicious samples. These samples were grouped into 

135 categories related to the malicious family. The 

collection period of these samples where from 2010 till 

2016.   

Another dataset related to malware detection is available, 

called as Android PRAGuard dataset [66].  

The total malicious sample is 10479, which were collected in 

the year 2015. Similarly, the Marvin dataset [16] is also 

available for malware detection. It is a mixed dataset 

consisting of both malicious and benign files together. It has 

10572 malicious samples and 75996 benign samples. The 

collection time is in the year 2015.  Another available 

dataset is ISCX Android Botnet Dataset [67]. It consists of 

1929 malicious samples. These samples are categorized into 

14 different categories. The collection time is from 2010 till 

2014. The summary of the above discussed datasets is as 

shown in Tab. 6. 
 

4. Methodologies 

The technical details related to different machine learning 

techniques with the equations and the details related to the 

equation for SVM, ANN, and CNN. 

4.1 Decision tree 

A Decision Tree is a tree-based classification in structure 

wherein each vertex of the tree is considered as an attribute, 

and the corresponding branch gives the value of that 

attribute [53]. The root is the topmost vertex of the tree, 

which stores the most important information. The difference 

in the entropy is stored on the root of the tree. This root 

stores the critical feature which is used for splitting the 

training data in the most optimal way. The bottom nodes of 

the tree are known as leaves, as shown in Fig. 2. The classes 

are represented as the leaves at the bottom of the tree. The 

process of classification is traversing the decision tree from 

top to bottom of the tree by satisfying the instance needed to 

classify. The equation of information gain used in a DT to 

optimally split instances in a tree-structured manner is given 

below. 
 

 
Here, Gain(P,Q) is the reduction in entropy in order to sort P 

on attribute Q as in equation 1. Features with increasing 

information gain value are chosen as nodes in a top-down 

manner. 
 

                            

Figure 2. Decision tree architecture 

4.2 Support vector machine 

In cybersecurity, SVM is considered as the most popular 

classification algorithm. It is a supervised learning 

algorithm. The ultimate goal of applying this algorithm is to 

separate the hyperplane in the feature space among different 

classes [69]. The hyperplane is the main constraint in getting 

optimized results. In this technique, the hyperplane is chosen 

based on the distance between the hyperplanes, which 

should be maximum for the closest data points. As shown in 
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the Fig. 3. The following are the parameters b, w, x as in 

equation 2. Where b is the hyperplane and w is the weight 

and x is the data points. As shown in the equation points (x1, 

y1), (x2, y2),: : : ,(xn, yn). Here x is an element of real 

values R and y = (1, 1) aslabels.  The ultimate target of SVM 

is to precisely classify the training data where y = + 1 using 

wxi + b ≥ 1 and when y = - 1 using wxi + b ≤ 1. So, for all i, 

yi(wxi + b) ≥ 1 using the distance measure performed by the 

following: 

                                                  (2) 
 

The most important advantage of SVM is it ability to 

classify the data more accurately and the simplicity in 

implementation when compared with other classification 

algorithms. The accuracy is very good when the number of 

features (m) are higher than the number of samples (n) in the 

dataset. These numbers could be represented as m >>n. 

SVM is very much utilized in cybersecurity and also in other 

fields of research like healthcare, biology, and pattern 

recognition.  
 

   

Figure 3. SVM architecture 
 

Further to the advantages of SVM it can create better 

hyperplanes with the time complexity of O(N2)[70]. The 

comparison between all these techniques are listed in Tab. 7. 

4.3 Artificial neural network 

Artificial neural network (ANNs) are a collection of nodes. 

The neurons of the brain simulate these nodes. ANN is a 

combination of three basic layers, which are named input, 

hidden and output layers. The hidden layer can be changed 

and increased to more than one layer, depending on the 

design of the algorithm. The sequence of operation is as 

follows: initially, the input layer transfers its output to the 

hidden layer, and accordingly, each subsequent layer passes 

it output to the next layer, and ultimately the final output is 

passed to the output layer, and this is the results of the 

classification as shown in Fig. 4. Before SVM was invented 

during the 1990s ANN was very popular at that time, but 

further to the enhancement of ANN with feed-forward and 

convolutional neural network, again, ANN gained its 

popularity. ANN is very much utilized in the cybersecurity 

field.  The learning process is the main phase in any machine 

learning algorithm so in ANN also, this process takes inputs 

(x1, x2,: : :, xn)  with a given output label as y. Then weight 

vectors (w1,w2, : :,wn) are used to weight the input vectors. 

The weights play an important role in the learning process, 

as these are adjusted in such a way that the learning error is 

minimized E = ∑_(i=1)^n▒〖ld_i-y_i l〗, where the error is 

defined as the difference between the actual output (yi) of 

the neuron and the output which is desired (di). The 

adjustment of the weights is made by gradient algorithm, 

which follows back-propagation methodology, wherein the 

learning process is repeated backward and forward 

directions and the error is followed, this process is done until 

the error shows lower than the stipulated threshold value. 

The adjustment of the weights is made based on the 

following equation  
 

(3) 

∆w_(i,j)= ηδjxi.j, i is the input node, and j is the hidden 

node. The parameters are shown in equation 3.   
 

   

Figure 4. Artificial Neural Network architecture 
 

4.4 Convolution neural network 
 

Deep Learning is a subclass of Machine Learning, it is 

basically applied to handle applications with large training 

datasets. The process followed by DL is hierarchical in 

nature which is based on feature abstraction and feature 

representation. In the contrary, traditional ML algorithms 

performance gets degraded when the training dataset is very 

large and because of the dimensionality of the data. Hence, 

to resolve this issue of data size, DL algorithms are applied, 

which usually use graphical processing units (GPUs) for 

processing the big data. Convolution neural network is the 

most applied algorithm among DL algorithms, especially to 

handle cybersecurity applications.   CNN is composed of 

two main layers: Convolution layer and the Pooling layer. 

The main functionality of convolution layer is to convolute 

the input data. This convolution is done with the assistance 

of numerous similar-size kernels. The outcome of this 

convolution is the retrieval of features from the input data. 

These features are the outcome of applying high value to a 

given position if the desired feature is available at that 

position and location and also in the reverse form [71].  The 

following are the main parameters in calculating the 

optimized features: m for kernel width and height, h is the 

output for the convolution, x represents the input, and 

finally, w is the convolution kernel as shown in the eq 4.    

 
 

The next layer in CNN is the pooling layer, it is used to 

down-sample the feature sizes. It is done by applying two 

types of pooling techniques one if max-pooling and the other 

is average pooling. Max-pooling selects the value which is 

maximum among the values retrieved from the previous 

layer. The average pooling takes the average values of the 

last layer values. The pooling mechanism is applied to get 

the maximum and average deals from the previous layers 

which is under the kernel value [71]. Mathematically as in 

equation 5: 
 

         (5) 
 

Apart from the above-mentioned layers, CNN has activation 

functions also. The most commonly used activation function 

is rectified linear unit. This activation function is represented 
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by the equation f (x) = max(0, a). A typical CNN 

architecture is as shown in the below Fig.  5. CNN has many 

advantages over other algorithms except computational cost, 

which is a disadvantage of CNN 
 

5. Open challenges and future research 

directions 

Cybersecurity is a hot research topic although lot of work has 

been done in the past. But, still there are many open 

challenges available and need to be addressed. In this section 

few of them are highlighted and future directions are listed to 

help a potential researcher to focus on these issues and adopt 

these directions. In Tab. 8 all the open challenges and future 

directions are listed.  

5.1 Performance evaluation framework 

The evaluation metric used to calculate the performance of the 

cybersecurity technique and accuracy of the proposed 

methodology needs standardizations. There needs robust 

evaluation metrics. Since the recently proposed evaluation 

metric does not cover all the aspects of cybersecurity 

especially with different domains. This is making it difficult to 

compare the proposed methodology with system of different 

domain. The challenge is to develop the best way to evaluate 

the proposed method and compare it with state-of-the-art 

techniques. A universal evaluation method is needed to check 

the robustness and performance of the proposed technique 

under different scenarios.  The research community needs 

such evaluation techniques that could confirm the robustness 

and performance capability of the current and future 

methodologies among different scenarios and domains. The 

following are the three research directions were researchers 

can explore further to overcome this challenge: Developing 

tools and protocols and checking them with the attack and 

without attacks and see the performance, Listing the common 

criteria for efficient performance and document them, 

establishing open online platform for other researchers to 

suggest their methodologies and let them participate in this 

cause.   

5.2 Generalization 

Generalization concerning the proposed techniques is another 

challenge. In this, the proposed methodology doesn’t perform 

well under different circumstances like failing with novel 

samples, attacks, and dataset contents. These models are 

trained on specific training data, which is tuned, and the 

model is proposed, which fails to counter any change in the 

testing data if any real issues come like novel malware 

samples. The performance of the model degrades at some 

points, which is a big challenge and needs a solution.  

Additionally, the proposed cybersecurity model for 

ransomware attacks would fail if tested for spyware-related 

attacks.  Cybersecurity models proposed are usually trained on 

known threats, which if tested on actual samples, would fail to 

perform. Since the nature of the attack is not predicted, it is 

now a challenge for researchers to counter this issue.  The 

following are the research direction which would help the 

researcher in exploring their research in this direction: 

Exploring a wide range of attacks and developing models 

based on this study and proposing mathematical security 

models which are capable to handle these attacks efficiently.  

 

 

5.3 Design of Security 

The traditional systems proposed for cybersecurity systems 

which start with data collections till the classification followed 

by feature extraction, should be rechecked with the 

consideration of adversaries. For example, the features 

extracted should be not only generalized but also capable of 

handling the vulnerabilities to attacks. The solution to this 

challenge would be updating the system occasionally by 

adding the latest features relevant to the attack. These features 

should be able to solve the computational complexity issues 

and be faster and automated.  

5.4 Advanced machine learning 

Traditional machine learning techniques applied for 

cybersecurity issues with systems built on modeling non-

linear adversary behavior and not trustworthy features lead to 

over-fitting and degrading performance and reliability. This is 

a challenge and needs attention from researchers. To 

overcome this crisis, Advanced Machine Learning (AML) 

needs to be developed. Currently, a minimal amount of work 

has been done on AML like recognition of features, dictionary 

learning and DL for cybersecurity. The future scope of AML 

is to explore robust feature extraction techniques for different 

datasets. 

5.5 Robustness of security with DL 

Although DNN systems give high accuracy for predicting 

malware attacks and other security tasks, recent studies have 

shown these techniques to be vulnerable for inputs with subtle 

perturbation. These adversarial examples are acting as real 

threats to DL techniques and need a proper solution. The 

scientific reason for this issue is studied by few researchers 

who say that the linear nature of the DNN-classifier is the 

primary source of the problem. The solution is to develop 

more robust DNN models, and there is a vast scope in creating 

these kinds of models which can handle adversarial issues 

more efficiently.   

5.6 Privacy preserving in cybersecurity 

In recent research, it is evident that ML and DL-based 

cybersecurity systems have proved to be very efficient in 

classifying malware. But, on the other hand, these techniques 

could not handle the privacy issues related to datasets as the 

privacy of the datasets used in the systems is getting leaked 

and no proper methodology is available to address this issue. 

If any advanced techniques are applied to save the leakage of 

private data, then the accuracy is getting affected. Therefore, 

more research is needing to keep the privacy-preserving issue 

and not affecting the accuracy of the proposed method.   

5.7 Encyclopedic datasets  

Cybersecurity is heavily dependent on real datasets. There are 

few existing datasets for cybersecurity, but they lack in big 

sizes and rich features like fully labelled, structured and 

complete with diversity and details about the attacks, their 

domains, and usage capabilities that should resemble the 

actual data. The following are the biggest hurdling in creating 

such datasets: high reliability, difficulty creating accurate and 

true labels, and access to applications in natural environments. 

These things needed to be taken care to develop a more robust 

dataset to handle real cybersecurity issues.   
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5.8 Interdisciplinary research 

Cybersecurity technologies should be merged with different 

technologies and make it a multidisciplinary field of research: 

there and many advantages in doing so. Cybersecurity 

research along with fundamental research, including a 

significant contribution from computer science, ML, and 

psychology, should be done together. These multidisciplinary 

modes of research would enhance the quality by increasing 

the reliability and development of efficient methods against 

numerous security threats and attacks.”  

6. Conclusions and Future work 

Cybersecurity is a real research topic wherein real problems 

are encounters that reflect directly to common people and 

some government authorities. Malware is threats for mobile 

users wherein critical and sensitive information is shared and 

downloaded. So, the attackers are targeting mobile devices 

in the form of malware attacks. Researchers in the current 

time are developing the latest techniques to detect this 

malware. In this context, this paper gives and detailed 

information about the latest techniques and their outcome. 

Machine learning techniques are now implemented almost 

all the fields as it is showing promising results. So, in this 

paper, machine learning techniques that are applied to detect 

malware are discussed. The datasets on which the 

experimentation is conducted are discussed and listed to help 

future researchers. The traditional machine learning 

techniques like Decision tree, Support vector machine are 

discussed with the feature extraction techniques and their 

details, followed by the latest convolution neural network 

techniques. Finally, a list of open challenges is discussed, 

and future directions are suggested to help a potential 

researcher to follow.  

In this work, various machine learning techniques are 

discussed, which were implemented for detecting malware 

attacks. But, some of the methods which are discussed here 

did not disclose the results, and some of the techniques do 

not discuss the features, and some of them do not show the 

actual dataset used for the experimentation. 

As some of the discussed technique lack few important 

information. In the future, this information could be explored 

further to draft a complete report about the available datasets 

and their details of acquisitions, and complete information 

about feature extraction techniques in a systematic format 

and then categized based on the similarity of extraction and 

feature details. Then machine learning techniques could be 

explored more for recent updates and possible extra 

information for the readers to get the most recent 

information. 
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Table 1. Classical techniques for detecting malware 

 

Table 2. Artificial neural network techniques for malware detection 

 

Table 3. Convolution neural network techniques for malware detection 

 

Table 4. Datasets for malware detecting the tasks 

Dataset No. of 

Malware 

No. of 

Benign 

Total 

Malgenome 1258 37627 38885 

Drebin 5555 37627 43182 

MalDozer 20089 37627 57716 

All 33066 37627 70693 
 

Table 5. Datasets for attributes of task 
 

Dataset No. of 

Malware 

No. of 

Family 

Malgenome 985 9 

Drebin 4661 20 

MalDozer 20089 32 

 

S. No Feature Techniques    Results Ref 

1.  .apk Android executable 

files 

J48 Decision Tree classification 82.7 % 

accuracy 

[20] 

2.  ten genuine malware 

samples 

1-Nearest Neighbor classifier 93% of 

accuracy 

[22] 

3.  88 features with unrooted 

device 

k-Means, Logistic Regression, Histograms, 

Decision Tree, Bayesian Networks and 

Naive Bayes 

80% of 

accuracy 

[23] 

4.  500 Android .apk files Random Forest, J48 Decision Tree, 

and Classification and Regression Tree 

(CART) 

NA [24] 

5.  NA SVM algorithm 74-83% of 

accuracy 

[25] 

S. No Feature Dataset Techniques Results Ref 

1.  Malware is converted 

into one-channel gray-

scale image 

NA CNN 94.0%    [35] 

2.  word2vec technique NA gradient boosting 

algorithm 

96%      [43] 

3.  API call sequence into 

RGB images 

7192 benign and 24461 

malicious samples 

CNN 93%     [44] 

4.  static method to extract 

the features 

2000 malicious and 

500 benign samples 

CNN 93%     [45] 

5.  converted the .dex files 

into RGB color codes 

2 million benign and 

malicious Android 

application 

CNN 98.4225%     [46] 

S. No Feature Dataset Techniques Results Ref 

1.  Global wavelet 

transforms 

Mahenur Artificial Neural Network 96.35%       [28] 

2.  Instruction 

sequence 

8847 malicious 

files and 1460 

benign files 

All-Nearest-Neighbor 

(ANN) classifier 

97.3%      [29] 

3.  Package-level 

API calls 

        NA Artificial Neural Network 99% of the accuracy      [31] 

4.  Semantic features NA Artificial Neural Network capable of effectively 

fighting against 

malware 

     [32] 

5.  Markov chain NA Artificial Neural Network classify and detect the 

malware 

     [33] 
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Table 6. Different datasets available 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 7. Comparison of different techniques 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. 

No 

Dataset Year Benign 

ware 

Malwa

re 

Ref 

1.  Android 

Malware 

Genome 

Project 

2010 863 1260 [63] 

2.  DREBIN 2010 123453 5560 [27] 

3.  Contagio 2011 - 1150  

4.  Android 

Malware 

Dataset 

2010 - 24553 [64] 

[15] 

5.  VirusShare 2016 - 65536 [7] 

6.  Android 

PRA Gaurd 

Dataset 

2015 - 10479 [16] 

7.  Marvin 2015 50501 7406 [17] 

8.  ISCX 

Android 

Botnet 

2014 - 1929 [18] 

9.  Andro Zoo 2018 25000 - [68] 

Methods Domain Advantages Disadvantages 

DT A rule-based tree-structured classification 

model trained based on information gain 

of all features in training data 

Computational cost is less 

and easy to implement. 

We need to save all the 

information of the trained model. 

Space complexity is high. 

SVM It aims to find separating 

hyperplane in the feature space 

among its classes so that 

distance between the 

hyperplane and its nearest data 

Suitable for small sample size 

but large feature dimensions 

Selecting optimal kernel size (k-

value) is difficult 

ANN It consists of one or more hidden layers 

between the input and output layer. Stores 

input data information as weights in the 

hidden layer using the backpropagation 

algorithm 

Suitable for pattern 

recognition problem with 

high accuracy 

Computational complexity is high 

compared to other algorithms 

 

CNN 

The convolution layer of CNN extracts 

features from training data in a generative 

fashion using several hidden layers and a 

pooling layer that pulls that information to 

predict output 

Very useful for image 

classification and pattern 

recognition 

Computationally complex. 

Performance degrades with low 

sample size 
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Table 8. Future directions and open challenges 

 

 
Figure 5. Convolution Neural Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. 

No 

Domain Open Challenges Future Directions and Recommendations 

1.  Evaluating the 

performance 

 Traditional performance metrics 

are failing for new attacks, domains 

and environments 

• Developing new tools. 

• Listing the commo criteria. 

• Establishing open online system for new 

researchers to contribute in this cause. 

2.  Designing the 

Security 

Cybersecurity techniques proposed 

are failing to handle new threats 

and degrading the performance 

when tested with different kind of 

threats  

• Exploring wide range of attacks. 

• Proposing mathematical security models 

3.  Machine learning 

techniques and its 

advancements 

Traditional ML techniques are 

failing since the attackers are 

fooling the models and making it to 

overfit.   

• Develop Advanced Machine Learning 

techniques with the capability of robust 

feature extraction techniques and 

handling overfitting issue 

4.  Deep learning 

model’s robustness 

The linear nature of DNN-classifier 

is the main source of the issue. 
• Develop more robust DNN models 

5.  Preserving the 

privacy aspects 

These techniques could not handle 

the privacy issued related to 

datasets as the privacy of the 

datasets used in the systems are 

getting leaks 

• More research is needing to save the 

privacy-preserving issue and not 

effecting the accuracy of the proposed 

method 

6.  Dataset issues They are lacking in big sizes and 

also with rich features like fully 

labelled, structured and complete 

with diversity and details about the 

attacks, its domains 

• Develop more robust dataset to handle 

real cybersecurity issues.   

 


