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Abstract: To date, battery optimization for embedded systems still 

a crucial subject. Actually, the majority of carried out works focus 

on transmission controls without taking into account the 

specifications of the batteries themselves. Indeed, an improvement 

of 70% is reported by exploiting the battery recovery effect. In this 

paper, the recovery phenomenon is exploited to design an algorithm 

that optimizes both the lifetime of the battery and the performance 

of the studied system. The algorithms from Dynamic programming 

and Reinforcement learning fields are the first to be considered. 

When in Dynamic programming prior detailed information are 

assumed to be available, in reinforcement learning the information 

becomes unknown and long calculation times are needed to 

converge toward an optimal policy solution. The paper contribution 

is about designing a new Rapid Learning Algorithm (RLA) that 

combines both Dynamic programming and Reinforcement learning 

features. RLA exploits a reduced model of the system instead of 

exploring the whole and heavy system state model as Dynamic 

programming do. The RLA run-time is then shortened. Based on 

battery stochastic model, the simulation results obtained with RLA 

are compared to the Dynamic programming and Reinforcement 

learning algorithms under the same conditions. By taking into 

account the recovery effect this paper illustrates that the calculation 

time and the system performance are greatly improved when RLA 

is adopted. 
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1. Introduction 
 

Internet of Things (IoT) has covered an important area of human 

being daily lives. All recent devices are to be able to communicate 

with each other by exchanging data of different using wireless 

communication capabilities. In fact, IoT offers a wide range of tools 

and technologies to extend connectivity to all devices and machines 

[1]. The efficiency of consumption has never reached a level of 

interest as high as today. Actually, many research groups focus their 

works on the need to reduce the energy consumption of battery-

powered devices, such as sensors, phones, tablets, etc [2], [3]. In the 

field of embedded system communications such in wireless sensor 

networks (WSN), the problem is of high important level as the 

sensors are mostly distributed over large areas without the 

possibility of local access, especially when these areas are prone to 

danger, as in the case of the proximity of a volcano, war zones or in 

case of implemented sensors in the human body. Batteries are and 

remain the primary means to provide energy to the components of 

the wireless sensor networks. Optimal use of their energy is 

therefore the main goal that this paper is focusing on. Previous 

works have addressed this issue by providing protocols that operate 

at the MAC layer level to improve the consumption behavior of 

wireless sensors as in [4], [5] following a software vision. Routing 

mechanisms have also been approached to deal with energy 

consumption problems such in [6] At the hardware vision side, 

some works have considered solutions for the physical layer level 

as in [7] presenting new signal processing approaches. Batteries 

with harvesting capabilities of their surrounding energies have also 

been proposed to improve the performance of wireless sensors, as 

shown in [8]–[10]. Unfortunately, their impact is further mitigated 

by the limited and low energy quantities gathered by the harvesters. 

The battery recovery effect has been yet exploited in numerous 

previous works where scheduling algorithms as in [11], [12] were 

proposed to increase the lifetime of the WSN. Authors in [11] stated 

that, as consequences of the capacity recovery effect, up to 20% of 

the total cell capacity becomes available again with some rest time. 

Similar statements are proposed by [12] in the area of wireless body 

sensors, where an improvement of 70% is reported by exploiting the 

battery recovery effect. 

Actually, RLA allows an optimal use of the available battery 

capacities. It considers a reduced model based on a partial known 

system state. The recovery effect as defined in [7] represents the 

main tool exploited by the RLA to achieve a high-performance 

level. This effect has been previously considered in similar works 

especially in the field of wireless communication with battery-

powered devices [13]–[15]. 

This paper is based on the wireless sensor systems described in 

Figure 1. 

 

Figure 1. The recovery-aware battery powered study system 
 

When the information is gathered by the sensor, the ON/OFF power 

manager decides according the policy being followed whether to 

switch on or off the wireless card. On position ON, the transmission 

occurs with a power level as fixed by the power control block. An 

optimizer block is in charge of making the right decision depending 

on the data packet size, the battery level, the available charges and 

the channel state. The operation mode is assumed to follow a time 

slotted way of duration TS. 

Three cases are then considered depending on the information 

availability. They are described as follows:  

• In the first case, we assume that the optimizer has prior 

stochastic knowledge of data packet size and channel state 

transitions. Value Iteration from Dynamic programming field is 

appropriated for this situation [16] ; 

• In the second case, the optimizer is assumed to have no prior 

information about system state transitions. Therefore, the 

optimizer performs some training episodes to know the system 

states before calculating the optimal strategy to incorporate 

using reinforcement learning algorithms such as Q-learning 

[15], [16]; 
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• In the context of RLA, the optimizer can, therefore, exploit 

some partial information provided by system states and learn 

only unknown parts. 
 

2. Battery model and recovery effect 

description 
 

Batteries, especially chemical, are mainly described by two 

important parameters, namely the theoretical and nominal 

capacities [17]. These parameters are defined as follows: 

• The theoretical capacity of the battery, denoted TB, is the 

initial total number of charge units available in the body 

of the battery, mainly at the level of the electrolyte and 

the electrodes before the first use ; 

• The nominal capacity, denoted Bmax, represents the 

effective amount of charges that can be supplied by the 

battery under a specific constant current until the battery 

reaches the cut-off voltage. When this cut-off value is 

reached, the battery runs out completely and can be 

declared out of order and then must be replaced. 

The parameters TB and Bmax are both sensitive to current 

battery materials and discharge conditions. 

The recovery effect is often defined as the selfreplenishment 

of the battery by active materials causing the voltage 

partially increasing when the current is interrupted. 

Therefore, the intermittent discharge profile increases the use 

of the capacitance inside the battery, because the cells can 

feed themselves by recovering charge units from the 

electrolyte during periods of inactivity [17]. 

When considering pulsed current with periods of inactivity, 

as described in [18], a charge recovery phenomenon occurs 

in the battery volume during periods of inactivity, e.g. in a 

duty cycle operating mode. 

These periods of inactivity (idle periods) are very important 

for the battery, they allow it to drain new charge units from 

the electrolyte to replace those sent to the outside. The new 

charges comes from the electrolyte solution according to a 

diffusion process given that the gradient of the active charges 

always decreases from the electrode deep inside the 

electrolyte. New charge units become then available for 

future transmission energy consumption cycles [17]. 

To take profit of the recovery effect we proceed by modeling 

the battery. Actually, many battery models are proposed in 

literature. We can find models such as electrochemical, 

Electrical circuit, Analytical and stochastic ones [19]. 

For our proper need, the stochastic model for the battery 

state behavior as described in [20] fit the best with our 

purpose. In our study, only the recovery effect will be taken 

into account, we will then neglect all other phenomena 

occurring inside the battery such as passivation as in [20]. 

According to the stochastic model, the battery capacity 

behavior will be represented by a Markovian process starting 

from a fully charged battery state and stopping when either 

all the theoretical capacity is consumed or the battery charge 

state felt into zero. This latter battery state is considered to be 

a trapping state where the battery becomes out of use even 

when quantities of charge units still available in the 

electrolyte. 

It is well known, in the WSN communication field, that the 

transmission mechanism is the biggest source of energy 

consumption. According to this statement, we assume that 

the whole energy consumption is due to the data 

transmission process and will neglect the consumption of all 

other sensor radio positions such as receiving, idle listening 

or sleeping modes. 

The battery model is represented by a set of possible states 

from 0 to the nominal capacity Bmax. At the beginning, the 

battery is fully charged and it state is Bmax. The shifting 

process between the battery states is done according to the 

decisions made by the optimizer. Data packet transmission 

occur at stochastic instant according to a Bernoulli process 

with a probability of a1 = q during the time slot. The data 

packet can also not be transmitted and then dropped, the 

recovery effect occurs with a probability of a0 = 1 - q since 

there is no discharge. As stated before, a battery state of zero 

is a trapping state. Such trapping state is a terminal one by 

which the battery is declared dead. The nominal capacity 

Bmax is an upper battery state bound and can be reached 

many times as the recovery charge process is going on. We 

can summarize all this in a graphical model of the battery as 

in Figure 2. 

Figure 2. Battery operating model with Bernoulli process 

probability 
 

In that graphic, each circle number represents the battery 

charge units available at the electrode. In this example, 

transmitting consumes one charge and dropping data allows 

the battery to recover one unit whenever the terminal state is 

not reached. Once the battery state fall into zero state it will 

never quit it any more like in a trap case. 
 

3. System model presentation 
 

The battery considered in our study has limited capacity and 

is not subject to any external feeding. We aim to exploit the 

whole theoretical capacity initially available inside the 

battery bulk. By the way we look forward to maximize the 

total amount of data packet supposed to be successfully 

transmitted to the receiver with a discounted time factor. 

We consider that data is supposed to be gathered and ready 

for transmission at the beginning of each time slot TS with 

different sizes. This data is either transmitted or dropped 

during the next time slot.Data arriving process is stochastic 

and can be represented by mean of a first order Markov 

model as in [15]. The data packet size, denoted dn, belong to 

a set of ND possible data sizes . The 

probability transition from  in  to in time slot  

 is equal to . 

The channel state is considered to be constant during a time 

slot interval TS. It can change only from one TS to the next. 

The channel state transitions is supposed to occur following 

a Markovian process. The channel states are in the set  
, where NH is the total number of 

possible channel states. The transition from one channel state 

to another occurs with a probability 
. 

Battery charge state bn and consumed theoretical capacity  
 are supposed to be known at the beginning of each time 

slot. They change only after performing a transmission or a 

charge recovery when trapping state has not been reached 

0 1 2 31 1
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yet. The battery charge state are in the set 

. 

When the wireless card is switched on, the transmitter 

consumes energy from the battery to perform the 

transmission of the data packet towards the receiver. The 

consumed energy is denoted  when data size is  and the 

channel state is . We consider  as the smallest battery 

energy which represents one charge unit. 

A successful data packet transmission depends on the 

quantity of energy provided by the battery to the transmitter 

and weather it meets their needs based on the data sizes and 

the channel condition’s state. As expected, the more data are 

important in terms of sizes and the channel attenuation is 

high the more important is the energy to be extracted from 

the battery. 

As stated earlier, battery charge levels, data packet sizes and 

channel states are considered to be known at the beginning of 

each time slot. The information about the channel states is 

assumed to be shared between the optimizer, the transmitter 

and the receiver. 

For decision making purposes, the optimizer exploit all the 

system state components such as data sizes, channel states, 

battery charge and consumed theoretical capacity parts. 

Decisions made become the policy to implement inside the 

wireless sensor to keep its choices oriented towards 

maximizing charge units use and the quantity of data 

transmitted to the receiver under multiple constraints such as 

trapping state and nominal capacity limitation. The actions 

made by the optimizer are either turning on the wireless card 

or switching it off. In the first case an is set to 1 to select the 

wireless card for transmission mode or an is set to 0 

otherwise. Those actions are picked from a set of actions  
 with only two possible values. 

The optimization problem will be conducted under some 

constraints that are summarized in the equations below (1), 

(2) and (3): 

 

          ,                                   (1) 

           ,                                   (2) 

          ,                         (3)     
 

Where NL denotes the number of transitions performed by 

the considered system. NL depends firmly on the discounted 

factor value. The battery charge state bn and the consumed 

theoretical capacity  are updated after each transition 

according to Equations (4) and (5) respectively. 

 

 

 
 

The optimization objective, aiming to maximize the 

cumulative transmitted data packets over one episode, is 

described in Equation (6). 
 

 
 

Where  is a discounted factor. 

The system under study is operating in a discrete-time 

fashion. It is described by a finite sized state vector  
. The system is well modeled 

according a Markovian Decision Problem (MDP) since all 

the elements of Sn are Markovians. We assume that the 

system is totally observable and either the next states and the 

rewards can be known by the optimizer who is the main 

decision maker agent. The set of system states is denoted  
 where NS is the total number of all 

possible system states. 

Policy π denotes the decisions to be made by the sensor 

either to switch on or off the wireless card button. The 

reward value is obtained after a pair action-state having been 

performed. This reward is represented by a single number 

equal to the size of the packet data that has been successfully 

transmitted to the receiver. Actually, we can note that in each 

transition, . The total obtained reward will be 

then obtained by the accumulation of all rewards and 

undated by mean of the considered discounted factor γ. 

The followed policy _ is evaluated for each state Sn using the 

state-value function denoted by  as given in Equation 

(7).  

 
 

This function gives the sum of all the rewards obtained when 

starting by state Sn and after follows policy π. 

Another function can be defined the same way than state 

value function, we call it action-state value function and will 

be denoted . This function evaluates the pair 

action-state and gives the cumulative amount of rewards 

obtained when starting by state Sn and taking first an action 

an before following the policy π after. It is defined by 

Equation (8). 

 
The optimization process proceed to a continuous 

improvement of the policy π. A policy π’ is better than π 

when its state-value function is the higher one, which can be 

expressed as . Optimal policy π*
 is the best 

one or at least equal to any other policy in terms of state-

values. The state value function can also be derived from the 

action-state value function by using Equation (9). 

 
The optimal policy is then obtained as given in Equation 

(10). 

 
 

4. Partially known-based model and the new 

Rapid Learning Algorithm 
 

 4.1  Partially known-based model optimization problem 
 

On the one hand, the conventional Q-learning method 

operates by estimating the value of the action state value 

vector during the learning phase. This is done considering an 

environment with dynamics completely unknown. Q-

learning takes a lot of time because it must perform many 

episodes to have sufficient knowledge of the behavior of the 

system [21], [22]. On the other hand, Value Iteration requires 

full knowledge of the system which is quite impossible in 

real cases [16]. In several environments, some dynamics of 

the system may be partially known.  
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In Table I we list different types of dynamics of the system 

that can be established in a deterministic or stochastic way in 

advance or still completely unknown. 
 

Table 1. Classification of the system state components 
Description Known Unknown 

Deterministic Battery charge 

state bn 

N/A 

Consumed 

theoretical charge 

capacity thcn 

N/A 

Completely unknown N/A Data packet size 
dn 

N/A Channel state hn 
 

Actually, as soon as the decision to transmit a data packet is 

made, the power control unit set the number of units to be 

consumed. Once the transmission performed, the next battery 

state and the consumed theoretical capacity can then easily 

be deduced according to Equation (4). 
 

    4.2  Partially known optimization problem: definition 

We define an intermediate state  to describe the state of the 

system after an action has been taken based on the known 

parts of the system. The system state is, as soon as the 

unknown parts are communicated to the wireless card, 

updated accordingly. This mechanism has already been 

adopted in previous publications, see [16], [23], [24]. Based 

on optimization subareas of system states, the relationship 

established at anytime between the intermediate state  
, the system state , the  

and the next system state  is given as follows: 

• The intermediate system state is 

 ; 

• The next system state  
. 

Where cn is the number of charge units having been used for 

the transmission in case where the wireless card was turned 

on (i.e. an = 1). Otherwise, cn = 0. 

Actually, the intermediate state is a fictitious state and 

the same value for the packet size of the initial state are 

maintained, even though this packet have been transmitted or 

dropped. The intermediate state considers only the known 

part of the studied system when transition from system state 

Sn to the state  occurs after taking the decision an. The 

unknown components of the system are not incorporated in 

the intermediate state (i.e. the following packet size and 

channel state values). Depending on the consumption of 

charge units in case of packet transmission, updating the 

battery levels and the consumed theoretical capacity is 

operated accordingly and the new packet size and channel 

state are integrated into the intermediate state to obtain the 

state . By introducing this notion of intermediate state, 

we can split the transition probability function into two 

separated parts a known and unknown ones as in [16]. The 

known part informs about the transition from the current 

state to the intermediate state, i.e. , while the 

unknown part governs the transition from the intermediate 

state to the next state . In terms of probabilities, it 

can be established that: 

 
Where the index k and u respectively denote the the known 

and unknown parts of the transition probability functions. In 

this case, the reward is generated during the transition from 

the current state to the intermediate state according to the 

value of the action taken from the policy followed by the 

wireless sensor. The phase corresponding to the transition 

from intermediate to the next state can also generate an 

additional reward. We can then establish that: 

 
The unknown parts of the next system state do not depends 

on the action having been taken and do not contribute to the 

production of the reward. So we can write that: 

 

 
 

However, this approach can easily be extended to cases 

where the unknown part depends on both the intermediate 

state and the action undertaken in the first phase. In this case 

an exploration of all possible actions will be necessary to 

determine the optimal policy. 

The known and unknown transition probability functions can 

therefore be expressed as follows: 
 

 
 

 
 

Where the operator I(.) is the indicator function that takes the 

value 1 if the argument in parentheses is true and the value 0 

otherwise. The reward generated by the known part at each 

iteration is given as follows: 
 

 
 

    4.3  Dynamic programming based concept for Rapid 

Learning Algorithm 

Before proceeding with the description of the learning 

algorithm, we first define the state value function V(Sn). This 

function will play the similar role as the action-state value 

function for the Q-learning algorithm. The optimal state 

value function, denoted , is computed for each fixed pair 

(packet size dn, channel state hn) where Sr is a reduced set of 

system states Sr. We have to go through all the possible 

combinations for these two elements in order to finally find  
 for all possible system states. is computed according to 

the equation below: 
 

 
 

Where Sred is the possible future state in the reduced set of 

system states Sr. Sr is based on the pair (packet size, channel 

state) as given in the current system state Sn. Having the 

optimal value , the optimal policy is directly obtained by 

calculating: 
 

 
The following proposition proves that , as defined in 

Equation (19), and , as defined in Equation (10) are 

equivalent. 
 

Proposition 1:  and  are equivalent. 

Proof: To show that  and  are equivalent, we 

split the total set of system states S on subsets  with  

. If ND  = 2 and NH= 2, then  
. The equivalence over  for i=1 is given in 

Equation (20). 
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Similarly for the cases of ,  and  

 which can all be proved equivalent to . In 

other words,  is the concatenation of the set of  

 for all , since each one covers a 

reduced set of S. 

Proposition 1 is very important because it allows us to use 

the  to learn the optimal policy . 

4.4  The proposed Rapid Learning Algorithm 
 

While Q-learning algorithm learns the action-state-value 

function to approach its optimal value , the proposed 

method focus on state-value function and directly calculates 

its optimal value . However, even if the elements of 

the optimal vector  are computed step by step while fixing 

the known parts of the system, the whole process converges 

quickly to a robust estimate of the global optimal policy __. 

The learning process includes exploring unknown parts of 

the system. Actually, for each combination of data packet 

size and channel status identified, a dynamic optimization is 

conducted to update the system state value vector . 

Schematically, the proposed method explores the episodes of 

learning phases as in Figure 3. 

Figure 3. The proposed Rapid learning process description 
 

In Value iteration case, the calculation complexity based on 

the entire system state S were bounded by  [25]. 

However, in the case of RLA, the new system model has 

become a concatenation of a smaller Sr set that contributes to 

the reduction of complexity. Since the algorithm concept in 

RLA is similar to the Value iteration one, the complexity can 

be deduced directly as . Since the ratio of the system 

state dimensions is equal to , the complexity is then 

reduced by a factor of . 

The Rapid Learning Algorithm is given in Algorithm (1). 

 

5. Simulation results 
 

In this section, we define all the features of the considered 

battery recovery-aware embedded system. For comparison 

purposes by simulation, we consider a greedy algorithm 

where the wireless card is always switched on and the 

transmitter was sending continually the data packets it 

receives, which means that the decision being permanently 

made in that case is  all the time.  

The performances obtained from the Value iteration, Rapid 

Learning Approach, Q-learning and Greedy algorithms are 

compared both in terms of the amount of data transmitted 

and the consumed theoretical capacity of the battery.  

We consider episodes with duration’s length of 100xTS, 

given that a discounted factor  of 0,9 concentrates more than 

99% of the whole significant amount of transmitted data in 

the interval 1 to 100.  

2000 episodes are generated to determine an average of the 

results. These episodes focus primarily on varying the size of 

data packets and channel states that depend on their proper 

transition probabilities. 

We set the nominal capacity Bmax = 5. A sequence of NL = 

200000 episodes will be considered for Q-learning and Rapid 

Learning Algorithms to let them achieve sufficient 

knowledge of the system. 

As additional values of other elements of computation we 

use parameters that are based on IEEE802.15.4e [26] for the 

time slot duration which will be fixed at TS = 10 ms, the 

transmission period will be set to Tx = 5 ms. We assume that 

the data packet sizes are in the set  with only 

two possible realizations. They may vary according to a 

probability transition matrix that is equal to , 

where  and . The channel 

( )

Optimal policy calculation
phase

Unknown parts learning phase
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state set is  which may 

account for an indoor channel model in urban scenarios cases 

as in [27] with dist = dindoor = 55, wall = 3, WPin = 5, and 5 

dBm standard deviation, where dist is the distance in meters, 

wall the number of walls, and WPin the wall penetration 

losses. The transition state probability of the channel is given 

by the matrix . One elementary charge units e 

are required for a successful transmission of a data packet of 

size dn = 300 bits over a channel with state hn = 3.311 x 10-13
 

with a noise power density set to N0 = 10-20 ,4 (W=Hz). e will 

then be equal to . 

The energy needed for successful transmission depends on 

the data packet sizes and channel states. Hence, it is a 

multiple integer of the energy unit e that belongs to the set 

. This quantities correspond to an energy 

consumption of 2.5, 5 and 10μJ and are equivalent to power 

of 0.5, 1 and 2 mW respectively. 

In Figures 4 and 5, for a theoretical capacity value of TB = 20 

charge units and nominal capacity Bmax = 5, Rapid Learning 

Algorithm reaches 99.8% of the optimal expected total 

transmitted data and consumes up to 94.5% of the available 

theoretical capacity which is equal to 96.16% of the optimal 

consumed capacity by the 37th iteration. Q-learning needs to 

run over than 200000 iteration to reach only 87.7% of the 

optimal expected total transmitted data and to consume only 

60.5% of the available theoretical capacity which is equal to 

61.6% of the optimal consumed capacity. 

 

Figure 4. Expected total transmitted data vs NL with TB = 20 

and Bmax = 5 

Figure 5. Consumed theoretical capacity vs NL with TB = 20 

and Bmax= 5 
 

In Figure 6, we notice that the optimal policy generated by 

the Value iteration Algorithm sends an average amount of 

data of up to 1297.9 bits per episode of 100 iterations. The 

Rapid Learning Algorithm reaches an average amount of 

transmitted data of 1295.5 bits, while Q-learning achieves a 

transmission performance of 1138.9 transmitted bits. The 

Greedy algorithm arrives at the bottom position with the 

lowest performance by sending an average amount of data of 

only 535.6 transmitted bits. 

Figure 6. RLA comparison results for Expected total 

transmitted data vs time slots given Bmax = 5 and TB = 20 
 

In Figure 7, the optimal Algorithm achieves an average 

consumption of 19.6 charge units from the 20 available 

theoretical  capacity TB. The Rapid Learning Algorithm 

reaches an average amount of consumed charge units of 

18.9, while Q-learning achieves a performance of 12.1 

consumed charge units. The greedy algorithm arrives at the 

last position, achieving the worst performance when it 

consumes a quantity of units of charge of only 5 units 

leaving 15 units as unused capacity. 
 

Figure 7. RLA comparison results for Consumed theoretical 

capacity vs time slots given TB = 20 and Bmax = 5 
 

In Figure 8, optimal algorithm manages to avoid the battery 

trapping state as long as charge units are still available in the 

battery’s electrolyte.  

Figure 8. RLA comparison results for Nominal capacity vs 

time slots given TB = 20 and Bmax = 5 
 

The Rapid learning algorithm takes the same challenge and 

tries to perform an optimal use of the capacity of the battery 

as well as the Q-learning algorithm. For those three 

algorithms the nominal capacity of the battery is kept greater 

than 0 for all the episode duration leaving an average 

quantity of 0.332 , 0.0275 and 0.059 charge units 
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respectively for the optimal, rapid and Q-learning algorithms 

by the end of the episode. For the greedy algorithm, the 

trapping state is quickly reached after an average number of 

3 transitions only, making the battery unusable while many 

units of charge are still unused. 
 

6. Conclusion 
 

In our paper, we proposed a new Rapid learning algorithm, 

adapted to energy optimization for communications taking 

into account the battery recovery effect for embedded 

systems. The chosen simulation platform was based on a 

wireless sensor that collects information and sends it to a 

base station in peer to peer model. Three scenarios were 

considered in our study based on the availability of 

information. We first considered a complete stochastic 

availability of the information, which we processed using 

Value Iteration algorithm. In the second scenario, we 

assumed that no information was already known by the 

optimizer unit and we used the Q-learning algorithm to learn 

the studied system and find out the optimal policy. We 

noticed that, among the information available on the studied 

system, the Q-learning approach did not take into account 

the battery transitions and consumed charges levels that we 

can predict after each data packet transmission. This 

observation led us to propose the third type of scenario 

where we assumed that we have a partial knowledge of the 

studied system. We then introduced the Rapid Learning 

Algorithm that has operated faster than Q learning, as shown 

by the results of the simulation. In RLA, the underlying 

known parts of information were taken into account for 

optimal policy calculation. Good results were obtained from 

simulations, which can insure an optimized use of batteries 

when RLA is adopted. The investment costs on batteries was 

considerably reduced (e.g. the battery investment for the 

greedy algorithm costs 4 times more than in the case of 

Rapid Learning Algorithm), which produce a positive impact 

on the ROI (return on investment) ratio of the equipments. In 

addition, less batteries waste was produced when RLA is 

implemented, which better protects the environment and 

mitigates the impact of battery chemical waste on the planet. 
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