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Abstract: A rapid growth in digital signal processing applications 

has increased the requirement for high-speed digital systems. 

Multiprocessor systems are the best choice for these applications. A 

prior sequence of operations should be applied to the operations that 

describe the nature of these applications before hardware 
implementation is produced. These operations should be time 

scheduled and hardware allocated. This paper proposes a new 

scheduling technique for digital signal processing (DSP) 

applications that are represented by data flow graphs (DFGs). In 

addition, hardware allocation is implemented in the form of 
embedded system. The proposed scheduling technique also 

achieves the optimal scheduling of a DFG at design time. The 

optimality criterion considered in this algorithm is the maximum 

throughput within the available hardware resources. The hardware 

system is composed of one or multiple homogenous pipelined 
processing elements and designed to meet the maximum-rate 

schedule. Two implementations are proposed of the system 

architecture according to the number of the processing elements. 

These are the serial system and the parallel system. The serial 

system comprises one processing element where all tasks are 
processed sequentially. On the other hand, the parallel system has 

four processing elements to execute tasks concurrently. The 

hardware systems have been described, functionally tested, and 

synthesized using the Verilog HDL and Xilinx ISE. Synthesis 

results show that the parallel system outperforms the serial one by 
25.5% in terms of performance with extra area penalty. The 

relationship between the number of instructions that are executed in 

both systems, the system area, and the system performance as 

represented by the system frequency, have been studied. The 

proposed scheduling technique is shown to outperform the retiming 
technique, which we have chosen to compare with.  The serial 

system has better performance with 19.3% higher system frequency 

than that of the retiming technique. The parallel system also 

outperforms the retiming technique in terms of the system 

frequency by 51.2%.  
 

Keywords: FPGAs, DFG, DSP Applications, Scheduling, 
Hardware, Architecture.  
 

1. Introduction 
 

Digital signal processing (DSP), image processing, and 

communications tasks are computationally intensive and 

require high-power consumption. Therefore, they demand 

very high-speed computations and high throughput systems. 

Multiprocessor systems are the best choice to implement 

DSP applications since they have para llelism nature [1]. 

Field-programmable gate arrays (FPGAs) are manufactured 

integrated circuits that are designed to be configured by the 

designer. It contains programmable logic blocks which have 

RAM blocks and large resources for implementing logic 

gates. Wide range of applications can be implemented on 

FPGAs by being specified using any hardware description 

language (HDL). Hardware implementation is created with 

the aid of logic synthesis tools. 

Logic synthesis [2] is the process of designing digital 

systems that are described in HDL to get an optimized 

hardware implementation. Logic synthesis uses standard cell 

libraries such as the basic logic gates (AND, OR, NOR) 

library, and the library of the macro cells (adder, MUXs, 

memory, flip-flops) to produce a design.  

There are many reasons to perform logic synthesis in 

designing digital systems [3]. Among these reasons are 

shorter design cycle, fewer bugs, ability to find design space, 

and the ability to resynthesize targeting different chip 

technologies as an FPGA or ASIC. The synthesis process 

mainly involves Description, Scheduling, and Resource 

Allocation [2]. 

The behavior of any digital system can be described using 

one of the hardware description language (HDL). These 

languages can be used to describe the system behavior 

specifications. The graphic representations that contain data 

flow and control flow are also used to represent the system 

behavior specifications. The data flow graph (DFGs) model 

has proven to be an efficient model in showing the data 

dependencies between the tasks of a given algorithm and 

exposing their inherent parallelism.  

A data flow graph is a directed graph that consists of nodes 

and edges. The mathematical notation to represent graph G is 

G = (V, E); where V is the set of the nodes that represent the 

operations and E is the set of the edges of the graph that 

represent the communication paths. Each node v has input 

and output data ports that connect it to other nodes through 

edges. A node has a computational delay due to the operation 

represented by this. Each edge e is associated with a pair of 

nodes and it has a non-negative number called an ideal dela y  

[4]. 

The nodes of a graph are represented by v1, v2, v3,…, vN, and 

its edges  are represented by e1, e2…. A directed edge which 

is referred to as an arc is represented by e = (vm , vn), where  

vm is the source node  and vn is the destination node. The 

source and destination nodes are called the end nodes. This 

edge represents the precedence constraints between these end 

nodes.  

A path is a sub graph which contains a set of finite number 

of nodes and a set of edges that connect between nodes. 

Within the path, if the source node is the same as the 

destination node, this path is called a loop or a directed 

circuit. In the loop, there should be at least one ideal delay 

token (node input or output) to be computable. If there is at 

least one loop in a DFG, then the DFG is called cyclic, 

otherwise it is acyclic. 

Each time a node receives data tokens as inputs via its input 

arcs and processes them due to its operation, it produces 

output tokens into its output arcs. More than one node can be 

executed concurrently. Therefore, a  data flow model is 

successful in exhibiting parallelism in digital algorithms. 

This model considers only data dependency between nodes.  
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DSP applications are commonly represented using signal 

flow graph and DSP block-diagram [5]. In a DFG model, 

operations of a DSP application are represented by nodes and 

the data dependency (signal path) between nodes are 

represented by arcs (edges) [6] as shown in Figure 1.  

 
Figure 1: DFG model to represent a DSP application. 

The number associated with a node identifies the index of a 

corresponding operation (V1 and V2 in Figure 1). There is a 

non-negative number associated with each edge that 

represents its ideal delay (N in Figure 1). A non-zero ideal 

delay N connecting node V1 with V2 means that node V2 

depends on the output of V1 that is produced N iterations 

back. In this case, an edge (represents a FIFO buffer) is used 

to store the produced results from different iterations. The 

number associated with each edge is omitted if the ideal 

delay is zero.  

For example, Figure 2 shows a block-diagram of the second 

order infinite impulse response (IIR) filter, and Figure 3 

shows its signal flow graph. In the filter representation, 

symbols a, b, c and d are the filter coefficients. In Figure 4, a  

DFG representation of the second order IIR filter is depicted. 

As shown, the nodes of the graph are addition operation 

nodes (the “+” symbol) and multiplication operation nodes 

(the “*” symbol). There is a computational delay for every 

node due to its operation and a positive ideal delay for some 

edges representing the inter-iteration dependencies.  

 
Figure 2: Block diagram representation of a second-order 

IIR filter. 

 
Figure 3: Signal flow graph representation of a second-order 

IIR filter. 

 
   Figure 4: DFG representation of a second-order IIR filter 

2. Scheduling and Resource Allocation  
 

In this process, each operation in a DFG is assigned to 

control steps. These control steps are clock cycles in the 

synchronous system. A scheduling process must preserve 

precedence constraints between tasks. A program presented 

by a graph may be executed once or repeated many times.  

The target from the scheduling in this case is to minimize the 

finishing time, which increases the speed to meet the timing 

constraints. It can also be designed to minimize the area to 

meet the resource constraints. In the case of timing 

constraints, the scheduling algorithm parallelizes operations. 

However, in the case of resource constraints, it serializes 

operations scheduling. As DSP algorithms are generally 

periodic, the scheduling process for them are periodically 

repeated. This period is referred to as the iteration period. 

The iteration period in a cyclic graph has a lower bound 

(called the iteration bound), which is the minimum possible 

time between successive outputs. 

Precedence constraints should be met to preserve the 

algorithm input-output behavior specifications. There are 

two types of precedence constraints: intra-iteration 

precedence constraints and inter-iteration precedence 

constraints [7]. 

Intra-iteration precedence constraints are represented by arcs 

with zero ideal delays [7]. This means that within the arc v 

→ u, node v produces a token at the nth iteration and node u  

consumes this token at the same nth iteration. Node v shou ld  

be scheduled and executed before node u within the same 

iteration. If we remove all arcs with non-zero ideal delays 

(inter-iteration precedence constrains) from a cyclic DFG, an 

acyclic DFG is produced. This graph will have only intra-

iteration precedence constrains which is normally used for 

constructing the multiprocessor scheduling. 

In the inter-iteration precedence constraints, nodes v and u 

are connected by an arc v → u with an ideal delay i. Node u 

depends on a token produced by node v in some previous 

iteration. Hence, node u can be scheduled and executed 

before node v. This constraint is used in constructing 

multiprocessor scheduling using inter-iteration parallelism to 

achieve minimum iteration period.  
Many scheduling and assignment techniques are used in 

multiprocessor systems [7] [8]. Multiprocessor scheduling 

techniques are classified into different types depending on 

different criteria.  
The scheduling process that is performed at compile time 

(before executing) is known as static scheduling. While the 

scheduling process that is performed at run time (during 

execution time) is known as dynamic scheduling. Static 

scheduling is used when the scheduling behavior is   known 

at design time. This type of scheduling is used to minimize 

the execution overhead. The result of this scheduling can 

achieve the required optimality criteria. An algorithm whose 

behavior is represented using a synchronous DFG (SDF 

graph) can be scheduled statically. On the other hand, the 

dynamic scheduling is performed during the execution of 

operations. An example of this type is the conditional 

operation. All algorithms except SDF graph representation 

are scheduled at runtime [9]. In this work, the proposed 

technique uses a static scheduling algorithm.  

Other types of scheduling techniques are based on exploring 

the precedence constraints between nodes for getting better 

results. There are two types of scheduling in this case: 

overlapped and non-overlapped scheduling [7]. In 
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overlapped scheduling, some tasks in the nth iteration can be 

scheduled to execute before some tasks in a preceding 

iterations. On the other hand, overlapped scheduling usually 

achieves lower iteration period compared with non-

overlapped scheduling. However, in non-overlapped 

scheduling, the execution of tasks within two consecutive 

iterations is not overlapped. So, the execution of tasks in 

(n+1)th iteration begins after completion the execution of all 

tasks in the nth iteration. The minimum achievable iteration 

period using this technique is equal to the critical (longest) 

path of the precedence graph. 

Moreover, there are synchronous and asynchronous 

scheduling techniques depending on the system state changes 

and the computational and transmission delays between 

system elements. The synchronous scheduling technique is 

represented by a global clock. It is divided into two types: 

static and non-static. A schedule is called static if each 

operation is allocated to the same processor at all iterations. 

Therefore, each processor executes a unique set of  nodes 

with a total computational delay that is not exceeding the 

iteration period. There are some schedules that produce a 

static schedule. Examples of such schedules are critical path 

method (CPM) schedule and schedules for systolic arrays 

[10].  

In non-static scheduling techniques, an operation can be 

scheduled to run on different processors at different 

iterations depending on the hardware allocation algorithm . 

This type of scheduling includes cyclo-static periodic 

multiprocessor schedules. This technique depends on the 

time and the processor displacement. When an operation v is 

scheduled at iteration n in processor Pk at time t, then at 

iteration (n+1), operation v is scheduled on processor P(K+k) 

modulo N at  time (T+t). T is the iteration period and N is the 

number of the processors. If the processor displacement K is 

zero, a cyclo-static will be a static schedule. This schedule 

achieves the critical path input-output delay; thus, it is 

referred to as delay-optimal schedule. The drawback of this 

way of scheduling is the high complexity of  the hardware 

implementation.  

The scheduling techniques can be classified as either 

iterative/constructive or transformational.  

In the iterative/constructive, the schedule of the DFG nodes 

is built by adding one node at a  time, until all nodes of the 

graph are scheduled. There are many methods used for 

choosing nodes to be scheduled and to which processor they 

will be assigned. The types of iterative/constructive 

scheduling techniques are: As soon as possible (ASAP) 

scheduling [7], As late as possible (ALAP) scheduling [7], 

List scheduling [11], Freedom-based scheduling [12], and 

Force-directed scheduling [13]. 

In the ASAP, the nodes in a DFG are scheduled step by step 

from the first control step to the last control step. The node is 

said to be ready if all of its predecessors are scheduled. This 

preserves the precedence constraints. A ready node is 

scheduled to the earliest control step. This procedure is 

repeated until all nodes are scheduled. Ready nodes are 

executed at the current control step if there are available 

resources, or some ready nodes may be delayed to the next 

control step if there are no available resources. 

The ALAP is like ASAP scheduling technique. But in 

ALAP, nodes of a DFG are scheduled from the last control 

step to the first. A node is scheduled if all of its successors 

are scheduled. In ASAP and ALAP scheduling techniques, 

no priority to the critical section of the graph is given. So, a 

non-optimal outcome may result. 

In list scheduling, nodes of a DFG are arranged in a list 

depending on the precedence constraints and some priority 

rules. Nodes whose resources are available, are selected to be 

scheduled to the current control step. Otherwise, they are 

delayed to the next control step. In the first stage of the 

proposed technique in this paper, we use list scheduling to 

order the DFG nodes into nodes and tasks queues. This order 

is used to prevent processors from entering a  deadlock state. 

Freedom-based scheduling detects the node to be scheduled 

for freedom or mobility. Mobility represents the time in 

which the node can start execution. So, the nodes on the 

critical path or the loop are scheduled first. Then other nodes 

are scheduled one at a  time based on their mobilities. 

A new metric, called the force, is calculated for each token in 

the force-directed scheduling. It is used in selecting a token 

to be scheduled and in selecting a control step. The force 

between a token and a specific control step is proportional to  

the number of nodes of the same type that can be scheduled 

to that control step. The schedule is built by giving priority to 

the minimum force value for a pair of token-control steps. 

Then the forces are updated, and the process is repeated. This 

method tends to achieve a maximum utilization of resources 

which results in using a minimum number of hardware 

resources. However, its time complexity is higher than the 

list scheduling technique.   

Most of iterative scheduling techniques use heuristics to look 

for efficient schedules, but they do not necessarily produce 

optimal ones.  A transformational scheduling algorithm starts 

with an initial schedule that is either maximally serial or 

maximally parallel. Then a transformation is applied to the 

initial schedule to produce another schedule. Transformation  

algorithms differ in the operations they perform. These 

operations are: Exhaustive search, Exhaustive search with 

branch-and-bound, and Transformations with heuristics. 

In Exhaustive search, all combinations (serial and parallel) 

are examined until getting the best schedule. This has the 

advantage of exploring all possible designs and tradeoffs. 

But it requires heavy computations and large size design. 

Exhaustive search with branch-and-bound is an improvement 

of exhaustive search, which cuts off the search along a sub-

optimal path [14]. As a result, it requires less computations 

and it is suitable for complicated designs. 

In the transformations with heuristics, rules are used to 

achieve the best transformation which possibly meets the 

specified constraints.  

The optimality criteria are related to the completion time of 

the scheduling process and the number of resources that have 

been used in the hardware implementation. A time of the 

scheduling process is taken to be the iteration period or the 

average number of control steps per cycle. A schedule must 

meet the constraint that the execution of all tasks with one 

iteration should not exceed the iteration period. The chip area 

is determined based on the number of hardware units used. 

This number is lower bounded by the processor bound. There 

are other objectives to be met in optimal schedules. 

Examples of such objectives are power dissipation, library of  

cells, clock skew, and package selection. 

Bounds of the optimal schedules are: Iteration period bound , 

Processor bound, and Input-output delay bound. 

In a cyclic DFG, a node cannot start execution unless all 

tokens are available.    The time elapsed between two 
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consecutive firings of a node in the loop is known as the loop 

bound.  

The loop bound of a loop L is defined by: 

  (1) 

Where  is the total computational delay of all nodes in the 

loop L, and  is the total number of ideal delay elements in 

the loop L. 

In the hypothetical case of having infinite resources, the loop  

bound of some loops can reach the minimum iteration period  

which is known as the iteration period bound [15] (the 

minimum average time between successive outputs). When 

the schedule iteration period is equal to the iteration period 

bound, this schedule is said to be rate optimal. The iteration 

period bound T0 is given by the maximum value of the 

iteration bound among all loops in the DFG and is 

mathematically presented by Equation 2. 

T0=  (2) 

If the loop bound of a given loop is equal to the iteration 

period bound, this loop is said to be a critical loop. In a non-

critical loop, there is a time difference between the iteration 

period bound and the loop bound that is called the slack tim e 

[16]. The slack time of the loop C is defined by  

ST(C) =T0NC - DC  (3) 

Where NC is the total ideal delays of the loop C and DC is the 

sum of the total computational delays. The slack time of the 

circuit is equal to the negative of the length of this circuit, 

that is  

ST(C) = -len(C) (4) 

A loop is more critical than another loop if it has a lower 

slack time. For acyclic DFG and in case of using unlimited 

resources, the iteration period is limited by the longest 

operation computational delay. 

When using the minimum number of processors in the 

scheduling process of a  DFG (Processor-Optimal Schedule), 

the lower bound of the number of processors is defined by: 

  (5) 

Where P0 is the Processor Bound [8], D is a  total 

computational delay of nodes, and T is the iteration period. 

From [17], in the pipeline execution, the processor bound is 

given by  

   (6) 

Where i is the type of the processor, Pi is the pipelining level 

of the processor, ni is the number of nodes of type i and ti is 

the computational delay of processor i. 

Because of precedence constraints, a  processor bound cannot 

be achieved for some iteration period. That is the precedence 

constraints may prevent the optimization scheduling process.  

The input-output delay is the time consumed when the input 

node of the graph that takes the data token to the output node 

of the graph produces the output token. The minimum input -

output delay is the longest path from the input node to the 

output node. This path is called the Delay Bound (L0) and is 

defined by: 

 (7) 

In resource allocation, the function units are assigned to 

execute nodes (operations), storage units (registers) to save 

tokens, and wires to establish communication paths (buses 

and multiplexers) that are used for data transfer. While 

assigning the tasks of a DFG to hardware resources, 

minimizing the number of hardware resources is sought. This 

can be achieved by grouping the software elements (nodes 

and data values) that have the same lifetime into groups to 

share a single hardware element. This type of allocation is 

affected by the type of resources and is called folding [18].  

There are two types of hardware functional units: 

homogenous and heterogeneous. The homogenous functional 

units are similar and perform the same operations. They are 

suitable for the synthesis of Arithmetic Logic Units (ALUs) 

and general-purpose DSP tasks. Systems with homogenous 

processing elements have higher flexibility and scalability 

compared with those with heterogeneous processing 

elements. A heterogeneous system uses more than one type 

of functional units. Different functional units perform 

different operations. Generally, heterogeneous systems have 

higher power efficiency and smaller area  than homogeneous 

systems.   

Variables and results that will be used later are stored in 

storage units (memories or registers). Each variable has a life 

time which represents the time difference between the 

variable production and the variable latest consumption. 

Storage units that are used in the system may be single or 

multiport memory or registers  

Communication paths are used to connect hardware units 

with each other to allow data transfer between system units 

as per the precedence constraints. These paths are generally 

formed from wires or multiplexers. Shard communication is 

a more complicated design and slower, but it requires less 

wiring than multiplexers which are better in system design. 

Communication allocation should minimize communication 

paths as much as possible. 

The goal of the hardware allocation techniques is to reduce 

the number of processing elements, memories, registers, 

multiplexers, and the size of the interconnection network 

[19].  Allocation techniques are grouped into two categories: 

global and iterative/constructive. In the global techniques, 

exhaustive search is used to find the number of allocations 

simultaneously. The iterative/constructive techniques 

allocate one resource at a  time. It is more likely to reach 

optimal solutions by using iterative/constructive techniques. 

Global techniques include graph-theoretic formulation, 

mathematical programming, and branch-and-bound 

algorithms. These techniques can achieve optimal solutions; 

yet they demand complex computations and require high 

processing power. Thus, they may be limited to small-size 

problems. 

One of the graph theoretic formulation performs hardware 

allocation by constructing a graph in which nodes represent 

operations, data , and interconnections. This technique 

attempts to find the set of connected subgraphs. To minimize 

the number of hardware resources, the algorithm should 

minimize the number of connected subgraphs. This 

algorithm is called clique partitioning [20]. The disadvantage 

of this technique is that it requires exponential time to 

compute. 
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Branch and bound technique explores a design space of the 

data path and searches for the optimal result. It tries each 

element with all possible corresponding hardware elements, 

keeps the best solution and cuts off the others. This 

technique needs high computation a nd long processing time. 

To overcome these difficulties, near-optimal solutions are 

sought [21]. 

The Iterative/Constructive techniques are used to find 

acceptable solutions that consume less processing power and  

computational time than global techniques. In these 

techniques, an iterative one-task assignment at a  time is 

performed [19].  

There should be some knowledge in advance about the 

hardware resources that are needed by each operation to 

achieve the optimized results. This knowledge includes 

resource computational delay, access time, and the 

interconnection structure and delays. The allocation process 

needs to know the control step at which the operations are 

executed and the variables produced. The goal is to use the 

minimum of used hardware resources. There is 

interdependence between the allocation operation and the 

time scheduling.  System Synthesis might be done by 

hardware allocation followed by scheduling, by scheduling 

followed by hardware allocation or by combining and 

performing them simultaneously.  

In this work, we propose a new scheduling technique that is 

targeting DSP applications represented by a DFG. 

It achieves the optimal scheduling in terms of the maximum 

throughput of a DFG using the 

available hardware resources.  This technique is composed of 

two parts: software analysis of the DFG and hardware 

assignment of the tasks to achieve the desired algorithmic 

behavior. The two parts are combined to form a complete 

system. In the software part, the DFG nodes are ordered into 

a node queue depending on their inter-related data 

dependencies. This queue is then used to create a compound 

task queue. Each compound task is created by clustering two  

nodes together into one task. These tasks are represented by 

special purpose instructions to be used in a hardware system.  

The second part of the scheduling technique is the allocation 

of the tasks of the DFG on a general pipelined hardware 

architecture. This system stores the DFG operations as 

instructions into the system memory. These operations are 

stored in a sequence to be executed in every iteration. Two 

hardware systems are proposed: a serial system and a  parallel 

system. The serial system has one processing element where 

all tasks are processed sequentially, whereas the parallel 

system uses four homogenous parallel processing elements 

for concurrent task execution.  

The rest of this paper is organized as follows: Section 3 

presents the related work. Section 4 presents the proposed 

scheduling technique. The hardware implementation of the 

proposed systems is presented in Section 5. Section 6 

provides the experimental results. Finally, the conclusion is 

given in Section 7.  
 

3. Related Work 
 

Many algorithms for static scheduling of   iterative data flow 

graphs on multiprocessing systems exist in literature.  

In [22], the algorithm introduces an optimal scheduling of a 

cyclic data flow graph into multi homogenous processing 

system. It depends on fixing the iteration period and keeping 

the number of the processors variable until obtaining a 

solution. This algorithm is known as the range chart 

technique. A reference node is selected, then the earliest 

firing time and the latest firing time for every node are 

computed. The flexibility for each node is computed by 

taking the difference between these two quantities. It means 

the range in which the node can be executed. The node with 

the minimum flexibility is scheduled and chosen as a 

reference node. The range chart is updated until all nodes in 

the DFG are scheduled. In this algorithm, tasks are assigned 

to homogenous processing elements according to their 

computational delays.  The output of the algorithm is a 

scheduling matrix that presents the allocation of the tasks to 

each processor and the iteration indices of the given tasks. 

Here, the optimality criteria include throughput optimality, 

delay optimality, and hardware resources optimality.  

An improvement to the previous algorithm is presented in 

[23]. An efficient hardware implementation of an optimal 

scheduling algorithm of a DFG into pipelined heterogeneous 

processing elements is proposed. The iteration period has 

been decreased and less hardware resources are needed. This 

leads to lower time complexity. This algorithm uses the 

earliest firing time and the latest firing time to all nodes in a 

DFG. As in [22] the reference node is picked, then nodes are 

scheduled into heterogeneous processing elements regardless 

of their computational delays.  

Other popular scheduling algorithms are the list scheduling 

algorithms which sort tasks of a graph in a list based on their 

priorities, followed by selecting a resource to achieve a better 

schedule. Some list scheduling algorithms are mentioned 

next. 

An Incremental Subgraph Earliest Finish Time (INCSEFT) 

strategy is proposed in [24]. It produces a schedule for 

directed acyclic graph (DAG) tasks on a heterogeneous 

platform. The ranks of the graph tasks are calculated in a 

bottom-up way. Starting from a sub graph and growing it 

incrementally by adding the critical paths that minimize the 

finish time by assigning it to processors. This low 

complexity strategy produces effective near-optimal 

schedules. This approach reduces the scheduling time; it 

performs better for graphs with large number of nodes.  

The work in [25] proposes improved predict earliest finish 

time (IPEFT) algorithm for list-based scheduling at compile 

time in a heterogeneous platform. This algorithm has two 

phases in scheduling DAG tasks: task prioritization phase 

and processor selection phase. In the first phase, a  rank is 

calculated for each task depending on the length of the 

longest path from this task to the exit task. The task of a 

higher rank has a higher priority. In the second phase, the 

earliest finishing time of the task on each processor is 

calculated. The task is scheduled in the earliest time slot 

between two scheduled tasks. The scheduling time is reduced 

without increasing the algorithm complexity.  

In [26], a  scheduling algorithm for a dependency graph on 

multi computing heterogeneous computing system is 

proposed. This a lgorithm consists of two phases: 

prioritization phase and processor selection phase. In the first  

phase, tasks are ordered to be scheduled in the processor 

selection phase. The computation costs of the heterogeneous 

processors and the communication cost of the heterogeneous 

links are used for calculating the priority in acyclic DFG. 

Since the computational cost of task on different processors 

is different, the task's earliest finish time is computed by 

calculating the mean value of the computation and the 

communication costs in finding the upward rank (earliest 
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startup time) of the tasks. The proposed algorithm takes the 

standard deviation of the expected computation and 

communication costs as a significant attribute while 

calculating the upward rank of the task. In the processor 

selection phase, the algorithm uses a list scheduling 

technique and duplication technique. The duplication 

technique is used for the entry task only, and it is replicated 

for all processing elements. Tasks are arranged in a priority 

queue in a decreasing order of the upward ranks. The task 

which has a higher priority is scheduled first. But a 

duplication of the entry task leads to redundant duplication. 

This would waste the resources and adversely affect the case 

of a bounded number of processors. 

In [27], an optimal scheduling of parallel tasks in 

heterogeneous system is achieved. It presents a recursive 

task scheduling algorithm for a limited number of 

heterogeneous processors. This algorithm has three phases: 

task prioritizing, processor selection, and moving phase.  In 

the first phase, an accumulative rank is computed, and the 

priority is assigned to all tasks. Then, in the processor 

selection phase, tasks are scheduled on processors which 

ensures that the latest start time for the task is satisfied. At 

the moving phase, all possible tasks are moved until the 

entry task is zero. The algorithm decreases the final schedule 

length. The performance of the algorithm is shown using 

heterogeneous earliest finish time, iterative list scheduling, 

and scheduling length. 

There are scheduling algorithms that try to reach better 

performance in scheduling a DSP application by shortening 

the execution time and achieving parallel scheduling. In [28] 

the scheduling algorithm uses a clustering technique based 

on a chain cluster. It gathers a chain of nodes (actors) into 

virtual actor. Then the main graph is scheduled using 

priority-based scheduling algorithm (PBS). The chain of 

actors is scheduled by HFS algorithm on the processor that 

executes the virtual actor. 

In [29], simple DSP applications such as FIR and IIR filters 

expressed as DFGs are directly mapped into FPGA 

implementation. To improve the performance, a  retiming 

technique is used to achieve the required levels of pipelining. 

This technique is used to move delays in a DFG without 

making changes to the input/output characteristics   or the 

iteration bound. It is aimed to reduce the clock period and the 

power consumption. Retiming is applied using the cut 

theorem which cuts the DFG into sub-sets and moves delays 

between them until obtaining the best pipelined DFG. The 

final implementation has been synthesized using the Xilinx 

FPGA devices. 
 

4. The Proposed Scheduling Technique 

4.1 Technique Overview 

A list of ordered tasks is created from a cyclic DFG based on 

the data dependencies between its nodes at compile time. In 

this stage, we prepare a DFG to be executed on the 

implemented systems. The goal is to reduce the execution 

time by minimizing the number of tasks to be executed. In 

the first stage of the proposed technique, the nodes of the 

DFG are arranged into a node queue based on their data 

dependencies. Then, tasks are created by combining nodes in  

the node queue under some conditions. The created tasks a re 

ready to be executed on a hardware system. This phase has 

been implemented using C++ programming language. 

 4.2  Cyclic to Acyclic Conversion 
 

The first step in constructing queues is to convert a  cyclic 

DFG into a directed acyclic graph (DAG). Figure 4 shows a 

DFG representation for a second order IIR filter. In this 

DFG, each of the edges that connect node 2 to node 3 and 

node 2 to node 7 has an ideal delay of two, whereas   each of  

the edges that connect node 2 to node 5 and node 2 to node 4  

has an   ideal delay of one. These edges which have non-zero  

ideal delays are broken and replaced by their values from the 

previous iterations, represented by empty flags in the DAG 

as shown in Figure 5. The input stream is represented by a 

storage unit. 

 
Figure 5: DAG of a cyclic DFG in Figure 4 

 4.3  Node Queue Constructing 
 

Once a cyclic DFG is converted into a DAG, the nodes of the 

DAG are arranged into a queue depending on interrelated 

data dependencies between graph's nodes as follows: 

• The node queue construction stage starts from node 

number 1 in the graph and continues until all the nodes 

are scheduled and placed in the queue.  

• Each node in the DAG is checked for being ready to be 

inserted in the node queue. The node is considered ready 

if its operands are available (from previous iterations or 

from a user input). A ready node is directly inserted into 

the queue. 

• If one or more of the node's operands are not available, 

their sources are checked for availability. This is repeated 

until a  ready node is found.  

• The whole process is repeated until all nodes of the DFG 

are scheduled.  

Figure 6 shows the flowchart for construction the node 

queue. 
 

 4.4  Task Queue Constructing 
 

Tasks Creation: To minimize the number of nodes in a 

DFG, some nodes are clustered into one compound task. 

Multiplication accumulation operation (MAC) is derived 

from merging a multiplication node that is followed by an 

addition node into one task. This compound operation 

requires less computational time than the computational time 

of the two nodes summed up. This reduces the overall 

execution time by minimizing the number of  tasks to be 

executed. 
 

Compound Task Queue Constructing: Some development 

processes are applied at this stage to improve the throughput 

of the system. A task creation process is applied to the node 

queue and the results are placed in the task queue. If there 

exists a  multiplication node followed by an addition node in 

the node queue, these nodes are clustered into a compound 

task. This algorithm works as follow: 
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• After constructing the node queue and all nodes are 

scheduled, this stage starts. 

• A node is loaded from the node queue. 

• The operation of the loaded node is checked, if it is a  

multiplication operation the next node from the queue is 

loaded. Otherwise, if the node's operation is addition, the 

node is inserted into the task queue. 

• The second node's operation is checked and if it is 

addition then go to the next step. Otherwise skip the next 

two steps. 

• The first loaded node (which will be multiplication 

operation in this case) is checked. If any node in the DFG 

depends on it, a  copy of this node is inserted as a single 

operation task into the task queue. 

• The first loaded node is merged with the second node 

into a task and inserted as a compound task into the ta sk  

queue. 

• If the second node's operation is not an addition, the first 

loaded node is inserted into the task queue, and the 

second node is checked with its next node in the node 

queue. 

• All remaining nodes in the node queue are inserted in the 

task queue as single nodes or as compound tasks. 
 

Figure 7 shows the flowchart for constructing the compound 

task queue. 
 

 4.5  Examples 
 

Four benchmarks of DSP filters are discussed: The second 

order IIR filter, all-pole lattice filter, fourth-order Jaumann 

wave digital filter, and the fifth-order wave elliptic filter. 

A DFG representation, a node queue, and a task queue are 

presented for each filter. There might be one or more input 

and output nodes. Without loss of generality, the input 

stream is considered as always available at the start of the 

execution phase. 
 

 4.5.1  The second order IIR filter 
 

The node queue and the compound task queue of the second  

order IIR filter are shown in Table 1. The scheduling is 

obtained based on the following steps:  

• The node queue creation process starts by vising node 1.  

• The inputs of node 1 are checked for availability. Since 

the first operand is provided by the user, the input is 

considered available. 

• The second operand of node 1 is node 3 which is not 

available. 

• The operands of node 3 are checked. As in a DAG, the 

input of node 3 is available from the previous iteration. 

• Node 3 is inserted into the queue and node 1 is checked 

again for readiness. 

• Repeat all the steps until all nodes are scheduled. 

Following the flowchart in Figure 7, to merge two nodes into 

a compound tasks, the operations of the nodes should be a 

multiplication followed by an addition. For example, task 1 

combines node 3 (multiplication node) and node 1 (addition 

node). Similarly, nodes 4 and 2, 5 and 6, 7 and 8 are also 

clustered into compound tasks. There are no single operation 

tasks in this case. 

 

 
 

 4.5.2  All-Pole Lattice Filter 
 

The DFG of the all-pole lattice filter is shown in Figure 8 

which is taken from [30]. The node queue and the compound 

task queue are shown in Table 1. The node queue shows the 

node order according to their data dependencies. Based on 

the flowchart in Figure 6, node ordering starts from node 1 

which is inserted directly in the node queue because its 

operands are ready. Nodes 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 are 

directly scheduled in order because all of them have 

previously scheduled operands. After that, nodes 12, 13, 14, 

and 15 are scheduled. 

Some nodes from the node list are merged to create the 

compound task queue which lists the task ID and the 

corresponding nodes that belong to the task as shown in 

Table 1.   

Following the flowchart in Figure 7, to merge two nodes into 

a compound tasks, the operations of the nodes should be a 

multiplication followed by an addition. For example, task 2 

combines node 2 (multiplication node) and node 3 (addition 

node). Similarly, nodes 5 and 6, 8 and 9, 11 and 12 are also 

clustered into compound tasks. Node 5 is duplicated to be in 

task 4 as a single operation task and as a  merged node with 

node 6 to create the compound task 5.  This is because node 

5 is needed as an operand for other tasks. Nodes 8 and 11 

have a similar case to node 5. Nodes 13, 14, and 15 are 

inserted into the task queue as single operation tasks. The 

total number of tasks is reduced by 6.7% in comparison with 

the original number of nodes in the DFG.  
 

 4.5.3  Fourth-Order Jaumann Wave Digital Filter 
 

The DFG of the fourth-order Jaumann wave digital filter is 

shown in Figure 9 [30]. Similarly, the node queue and the 

compound task queue are constructed according to the 

flowcharts in Figures 8 and 9, respectively. It is clear that 

node 1 is not ready because its operand from node 6 is not 

ready or node 6 has not been scheduled yet. Therefore, node 

1 is replaced by node 6 to check its readiness. From Figure 9, 

node 6 can be scheduled because its operands are ready 

(from previous iterations node 7 and node 16). The 

scheduling process is then repeated again starting from node 

1 and the process is replicated until all nodes are scheduled.   

Task 2, 5, 9 and 12 are compound tasks that are resulted 

from clustering 8 and 7, 12 and 11, 14 and 13, and 9 and  10 , 

respectively. All other tasks have single nodes. The number 

of tasks is reduced by 18% compared with the node count in 

the node queue and the DFG. The node queue and the 

compound task queue for this filter are listed in Table 1.  
 

 4.5.4  Fifth-Order Wave Elliptic Digital Filter 
 

Figure 10 shows the DFG for the fifth-order wave elliptic 

filter [30]. This DFG have more nodes than the previously 

mentioned filters. Table 2 contains the node queue and the 

compound task queue after applying the approaches 

presented by the flowcharts in Figures 8 and 9. In this case, 

constructing the node queue starts from node 2, because node 

1 represents the user input. Operands of node 2 are ready 

from previous iterations and from user input. Thus, it is 

scheduled first. From Table 2, the percentage of the 

compound tasks is higher. In fact, the task count is reduced 

by 25.7% compared with the node count in the original DFG.  
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Table 1. The node queue and the compound task queue of 

the IIR, the all-pole lattice filter, and the 4th-order jaumann 

Wave digital   

IIR 
filter 

all-pole 
lattice 
filter 

4th-order jaumann 
Wave digital filter 

Node 

Queue 

Compound 

Task Queue 

Node 

Queue 

Compound 

Task Queue 

Node 

Queue 

Compound 

Task Queue 

Node 

ID 

Task 

ID 

Nodes 
Within 

Task 

Node 

ID 

Task 

ID 

Nodes 
Within 

Task 

Node 

ID 

Task 

ID 

Nodes 
Within 

Task 

3 1 3&1 1 1 1 6 1 6 

1 2 4&2 2 2 2&3 8 2 8&7 

4 3 5&6 3 3 4 7 3 1 

2 4 7&8 4 4 5 1 4 17 

5   5 5 5&6 17 5 12&11 

6   6 6 7 12 6 2 

7   7 7 8 11 7 3 

8   8 8 8&9 2 8 15 

   9 9 10 3 9 14&13 

   10 10 11 15 10 4 

   11 11 11&12 14 11 5 

   12 12 13 13 12 9&10 

   13 13 14 4 13 16 

   14 14 15 5   

   15   9   

      10   

      16   
 

Table 2. The node queue and the compound task queue of 

the 5th-order wave elliptic filter 

5th-order 
wave elliptic filter 

5th-order 
wave elliptic filter 

(continue) 

Node 
Queue 

Compound 
Task Queue 

Node 
Queue 

Compound 
Task Queue 

Node 
ID 

Task 
ID 

Nodes 
Within 
Task 

Node 
ID 

Task 
ID 

Nodes 
Within 
Task 

2 1 2 12 19 25 

11 2 11 19 20 26&27 

17 3 17 21 21 24 

28 4 28 23 22 30 

22 5 22 20 23 31&32 

18 6 18&16 25 24 29 

16 7 10 26 25 34 

10 8 8&7 27 26 33&35 

8 9 6 24   

7 10 5&3 30   

6 11 4 31   

5 12 9 32   

3 13 13 29   

4 14 14&15 34   

9 15 12 33   

13 16 19 35   

14 17 21&23    

15 18 20    
 

5. Hardware Implementation of the Proposed 

Systems 
 

Two hardware systems have been proposed and implemented 

in this work. The first system processes the data serially 

using a single pipelined processor, whereas the other system 

uses multiple pipelined and homogenous processors to 

process the data in parallel. Both systems are used for 

processing DSP applications that are represented by a DFG. 

The hardware implementations of the systems have been 

carried out using Verilog HDL and targeting different Xilinx 

FPGAs.  
 

 5.1  Instruction Format 
 

Each task in the task queue is represented in the form of an 

instruction that is presented in Figure 11. The instruction is 

41-bit wide and contains all of the data needed for execution. 

There are eight different fields in the instruction. These are: 

• The task's identifier (6 bit).  

• Operand1 identifier: Represents the ID of the task that 

produces operand1. (6 bit). 

• Operand2 identifier: Represents the ID of the task that 

produces operand2. (6 bit). 

• Operand1 iteration number: The number for the iteration 

in which operand1 is produced. (2 bit). 

• Operand2 iteration number: The number for the iteration 

in which operand2 is produced. (2 bit). 

• The multiplication factors: 16-bit immediate data that is 

used in the multiplication process. (16 bit). 

• Operation code: represents the operation in the task. 

(addition, multiplication or add-multiply) (2 bit). 

• Last_task bit, which is set to 1 for the last task in the task 

queue of the DFG.  
 

 5.2  Hardware Implementation of the Serial System 
 

The pipelined serial system consumes less resources in 

comparison with the parallel one. In this system, only one 

task is executed every clock cycle because only one 

processing element exists. The system consists of seven main 

units: processing element, address generator, main memory, 

instructions buffer, state table, multiway function buffer, and  

execution array. All units are driven by an external clock. 

Figure 12 shows a block diagram for the serial system. The 

processing element executes tasks sequentia lly. It supports 

addition, multiplication, and multiplication-addition 

operations. Three stages pipelined multiplier and a single 

stage adder Intellectual Property (IP) cores are used. Once 

the processing element is free the ALU_Ready signal is set 

and a  new task is loaded from the execution array for 

execution. The constant operands are embedded within the 

instruction (the task). The operation performed by the 

processing element varies according to the task itself. The 

result from the processing element ALU_Result is forwarded 

to other units in the system to be used by other tasks. The 

block diagram for the processing element is shown in Figure 

13. 

The address generator is shown in Figure 14. The output of 

the address generator is connected directly to the address 

lines of the main memory. The address is incremented 

sequentially at each clock cycle. The output of the address 

generator is initially set to 0. Therefore, the instructions are 

stored sequentially starting from location 0 in the main 

memory. In addition, the output of the address generator is 

connected to the address lines of the state table and the 

multiway function buffer through MUXs to allow clearing all 

locations in these two units. Once all instructions are stored 

in the main memory, the Reset signal is used to clear the 

output of the address generator to 0.  

Based on the address from the address generator, a n 

instruction is fetched from the main memory and stored in 

the instructions buffer. The EC signal is used to enable or 

disable the unit. It is controlled by the Buffer_full signal and 

bit number 6 in the instruction. If the instruction buffer is 

full, the Buffer_full signal is asserted in order to stop 

incrementing the address. Similarly, when reaching the last 
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instruction in the iteration, the address generator stops 

incrementing until a  new iteration starts. At the beginning of 

each iteration, two control signals are used to clear the 

address to 0 and the next iteration is started. These two 

signals are the Rb and the Rd signals which come from the 

multiway function buffer and the state table, respectively. 

More discussion about these two signals is provided later.  
 

 
Figure 14: The address generator in the serial system 

 

There is a single shared main memory in the system that is 

used to store instructions. The instructions are initially 

loaded from an external file Data_In. At each clock cycle, 

based on the address generated by the address generator, an 

instruction is fetched from the main memory into the 

instructions buffer Memory_out. The main memory is shown 

in Figure 15. 
 

 
Figure 15: A block diagram for the main memory in the 

serial system. 
 

The system has one instructions buffer which is shown in 

Figure 16. It holds the tasks (instructions) that have been 

fetched from the memory until the execution array is ready to 

receive them. The first four instructions in each iteration are 

loaded directly to the execution array. Once the execution 

array is free, it sends a ready signal Ready to the instructions 

buffer and one instruction Buffer_out is loaded to the bus that 

is connected to the execution array and the state table. The 

Buffer_full signal alerts the address generator that the buffer 

is full. The buffer is cleared at the beginning of any new 

iteration when receiving the Rb and the Rd signals.   

As presented in Figure 17, the state table is a dual output 

one-dimensional 1-bit wide memory array that is addressed 

by the IDs of the operands in the task. It provides the 

readiness state of all tasks for the current iteration. Initially, 

each cell in the state table is cleared to 0 using the clear 

signal. An operand is considered ready if it belongs to a 

previous iteration or to the current iteration and its 

corresponding cell in the state table is 1. In our case, we save 

the operands produced by any task for the most recent four 

iterations. If the operand is ready, its ID and the iteration 

number are written into the outputs (S1 for operand1 ID, S2 

for operand2 ID, CTR [1:0] for iteration number of operand1 

and CTR [3:2] for iteration number of operand2) that are 

connected to the multiway function buffer. If the operand is 

not ready, 0 values are placed on its corresponding outputs. 

The state of each task is updated directly after the execution 

and its content is cleared at the end of each iteration. 

The hardware implementation of the multiway function 

buffer in the serial system is shown in Figure 18. The 

multiway function buffer holds the ready operands of each 

task for the most recent four iterations. Initially, the buffer is 

cleared to 0’s; it then starts receiving ready operands from 

the processing element. The ready operands are read from 

this unit using the operand IDs and the iteration number that 

come from the state table (S1, S2, and CTR). The operands 

along with their IDs and iteration numbers are sent to the 

execution array unit through the Src1 and Src2 outputs. 

During each iteration, the multiway function buffer is 

updated with the new result produced by each task, 

ALU_Result. At the end of the iteration, the buffer content is 

updated for the next iteration and the Rb signal is generated.  

Figure 19 shows the hardware implementation of the 

execution array unit in the serial system. The execution a rray 

consists of four cascaded stages (EA1, EA2, EA3, and EA4).  

The inputs to this unit come from the instructions buffer and 

the outputs are connected to the processing element. Each 

task enters this unit through stage EA4 and passes through 

the other stages until it reaches the processing element. 

During this journey, the execution array guarantees that all 

operands of the task are ready before starting the execution. 

This is done by comparing the IDs of the operands in the task 

with the IDs of the operands that are produced by the task 

that has just finished execution over the processing element 

and has produced the ALU_Result. Also, by comparing with 

the IDs of the operands that have been read from the 

multiway function buffer through the Src1 and the Src2 

outputs. At any time, four tasks can exist in the execution 

array (one task in each stage). Once the task that holds the 

processing element is done, the ALU_ready signal is asserted 

and the task in the EA1 stage starts running on the 

processing element. At the same time, the Ready signal is 

used to shift up the tasks in the other stages from one stage to 

the other and a new task is inserted into stage EA4. The first 

four tasks are directly shifted up without watching the ready 

signal.  

In the EA4 stage, two 16-bit registers R1, and R2 are used to 

hold the two operands of the task when they are ready. These 

two registers are initially cleared to 0. If any of the operands 

is not ready, the value of the corresponding register is kept at 

0. The two registers are concatenated with the instruction and 

the resulting 73 bits are forwarded to the other stages. In any 

of the stages, if an operand becomes ready after being not 

ready, its value is copied to its corresponding field in the 73 

bits.   

There are some differences in the circuit design of the 

registers in the execution array. In Figure 19, the dotted 

frame selects part of a register design. Differences are based 

on the register position in the execution array. This 

guarantees correctness at the beginning of each iteration. The 

register that is directly connected to the instructions buffer 

allows the first four tasks of every iteration to pass this stage 

to the next one without the need of the Ready signal be set. 

The register in the following stage allows the first three tasks 

move to the next stage without the Ready signal be set. The 

register in the second stage allows the first and the second 

tasks only to proceed to stage EA1 of the unit.  

The last stage of this unit (EA1 in Figure 12) has slightly 

different design. It allows the first task only to move to the 

processing unit. After moving the task to the processing 

element, it generates the Ready signal to the other stages and 

to the instructions buffer. The Ready signal triggers the 
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instructions buffer to load a new instruction and to pass tasks 

between stages. Figure 20 shows the hardware that generates 

the Ready signal in stage EA1. 
 

 
Figure 20: Generation of the Ready in stage EA1 

 

 5.2.1  Serial System Functionality 
 

The serial system executes task as follows: 

• Initially, the address counter is cleared to 0. Then, a  

descriptive information of the DFG is loaded into the 

main memory, and the state table and the function buf f er 

are cleared. 

• The address generator produces sequential addresses to 

the memory. Tasks are loaded into the instructions buffer. 

• The instructions buffer checks the IDs of the tasks and 

directly loads the first four tasks of every iteration 

without saving them in its queue. (Other tasks are saved). 

• Once the instruction buffer is full, it sends the buffer_full 

signal to the address generator to stop counting. 

• When the instructions buffer receives the Ready signal 

from the execution array unit, it sends one task to the 

state table and the execution array register. 

•  Task’s operands are checked for availability using the 

state table. Ready operands are sent to the multiway 

function buffer.  

• The multiway function buffer receives the ID and 

iteration index of each operand, fetches the 

corresponding values and sends them to all stages of the 

execution array.  

• At every clock cycle and when a stage receives a ready 

signal from the first stage in this unit a  task is shifted up 

to the other stages. 

•  The execution array stages wait for any values coming 

from the multiway function buffer or from the processing 

element and match them with the task's operands which 

they hold.  

• Operands values are stored within a task as soon as the 

Alu_Ready signal is asserted. Then a task is loaded into 

the processing element.  

• After execution, the result is sent to the state table, to the 

multiway function buffer, and to the execution array. 

• The state table and the multiway function buffer update 

their content according to the executed task. These units 

keep checking the last_task bit of the task for the end of 

iteration. 

• At the end of each iteration, the state table and the 

instructions buffer are cleared, and the buffer contents are 

updated to be compatible with the next iteration. The Rb 

signal and the Rd signal from the multiway function 

buffer and the state table are activated to reset the address 

generator and a new iteration is started. 
 

 5.3  Hardware Implementation of the Parallel System 
 

Figure 21 shows a block diagram for the parallel system. The 

parallel system consists of: Processing elements, address 

generator, main memory, instructions buffers, state table, 

multiway function buffer, and execution arrays. All units 

have similarities with the units of the serial system with 

some expansions or duplications in order to support 

parallelism. They are driven by the same external clock. 

There are four homogenous pipelined processing elements to 

execute tasks concurrently. Up to four tasks can be execu ted  

at every clock cycle. Each processing element supports all 

required operations (addition, multiplication and 

multiplication-accumulation). The processing element in the 

parallel system is identical to that in the serial system, shown 

in Figure 13. 

The address generator, which is shown in Figure 22, is 

responsible for generating the addresses in the system. It has 

similar circuit design as the address generator in the serial 

system with minor differences. There are four instructions 

buffers in the parallel system, if at least one of them is full, 

its Buffer_full signal (Buffer_full1, Buffer_full2, Buffer_full3 

or Buffer_full4) is asserted in order to stop the address 

generator. Four tasks are concurrently fetched from the 

memory. There are four enable signals that represent the 

last_task bit in each instruction. These are bits 

Memory_out1[6], Memory_out2[6], Memory_out3[6] and 

Memory_out4[6]. After the last instruction in the iteration, 

the address generator stops counting until a  new iteration is 

started.  

The main memory, which is shown in Figure 23, 

concurrently loads four instructions, through the 

Memory_out1, the Memory_out2, the Memory_out3 and the 

Memory_out4 output ports, into the instructions buffers; each 

instructions buffer receives one instruction. 

The parallel system has four instructions buffers that are 

identical to the one used in the serial system. 

As shown in Figure 24, the state table in the parallel system 

deals with four instructions that are read from the main 

memory. If the operand is ready, its ID and the iteration 

number are written into the outputs (S1 for operand1 ID, S2 

for operand2 ID, S3 for operand3 ID, S4 for operand4 ID, S5  

for operand5 ID, S6 for operand6 ID, S7 for operand7 ID, S8  

for operand8 ID, C1 for iteration number of operand1, C2 for 

iteration number of operand2, C3 for iteration number of 

operand3, C4 for iteration number of operand4, C5 for 

iteration number of operand5, C6 for iteration number of 

operand6, C7 for iteration number of operand7 and C8 for 

iteration number of operand8). If the operand is not ready, 0 

values are placed on its corresponding output. The state tasks 

are updated directly after the execution (ALU_Result1, 

ALU_Result2, ALU_Result3 and ALU_Result4). The table 

content is cleared at the end of each iteration.  

The multiway function buffer is an expanded version of the 

multiway function buffer used in the serial system. The 

multiway function buffer receives eight operands that are 

outputs from the state table (S1, S2, S3, S4, S5, S6, S7, S8, 

C1, C2, C3, C4, C5, C6, C7 and C8). Then the operands, 

their IDs, and their iteration number are sent to the execution  

array units through ports Src1, Src2, Src3, Src4, Src5, Src6, 

Src7 and Src8). This unit receives ready operands from the 

processing elements through ports ALU_Result1, 

ALU_Result2, ALU_Result3 and ALU_Result4 . At the end of 

the iteration, the bits ALU_Result1[22], ALU_Result2[22], 

ALU_Result3[22] and ALU_Result4[22] along with the 

buffer content are updated for the next iteration and the Rb 

signal is asserted. Figure 25 shows the hardware 

implementation of the multiway function buffer used in the 

parallel system. The execution array consists of four parallel 
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stages (EA1, EA2, EA3, and EA4). The inputs of each stage 

come from the corresponding instructions buffer input 

(Memory_out) and the outputs of the multiway function 

buffer. The output Array_out of each stage is connected to 

one of the processing elements. Similar to the execution 

array unit in the serial system, this unit holds tasks in its 

stages until all operands of the task are ready. This is done 

by using the same comparison operations as in the serial 

system. But in the parallel system there are four operands 

that are produced by the tasks that have just finished 

execution. These operands are placed on ports ALU_result1, 

ALU_result2, ALU_result3 and ALU_result4 . Once the task 

that holds a processing element is done, the ALU_ready 

signal for that processing element is asserted and the task in 

its corresponding stage starts running on the processing 

element. At the same time, the Ready signal triggers the 

corresponding instructions buffer to load a new instruction 

and to pass task into the execution array stage. Figure 26 

shows the hardware implementation of the execution array 

unit in the parallel system. 
 

5.3.1  Parallel System Functionality 
 

The parallel system works as follows: 

• The address is cleared to 0. A descriptive information of 

the DFG is loaded into the main memory and the state 

table and the multiway function buffer are cleared. 

• The address generator produces four sequential addresses 

to the memory and four tasks are fetched into the 

instructions buffers. 

• Each instructions buffer checks the task’s ID and direct ly  

loads the first four tasks of every iteration without saving 

them in its queue. (Other tasks are saved). 

• If one of the instructions buffers is full, it sends a 

buffer_full signal to the address generator to stop 

counting. 

• Once an instructions buffer receives a ready signal from 

its execution array register, a  task is sent to the state table 

and to the execution array stage. 

• Tasks operands are checked for availability using the 

state table. Ready operands are sent to the multiway 

function buffer. 

• The multiway function buffer receives operands IDs and 

their iteration numbers, fetches their corresponding 

values and sends them to their stage in the execution 

array unit.  

• Every execution array stage waits for any values coming 

from the multiway function buffer or from the processing 

element and matches them with the task's operands which  

it holds.  

• Operands values are stored within a task, a s soon as the 

Alu_Ready signal, of the stage of the execution array, is 

asserted. Then a task is loaded to the processing element.  

• After execution, the result is sent to the state table, to the 

multiway function buffer, and to the execution array. 

• The state table and the multiway function buffer update 

their contents according to the executed tasks. These 

units check task’s last_task bit for end of iteration. 

At the end of each iteration, the state table and the 

instructions buffers are cleared, and the multiway function 

buffer contents are updated to be compatible with the next 

iterations. The Rb signal and the Rd signal from the 

multiway function buffer and the state table respectively are 

used to reset the address generator and a new iteration is 

started.  
 

6. Experimental Results and Comparisons 
 

The serial system and the parallel system have been 

synthesized targeting Virtex-7 XC7VX690T-FFG1157 

FPGA device from Xilinx. The implementation has been 

carried out for 64 instructions (tasks), 64-bit state table, and 

64 X 64 bit buffer in the multiway function buffer to 

maintain tasks information for four iterations. The multiplier 

size is 16-bit X 16-bit. Also, a 16-bit adder is used. 

FPGAs nowadays are widely used to implement vast number 

of applications. Examples of such applications are presen ted  

in [31] and [32]. FPGAs contain a matrix of configurable 

logic blocks (CLBs).  Each CLB has two slices. A slice has 

four LUTs. A LUT stores a predefined list of outputs for 

every combination of inputs and provides a fast way to 

retrieve the output of a logic function. It produces two 

outputs: one is registered (Using Flip Flop) and the other is 

not registered (combinational). When using a registered 

output, a  slice is counted as a slice register. On the other 

hand, if a  combinational output is used then the slice is 

counted as a slice LUTs. The number of used slice registers 

and slice LUTs in any implemented system reflects the area 

of that system.  
 

6.1 Serial System Implementation Results 
 

Synthesis results show that the design of the serial system 

runs at a  frequency of 355.29 MHz. The area in terms of 

LUTs is 8867 and it consumes 4818 slice registers. Table 3 

summaries the serial system FPGA implementation results. 
 

Table 3. The serial system FPGA implementation results. 

Number of Slice 
Registers Utilized 

Number of Slice 
LUTs Utilized 

Minimum 
Period Time 

4818 8867 2.815 ns 
 

6.2 Parallel System Implementation Results 
 

Synthesis results show that the design of the parallel system 

runs at a  frequency of 476.554 MHz. The area in terms of 

LUTs is 21229 and the number of slice registers is 12223. 

Table 4 shows the parallel system FPGA implementation 

results. 
 

Table 4. The parallel system FPGA implementation results. 
Number of Slice 

Registers Utilized 

Number of Slice 

LUTs Utilized 

Minimum 

Period Time 

12223 21229 2.098ns 
 

6.3 The Serial System versus the Parallel System 
 

Both systems are compared in terms of the number of used 

slice registers, the number of used LUTs, and the frequency.  

Figure 27 shows the comparison between the serial system 

and the parallel system in terms of the number of slice 

registers that are used in the circuit design. The comparison 

is done for different number of instructions. When the 

systems are dealing with 64 instructions, the parallel system 

occupies 12223 slice registers in comparison to 4818 slice 

registers in the case of the serial system. As shown in Figure 

27 the number of occupied slice registers (for both systems) 

increases with the number of instructions. The increase in the 

serial system is approximately 50% and it is doubled in the 

parallel system. Moreover, the ga p between the number of 

slice registers occupied by the parallel system and that of the 
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serial system also increases with the number of tasks or 

instructions. Table 5 shows the number of occupied slice 

registers by the serial system and by the parallel system and 

the difference between them for different number of 

instructions. 
 

Table 5: The number of occupied slice registers by both 

systems for different number of instructions. 

Number of 
instructions 

Number of occupied slice registers 

Serial  
System 

Parallel 
System 

Difference 
between both 

64 4818 12223 7405 

128 9113 18360 9247 

256 17520 32264 14744 

512 34537 66164 31627 

Figure 27: The number of occupied slice registers by both 

systems for different number of instructions. 
 

The number of Slice LUTs gives an idea about the system 

area. As presented in Figure 28, starting from 64 instructions, 

the serial system consumes 8867 LUTs. When the number of  

instructions is increased to 128, the serial system consumes 

17207 LUTs, and it consumes 31753 LUTs in the case of 

using 256 instructions. When the number of instructions 

reaches 512, 50428 slice LUTs are consumed. 

On the other hand, in the parallel system, 21229 LUTs are 

consumed for the case of 64 instructions. This number 

increases with the number of instructions. For example, in 

the case of 512 instructions, 170671 LUTs are needed to 

build the system. Obviously if the number of instructions in 

the systems is increased, more slice LUTs are needed. This is 

due to the increase of size of the main memory, the multiway  

function buffer and the state table. Table 6 shows the number 

of occupied slice LUTs by both systems and the difference 

between them for different number of instructions. 
 

Table 6: The number of occupied slice LUTs by both 

systems for different number of instructions. 

Number 
Of 

instructions 

Number of occupied slice LUTs 

Serial 
System 

Parallel 
System 

Difference 
between 

both 

64 8867 21229 12362 

128 17207 44521 27314 

256 31753 72888 41135 

512 50428 170671 120243 

Figure 29 shows the frequencies for both the serial and the 

parallel systems for different instructions counts. It can be 

said that there is almost no variation in the frequency for the 

serial system as the number of instructions increases. For 

example, it is 355MHz for the 64 instructions case and 

351MHz for the 512 instructions case. The frequency in the 

parallel system slightly changes as the number of instructions 

increases. For the case of 64 instructions, the frequency is 

477 MHz and it is 441MHz for the case of the 512 

instructions. In general, the frequency in the parallel system 

is higher than that of the serial system. 

 
Figure 28: The number of occupied slice LUTs by both 

systems for different number of instructions. 
  

Also, system frequencies decrease as the size increases, 

because the system becomes bigger, and it consumes more 

routing time and needs more time to update memories. The 

serial system performance is almost constant but in the 

parallel system the decrease in the system frequency can be 

up to 4.5%. 
 

Table 7: Frequency in MHz for both systems for different 

number of instructions. 

Number 
of instructions 

Frequency in MHz 

Serial 
System 

Parallel 
System 

Difference 
between both 

64 355 477 122 

128 355 470 115 

256 355 462 107 

512 351 441 90 

 
Figure 29: Frequency in MHz for both systems for different 

number of instructions. 
 

6.4 The Proposed Systems versus the Retiming 

Technique in [29] 

Table 8 shows a comparison between the two systems that 

are presented in this paper and the retiming technique 

presented in [29]. This technique uses the retiming 

scheduling algorithm to improve the performance of DSP 

applications represented by DFGs. Retiming is applied using 

the cut theorem which cuts a DFG into sub-sets and moves 

delays between them until obtaining the best pipelined DFG. 

All of the systems have been synthesized using the Xilinx 

Virtex-5 FPGA.   

Table 8 shows the system clock frequency for the three 

designs. The proposed parallel system achieves the best 

performance with a clock frequency of 266 MHz as 

compared to 210 MHz and 176 MHz in the proposed serial 
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system and the retiming technique, respectively. The parallel 

system achieves 51.2% higher performance than the retiming 

technique, while the serial system achieves 19.3% higher 

performance than the retiming technique. 

The comparison in term of DSP48 devices that are used in 

the system implementation shows that both the serial system  

and retiming technique require two DSP48 devices each, 

while the parallel system requires three DSP48 devices. 
 

Table 8: Comparison between the proposed systems and the 

retiming technique [29]. 
Circuit/System CLK (MHz) DSP48 

Serial System 210 2 

Parallel System 266 3 

Technique of [29] 176 2 
 

7. Conclusions 
 

This paper proposes a new scheduling technique that is 

targeting DSP applications represented by a data flow graph s 

(DFGs). The technique is composed of two parts: software 

analysis of the data flow graph and hardware assignment of 

the tasks to achieve the desired algorithmic behavior. The 

scheduling technique is designed to minimize the execution 

time of a single iteration of the DSP application and thus 

maximizing system performance. In the software part, the 

nodes are arranged in a queue of nodes such that when the 

tasks associated with these nodes are executed in order, data 

dependencies are preserved.  Two or more tasks may be 

combined to form a compound task. In many cases, the 

compound task can be executed in a time that is less than the 

sum of the execution times of the individual tasks. For 

example, when a multiplication operation is followed by an 

addition, which is very common in DSP applications, the 

resulting three-operand operation can be executed in less 

time than the time needed to perform the two operations 

separately. This process eventually decreases the number of 

execution cycles for each iteration of the iterative DFG. 

The second part of the scheduling technique is the allocation 

of the tasks of the DFG on a general-purpose pipelined 

hardware architecture. This stores the DFG operation as 

instructions into the main memory. These operations are 

stored in a sequence to be executed as many iterations as 

needed. We have proposed two implementations of the 

system architecture: a serial system and a parallel system. 

The serial system comprises one processing element where 

all tasks are processed sequentially. This system is 

characterized by a small area size; it requires less number of 

slice registers and less number of slice LUTs than the 

parallel one. The parallel system, however, focuses on  

performance rather than system area. . This system uses f our 

homogenous parallel processing elements for concurrent task 

execution. The relationship between the number of 

instructions that are loaded and executed, and the system 

area is studied. Similarly, the performance for different 

problem sizes is analyzed.   

Since there are no many previous contributions in this 

specific field, we have chosen to compare our results with 

the retiming technique presented in [29]. It has been shown 

that our system outperforms the retiming technique in terms 

of the iteration time.  In terms of the system area, the 

retiming technique and the serial version of our system 

require the same number of DSP slices when FPGA 

hardware implementation is used. 
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Figure 6: Flow chart of node queue constructing. 
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Figure 7: Flow chart of compound task queue constructing. 

 

 
Figure 8: The DFG of the all-pole lattice filter [30]. 

 

 
Figure 9: The DFG of the fourth-order jaumann wave digital filter [30]. 
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Figure 10: The DFG of the fifth-order wave elliptic filter. 

 

 

 
Figure 11: The instruction format of a DFG tasks. 

 

 
Figure 12: The block diagram for the serial system. 
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Figure 13: The block diagram for the processing element. 

 

 
Figure 16: The hardware implementation of the instructions buffer. 

 

 

 
Figure 17: The hardware implementation of the state table in the serial system . 
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Figure 18: The hardware implementation of a multiway function buffer in the serial system. 

 

 

 
Figure 19: The hardware implementation of the execution array unit in the serial system . 
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Figure 21: The block diagram of the parallel system. 

 

 
Figure 22: The hardware implementation of the address generator in a parallel system . 
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Figure 23: The hardware implementation of the main memory unit in a parallel system . 

 

 

 
Figure 24: The hardware implementation of the state table unit in a parallel system. 
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Figure 25: The hardware implementation of the multiway function buffer at a  parallel system. 
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Figure 26: The hardware implementation of the execution array unit in the parallel system. 

 


