
355
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

HP4 High-Performance Programmable Packet

Parser

Amr Ibrahim1, 2

1Systems Engineering and Computer Department, Faculty of Engineering, Alazhar University, Cairo, Egypt
2Computer Science Department, College of Computing and Information Technology, University of Bisha, Bisha, KSA

Abstract: Now, header parsing is the main topic in the modern

network systems to support many operations such as packet

processing and security functions. The header parser design

significantly affects the network devices' performances (latency,

throughput, and resource utilization). However, the header parser

design suffers from many difficulties, such as the incrementing in

network throughput and various protocols. Therefore, the

programmable hardware packet parsing is the best solution to meet

the dynamic reconfiguration and speed needs. Field Programmable

Gate Array (FPGA) is an appropriate device for programmable

high-speed packet implementation. Most high-speed programmable

packet systems use the P4 language (Programming protocol-

independent Packet Processors) because it is a high-level abstract

description language. This paper introduces a novel FPGA High-

Performance Programmable Packet Parser architecture (HP4). HP4

is automatically generated by the generating unit (convert P4

programs to VHDL code) to optimize the speed, dynamic

reconfiguration, and resource consumption. The HP4 shows a

pipelined packet parser dynamic reconfiguration and low latency.

In addition to high throughput (over 600 Gb/s), HP4 resource

utilization is less than 7.5 percent of Virtex-7 870HT, and latency is

about 88 ns. High-speed dynamic packet switch and network

security can use HP4.

Keywords: Programmable Packet Parsers, Pipeline, Latency,

Throughput, Resource Utilization, FPGA, P4.

1. Introduction

Recently, computer networks have evolved in both speed

and variety of protocols (number and types). Therefore, there

is a need for a prodigious packet parser at all modern

network infrastructure [1]. However, many problems are

facing the design and the implementation of the parser such

as (1) processing at a line rate in the high-speed network

(parsing millions of packets per second), (2) adaptation to

new protocols; the number and types of protocol types are

varied (adding a new protocol needs an experienced designer

acclimated to the HDL language or parser architecture), (3)

incomplete information (some protocols have more one

format: standard and customized), (4) the header fields

attributes (number, size, and location) varied with the

protocol type, (5) the parser must have a small size because

of the restriction of the programmable device's size, and (6)

the enormous hole between the product description and the

hardware implementation in the device of new types

protocol. These problems demand a programmable hardware

packet parsing [2], [3].

Programmable packet parser relies on three steps: (1) high-

level protocol description, (2) automatic code generation, (3)

dynamic reconfigurations. Therefore, the proposed system is

a High-Performance Programmable Packet Parser (HP4).

HP4 used the P4 language to describe protocols and include

it in FPGA as a target platform. P4 (Programming Protocol-

independent Packet Processors) is the de facto standard high-

level language for describing packet protocols and rules for

headers parsing at runtime. Recently, the P4 has gained

adoption in academia and manufacturing [4], [5]. It has two

versions. P416 released in 2017 with a new feature to

overcome the limitation of P414 [1]. HP4 used P416.

Generally, P4 has many advantages, such as protocol

independence, fields’ reconfiguration, and portability, and

free and open-source tools [6], [5]. The programmer decides

how the forwarding plane processes packets without

stressing over the implementation details. After that, he can

do a converting the P4 description program to a suitable

synthesizable VHDL code for FPGA and ASCII platforms.

So P4 enables a new generation of networking hardware

programming that can be dynamic reconfiguration and

independent target. FPGAs are the best target platform for

P4 programs at hardware line rates [1], [5], [6]. FPGA is a

complete framework on a chip, including memory blocks,

multiplier, accumulator units, and embedded processors. It is

the most elegant solution for implementing a

reprogrammable network system due to its performance:

simplicity, speed of reconfiguration, low power utilization,

and high performance. FPGA includes utilizing low-level

hardware description languages (i.e., VHDL, Verilog) [7],

[4]. Xilinx ISE presents a number of the synthesis tools,

libraries, and simulation that help in architecture synthesis in

Xilinx devices [15]. It recommends the Vivado as a High-

Level Synthesis for the new versions of Xilinx devices (e.g.

Virtex-7) [16]. Virtex-7 870HT FPGAs can accomplish

higher throughput parser (400 to 800b/s), bring down

latency, and reduce power consumption [7]. Now, major

cloud providers, such as Microsoft, Amazon, and Baidu,

convey FPGAs in their data centers to help execution, e.g.,

accelerate network encryption and decryption or implement

custom transport layers [8]. Because of the P4 and FPGA

advantages, HP4 used the P4 and FPGA in the design and

implementation phases.

This work aims to design and implement HP4 based on

FPGA to solve some of the drawbacks of prior works,

including trading-off architecture, high-speed wire, latency,

and resource usage. HP4 uses the issues that are marked with

the red and italic font in Figure 1 with hypotheses of the

maximum of (1) frequency, (2) word width (3) protocols

stack size.

HP4 architecture is a streaming packet parser; thus, its

operations start once to receive the data from the data bus. It

uses pipelining to achieve a high throughput and processing

chain to represent the incoming network packet's protocol

stack. It also uses multiple parsers in parallel to increase the

356
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

speed by pipelines. The increase in enabled pipelines led to

increasing the frequency, and the throughput will rise.

However, latency and consumed resources will increase. The

number of parser stages is optional. HP4 adjusts between it

and both latency and resource utilization to find the optimal

parameters. The ingress and egress pipelines are shared

across the input-output interface to reduce the chip area. HP4

is generated and optimized automatically for resource

utilization, latency, and throughput.

Figure 1. The Parser Design Issues

The generator unit converts the parse graph description of P4

code to a VHDL code adequate for implementing in Xilinx

Virtex-7 870HT FPGA. This paper presents a novel design,

parsing a raw throughput in FPGA with more than 600 Gb/s

at the line rate with less than 7.5 percent of available

resources. The implementation included too word width (up

to 4096-bit) parallel data buses for streaming packet data

through pipeline stages. The results show the scalability,

resource utilization, throughput, and latency of HP4, for

different widths of the data bus and the number of pipeline

stages.

The rest sections of this paper are: Section II provides other

related works. Section III presents the data bus structure and

HP4 abstract architecture. Parse Graph Representation

(PGR) description and optimization, P4 language, and how

to generate the parser components and convert them to

VHDL (synthesis) are in section IV. Section V presents the

validation and evaluation of HP4. Finally, section VI debates

the conclusions.

2. Related Work

Kozanitis et al. [10] presented the Kangaroo system to parse

several protocols header in one-step used CAM to extract the

next bytes. Its throughput was about 40 Gb/s line rate and

used less than 1% of the chip area with 400 MHz ASIC. It

buffered all header fields before the parsing (non-streaming),

so the latency was too high. Yang and Prasanna showed in

[11] IP address lookup could up to 100 Gb/s rates using

FPGA. However, the two systems had problems, such as

storing and accessing the long packets in the memory.

Hence, the CAMs becomes a bottleneck because it has some

limitations compared to SRAMs such as low storage

capacity, slow access time relatively, low scalability, and

highly expensive.

Gibb et al. [13] provided the design details of a fixed and

configurable packet parser. This work did not show FPGA

implementation results. They assumed ASICs as the target

implementation platform. There are many approaches to

FPGA packet parser published with many advantages and

disadvantages [9]. Puš et al. [2] proposed a hand-optimized

pipelined packet parser. It used only 1.19% of the Virtex-7

870HT FPGA to achieve throughput over 100 Gb/s and

4.88% for throughput over 400 Gb/s with reasonable latency.

However, this parser is only enough for wire-speed up to

100 Gb/s with 512-b data bus width [9].

Attig and Brebner in [12] presented their Packet Parsing

language (PP) to describe the packet headers and the parse

graphs. They used several heavily pipelined templates based

on the Yang and Prasanna works [11] to parse 400 Gb/s on a

single Xilinx Virtex-7 870HT FPGA. The throughput is

affected by the shortest frames (so only up to 100 Gb/s).

However, the PP language ignored the identification of the

packet flow control.

Benácek et al. [6] offered an automatic P4-to-VHDL packet

parser generator based on Xilinx Virtex-7 XCVH580T

FPGA. The generated parser worked with 100 Gb/s with

roughly 100% overhead in terms of latency and resource

consumption compared to a hand-written VHDL

implementation [4] [7]. Wang et al. [8] introduced a quick

framework of 10 Gb/s parser without architecture details for

generating VHDL code from the P4 programs [9]. Jakub et

al. in [9] produced auto-generated parsers with throughput

over 1 Tb/s on the Xilinx UltraScale FPGAs and about 800

Gb/s on Virtex-7 FPGAs. They used P4 language, multiple

pipelines, and parallel packet parsing combining by multiple

packets per one data frame [1]. Silva et al. [4] presented 100

Gb/s open source pipelined streaming packet parser based on

FPGA Virtex-7. They improved the pipeline structure and

used two languages: C++ in the parser's specification and

production of RTL (Register Transfer Language) code, and

P4 in the description and optimization of PGR. This parser

achieved low-latency and high-speed, but its logical resource

utilization is high [7]. Cao et al. [1] validated a pipeline-

based parser of both the full and simple types with

throughputs of 358 Gb/s and 317 Gb/s. They presented an

approach to convert P416 programs into VHDL and

implemented it in FPGAs automatically. Lixin et al. [7]

presented SDPIP parser (software-defined protocol

independent) based on Virtex-7 FPGA. It had a 256 b data

bus and throughput about 80Gb/s.

3. Architecture

3.1 Data Bus Structure

Data bus width is a necessary factor in implementing a

parser, especially in high bandwidth systems and the low

FPGA frequency.

HP4 modified the data bus structure mentioned in [9] to

minimize the overload size. HP4 divided the data bus

structure (Word) into many sections with a fixed size equal

to the minimum Ethernet packet size (512 bit). The

maximum number of packets per one-word with 4096 bits is

eight sections, and eight parallel copies of the pipeline. The

number of sections is a variable to manage in the number of

transmitting packets per clock. The total number of sections

is N= 2n, where n= 0,1,2,3, and N's default value is eight.

The data bus width (w) equals N times 512b. Each section

has sixteen logical partitions (N=16*P). Each partition (P)

Software P
arser Issu

es

Fixed Parser

Programmable Parser

General Purpose Programming Language

Special purpose Programming Language

Hardware

Stream

Non-Stream

FPGA / ASIC

Single Parser

Multiple Parsers

SRAM / TCAM

357
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

I/P Data

Stream
Ingress Pipeline

Header Identifiers Unit (HIU)

Header

Data

Header Types &Length &

location Header Extractors Unit (HEU)

Next

Stage

Extracted Data

Egress Pipeline

Packet Header Vector (PHV)

Inner Pipeline

composes of two items. Item size (I) is the smallest distinct

piece of bits (16-bit). The new frame must start with a part

and finish at any position. This structure of the data bus

controls the alignment overhead between every two frames.

The alignment overhead in [9] per packet was not over 7

bytes, but in HP4 is less than two bytes.

HP4 allows with three types of alignment to develop the

bandwidth raw, as shown in Figure 2.

1) Full word: One packet per word as frame 1.

2) Share words: A word may contain many packets (e.g.,

frames 2 and 3 ends in the middle of a part).

3) Partial word: The packet may not overlap within the word,

and the partially aligned start condition not violates as

frame 4.

Figure 2. HP4 Data Bus Structure (modified structure [9]).

3.2 HP4 Parser Architecture

HP4 has general architecture enough for parsing of most

protocols. The functions of HP4 are (1) receive the header

data in a stream, (2) check and identify the protocols types,

and (3) extract the header fields to generate the packet

header vector (PHV) contains header fields classified by the

protocol. Figure 3 shows an overview of HP4.

Figure 3. The Overview of HP4 Parser Model

3.2.1 Header Identifiers Unit (HIU)

Header Identifiers Unit (HIU) is the heart of HP4. Its

functions are: (1) Receive the input data stream from the

ingress pipeline, (2) Identify the protocols types, the length

of the header, and the fields' location in the packet with the

help of the parse graph (HIU depends on PGR generated by

P4), and (3) Send these identifications to the Header

Extractors

HIU consists of three principal identifiers modules. (1) Next

Protocol Identifier determines the expected next protocol

type. 1) Next Protocol Identifier, determines the expected

next protocol type. It converts some of the extracted header

bytes into an internal code representing the next protocol

type.

Internal code is a unique identifier code for each header

type. (2) Header Length Identifier determines the length of

the current protocol header by computing the number of

extracted bytes. (3) Field Location Identifier defines where

the fields in the packet. It determines the sum of the current

header offset (a value from ingress pipeline; Current Offset)

and the current header length (the output of the Length

Identifier).

Figure 4 shows the abstract architecture of the HIU. It

contains a set of state machines (searching engine), buffers,

and matched tables stored in TCAM and SRAM. TCAM

stores the input data stream. The search engine searches in

the match tables and returns the first matching entry

(Protocol-Code). Then Protocol-Code is sent to the SRAMs

to know the type and the length and generates Next-Header-

Valid to propagate among the blocks within the same clock

cycle. Algorithm1 shows the generation of Header

Identifications.

Figure 4. The Abstract Architecture of the Header Identifier

Unit (HIU)

Algorithm 1: Header Identifiers

Function HeaderIdentifier (InputDataPacket)
Input: InputDataPacket
Output: HeaderIdentifications (HeaderType, HeaderLen,

HeaderLoc)
begin

HeaderType = InitialType;
Location = 0;
while (headerStack) do

FieldExtraction (HeaderType; HeaderLoc)
HeaderType = GetNextHeaderType (packet; HeaderType;

Location)
HeaderLen = GetHeaderLen (packet; HeaderType;

HeaderLoc)
HeaderLoc = Location + Length;

return (HeaderLen, HeaderType; HeaderLoc)
end

3.2.2 Header Extractors Unit (HEU)

The functions of HEU are (1) read the header type, length

and the location from HIU, (2) extract the header fields, (3)

generate the PHV, and (4) send this vector to the egress

pipeline.

Figure 5 shows the abstract architecture of the Header

Extractors Unit. The buffers store the packet data while

waiting for the header identifications (type, length, and

location) from the HIU. Once it receives these

identifications, it will extract the fields by multiple parallel

headers extractors. The header extractors, header identifiers,

and their internal elements run in parallel with minimum

data dependency.

HEU unit determines for each byte in the input word if it

will extract or discard. HEU depends on the state machine's

output based on the configuration parameters and header

identifications being input. Bytes, which were marked to

extract, will be added to the memory blocks' position in the

output stream. The memory blocks (a wide array of FIFO

Frame 1

Frame 2 Frame 3 Frame 4

 Frame 5

Word

 Sections

 Partitions

 Items

R-Adders State Machine Buffers I/P Data Stream

Buffered Type Data

Configuration Parameters

TCAM SRAM
Protocol-Code

Next-Header-Valid Header Location

Header type

& length

358
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

registers) accumulate the extracted header fields into the

PHV. FIFO is a 4Kb RAM with four dual ports. HEU also

contains a crossbar switch that uses programmable and

dynamic setting multiplexers (one per register). The crossbar

switch helps extract data from any byte position and select

between each output field to optimize resource utilization.

Figure 5. Abstract Architecture of the Header Extractors

Unit (HEU)

It uses the parameter of the location as an address.

Algorithm 2 illustrates the generation of the extracted fields.
Algorithm 2: Header Extractor

Function ExtractorFields (InputDataPacket; HeaderIdentifications)
Input: InputDataPacket, HeaderIdentifications
Output: ExtractedFields
begin

Fields = GetFieldList(header)
for (FieldPos; FieldLength)

Fields = Extract (packet; HeadedrLocation + FieldLocation;
FieldLength)

return (ExtractedFields)
end

3.2.3 Pipeline Units

HP4 uses the pipeline to do a chain of parsing stages to parse

the protocol stack and arrange the parser units. The pipeline

functions are: (1) enter the essential data into and through

HP4 to parse the current header protocol, (2) output the

required information for the next header parsing stage or to

the output, and (3) interface between the parser and the other

elements. The pipeline helps develop by adding additional

modules to parse new protocol type or reusing modules

without any modification in the parser's internal structure.

Several modules are already usable, and most of the parser

modules for more protocols are almost identical.

There are three types of the pipeline, as shown in Figure 6:

(1) Ingress pipeline: it generates the initial required data for

the first protocol type stage. (2) Inner pipelines: it arranges

the parser units and connects between each two pipeline

stages. It is optional (enabled/ disabled) at the run time for

each protocol type (stage) individually. (3) The egress

pipeline passes the results to the output. The output pipeline

plays the role of a bypass unit. The pipeline consists of many

stages and Stage-Selector. The Stage-Selector receives the

next protocol type, next header valid, and the configuration

parameters to generate the Selector signal. The Selector is

used to enable the suitable stage from the inter pipelines;

otherwise, select the egress pipeline. The order of protocol

parsers stages in the pipeline depends on the protocol stack.

Each stage contains at least one header identifier unit and

header extractor unit to represent one protocol type of the

header stack. Multiple copies perform multiple parsers per

stage. The number of parsers per stage is equal to the

number of sections (N) per word. P4 generates the pipeline

unit automatically. Algorithm 3 describes the pipeline

process.

Figure 6. The abstract structure of the Packet parsing

pipeline

Algorithm 3: Pipeline

Procedure Pipeline (packet; ProcessingChain)

Input: packet, ProcessingChain

Output: PacketHeaderVector

begin:

do
/* Generate the Header Identifier Unit*/
HeaderIdentifications = HeaderIdentifier (InputDataPacket);
/* Generate the Header Identifier Unit*/
ExtractedFields =HeaderExtractor (InputDataPacket,
HeaderIdentifications);
Selector = StageSelector (NextProtocolType;

NextHeaderValid)
while (Selector; PipelineStages; HeaderStack)
/* Output the packet header vector PHV */
PHV = ExtractedFields;

end

4. HP4 Design and Implementation

4.1 Parse Graph Representation (PGR).

The Parse Graph Representation (PGR) is an acyclic

oriented graph generated by the P4 from header description.

There are two types of parse graph (1) fixed parse graph

does not change after the implementation. It used in a fixed

parser (non- programmable), and (2) programmable runtime

parse graph (our work).

Figures 7 shows an example of a parse graph for 2xVLAN,

IPv4, IPv6, TCP, UDP, ICMP, ICMPv6. Each graph node

(state) represents one header type. Starting with the root

node, and each edge (leaf) represents the next protocol type.

Each path is a header sequence. The topological ordering of

PGR nodes depends on the Depth-First Search (DFS)

algorithm. The P4 packet parser description program also

defines the condition of a transition. If the state is not

described in the P4 program and required by the parser, it

will be the infinite state, and the transit state is the terminate

(end) state. Loop edge can represent the situation to support

more protocols of the same protocol type in the protocol

stack (like the two VLAN). HP4 will translate each node

into VHDL code automatically, and an optional pipeline will

separate between every two nodes.

The represented parse graph in Figure 7 is unsuitable for a

fast parser because it contains many paths. Then it will

require many bypass pipelines. The increase in the pipeline

number tends to a series of delays and increases in resource

usage. HP4 optimizes this graph to present a suitable PGR

for the high-speed network. The steps of the parse graph

optimization are:

R-Adders
State Machines Buffers

Packet Data

Buffered Type Data

Configuration Parameters

Programmable

MUXs
Memory Blocks

Extracted

 Fields

Header Type & Length,

Header Location

PHV Field Locations

Packet Data
Pipeline

Stage 0

Pipeline

Stage 1

Pipeline

Stage N

…

…

Packet Data

Initial Header

Packet Data

Initial Header Header Offset

Header Type Initial Offset Initial Offset

Stage-

Selector

Configuration Parameters

Next-Header-Valid

Header type
Selector

Egress Pipeline
Ingress Pipeline Inner Pipeline

E/D Pipeline

359
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Figure 7. Original Parse Graph Representation

 (1) get the original parse graph representation from the

compilation of the P4 program description as shown in

Figure 7, (2) determine the level for each node by computing

the path length (distance from the root node to each node),

(3) find out the longest paths of the parser graph, (4)

eliminate and delete the redundant paths (the children's

paths) for each longest path, and then (5) generate the

optimized parse graph as shown in Figure 8.

Figure 8. Final optimized Parse graph

4.2 P4

P4 utilized to describe each header field (name, size in bits,

and the sequence), and the extract fields (type, length, and

location), and define the constraints of the field size.

Because the field size can be constant or variable, the header

length may be fixed (the length is the sum of all field sizes)

or variable length. The problem in the variable header field

length where its value is nondeterministic. P4 solves this

situation by defining the header length as a variable. Then

the variable header length is a formula calculates the derived

fields’ sizes from the input data raw at the runtime like the

following [14]:
 header_type ethernet {

fields {
dst_mac : 48;
src_mac : 48;
ethertype : 16;
}

}
header_type ipv6_ext_t {

fields {
nextHdr : 8;
totalLen : 8;
frag : 12;
padding : 3;
fragLast : 1;
}

length : (totalLen + 1) * 8;
max_length : 1024; // Bytes

}
header_type vlan_t {

fields {

pcp : 3;

cfi : 1;

vid : 12;

ethertype : 16;

}

}

header_type udp_t {

fields {

srcPort : 16;

dstPort : 16;

length : 16;

checksum : 16;

}}

P4 presents the transition in the pipeline states by a switch-

case command in a tuple form (value, next state) and extract

command to parse the fields and constructs the parse graph.

The switch case command uses the extracted data to present

the next state (next protocol type). It determines which

subset of the defined header types could occur at each

pipeline stage. If the header is unknown, the P4 uses the

default ingress to drop the packet, go to the end state, and

start a new ingress. The extract instruction determines fields

will extract. The return ingress command indicates that the

current parsing stage is complete. It returns the next parsing

stage to the start and demonstrates the beginning of the

pipeline, for example [14]:
header ethernet eth;

parser ethernet {

extract(eth);

switch(eth.ethertype) {

case 0x8100: vlan;

case 0x9100: vlan;

case 0x800: ipv4;

default: ingress;

}

}

extract(udp);

return ingress;

The P4 program is also used to define the three HIU's

identifiers as an object's method for running at runtime, the

header fields, and the needed information for the identifiers.

The StageSelector method checks the current parsing stage's

output, decides to allow a new pipeline stage or considers it

the last, and passes it to the output stage.

4.3 HP4 Implementation

The P4 compiler converts the HP4 abstract architecture from

the P4 program to the VHDL code using the code generation

unit. Xilinx Vivado 2018.2 design suite tool synthesized this

VHDL code to Xilinx Virtex-7 870HT FPGA. The HP4

design is then synthesized with the various setting

parameters (data bus width and number of pipeline stages),

placed and routed, and generated a Bitstream (physical

FPGA programming information). The automatic generation

of code has many advantages, such as 1) the simplicity of

generating VHDL code, and 2) the modularity to allow by

the extension in two ways: (i) adding externally defined

features and (ii) changing or removing the basic block.

HP4 uses two types of memories (TCAMs and SRAM) in

the implementation. TCAM stores bit sequences to perform

the longest prefix and parallel match to identify headers.

SRAM stores the next state information, extracted fields, and

any other data needed during the parsing to perform the

hash-based binary match and the exact match rapidly. The

field buffer design is flexible: it is a set of registers (array) to

help the extracted fields transmit in a parallel to downstream

components. HP4 minimizes the number of the extracted

fields to reduce the field buffer size and resource utilization.

HP4 uses a 4Kb packet header vector during parsing.

There many steps to implement HP4: (1) Writing the P4

program to describe the protocols. (2) Creating the PGR

from the P4 program. (3) Optimizing the PGR by

ETH VLAN VLAN

IPv6

IPv4

TCP

UDP

ICMPv4

ICMPv6

END

Terminator

ET
H
0

VLA
N
1

IPv
6
3

TC
P
4

VLAN
2

ICMPv6
4

IPv
4
3

UD
P
4

END

ICMPv4
4

360
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

eliminating the children's paths as in Figure 8. (4) Creating

the processing chain from the PGR and pipeline stages. Each

node contains a number represent the node level (stage

number). Some levels have more than one node on the same

level; then, several parsers will connect in serial with the

ordinary ordering. The analyzers of the same level connect

in parallel. The serial connection allows HP4 to keep the

processing chain's homogeneous structure, as shown in

Figure 9. (5) Generating the VHDL code of the Header

Identifiers Unit and Header Extractor Unit. (6) Creating and

identifying the configuration parameter and the essential

control elements in generating the parser units (such as the

window size, the number and size of the parsed lookup table,

and the programmable memory TCAM/RAM) size.

Algorithm 4 demonstrates the generation of HP4 from the P4

program.

Figure 9. Generated processing chain

Algorithm 4: Generating the HP4 (Transformation from P4 to HP4

Procedure HP4Transformation(P4Program)
Input : P4Program
Input : InputDataPacket
Input: configuration-parameters
Output: HP4 VHDL Code
begin:

/* Get the Parase Grapgh Represntation*/
ParseGraph= ReadParseGraphRepresentation(P4Program);
/* Discover the node levels */
NodeLevel= GetNodeLevel(ParseGraph);
/*Find out the longest path*/
LongestPath= FindLongestLevel (ParseGraph, NodeLevel);
/* Optimize the parse grapgh*/
OptimizedParseGrapgh= EliminateChilderenPaths (PraseGrapgh,

NodeLevel, LongestPath);
 /* Generate the Pipeline Stages*/
PipelineStages= GenerateProcessingChaine

(OptimizedParseGrapgh, InputDataPacket);
Pipeline (packet; ProcessingChain)
end

4.4 HP4 Optimization

HP4 supported many optimizations, saving significant

resource utilization, reduced latency, and increased

throughput. HP4 achieves high throughput in high-speed

network processing by working in two dimensions. (1)

Increasing the input data bus width to process multiple

packets or partial packets per one clock cycle. The

throughput depends on the word width and the expected

clock frequency. (2) Maximizing the header stack size to

increase the number of pipeline stages. The user supplies

these two parameters to the P4 compiler and setting at the

runtime.

The ingress and egress pipelines are the same in a physical

block and the field allocation function for the optimization.

HP4 also aggregates multiple parallel small packet parsers in

each pipeline stage to parse one packet per the stage for each

type of protocol in the stack. A single parser instance's

processing affects latency and resource utilization for two

reasons: (1) the packet data bus increases in width and needs

more resources, and (2) additional headers can occur within

a single processing data bus's section, requiring more

header-specific processor instances for parsing processing.

The following section will demonstrate these reasons. HP4

achieved throughput more than 600 Gb/s by grouping 16

instance parser of 40Gb/s running at 1 GHz.

5. Test and Evaluation

HP4 parser tested the design properties with two separate

protocol stacks: (1) Full parse: 4×VLAN, 4×MPLS, IPv4 or

IPv6 (2×extension headers), TCP or UDP, and (2) Simple

parse: IPv4 or IPv6, (2×extension headers), TCP or UDP.

The two protocol stacks were described in a P416 language

and synthesized with various data bus width settings (512,

1024, 2048, and 4096 bits) and pipeline stages. In these

cases, the data bus parameter allows adequate and efficient

wire-speed parsing even for the smallest packets (512 bits)

and the large packets with a varying N as specified in section

(III.A). The setting of data bus width (N sections) and the

number of pipelines tend to a wide range of possible outputs.

From the different data bus width settings and the number of

pipeline stages with the two protocol stacks, the HP4 parser

state-space is different in throughput latency and resource

use. The FPGA resource utilization contains two parts:

resources consumed by the shared fixed runtime functions of

all P4 programs, and the unique P4 components resources,

which varied and dependent on the parameters. FPGA

resource is the sum of the used LUTs and registers.

The results obtained by Vivado after synthesis of the Xilinx

Virtex-7 870HT FPGA are throughput, latency, and resource

use. HP4 evaluation occurred in two stages. Firstly, HP4's

ability to manage a varied range of P4 parsers. Secondly, the

generated parser can work online, using a collection of

testbench circuits, with different setting parameters and the

two protocol stacks (Full and Simple parses). The generator

produced testbench circuits to verify the parser. Finally, in

summary, Pareto's principle checks the results with the

various configuration parameters to find the optimal solution

for the HP4.

The following sections illustrate the HP4 test cases (Simple

and Full parse) by three graphs per case. These graphs show

the relationship between (1) throughput and resource

utilization, (2) throughput and latency, and (3) resource

utilization and latency. In addition to two graphs with Pareto

sets for the two parse types show the optimization for: (1)

the throughput and resource utilization, and (2) the

throughput and latency.

5.1 Test

5.1.1 Simple Parser Test

Figure 10 shows the resource utilization with the

throughputs for the Simple parser. From the graph, FPGA

resource utilization linearly increases with the achieved

throughput. In addition to doubling the data bus width does

not double the FPGA resource utilization because there is a

consumed resource in the computing components and the

fixed functions. Figure 11 shows the latency and throughput

for different settings of the Simple parser. From the graphs,

the latencies are increasing as the achieved throughput is

rising, because the high throughput requires more extensive

registering. Generally, the latency depends on the configured

ETH

0

VLAN

1

IPv6

2

ICMPv

6

3
TCP

3
UD
P

3

IPv4

2

ICMPv
4

3
Ingress Pipeline Inner Pipeline Egress Pipeline

361
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

number of registers in the enabled pipeline stages and the

working frequency.

20000

30000

40000

50000

60000

70000

80000

R
es

o
u

rc
e

U
ti

li
za

ti
o
n

Figure 10. The relationship between Throughput and

Resources of the Simple parser with a different data bus

width

Figure 11. The relationship between Throughput and

Latency of the Simple parser with a different data bus width

Figure 12 shows the relation between the latency and the

resource utilization of the Simple parsers. The resource

utilization rises considerably with the data bus width from

the graph, and the latency pretty much stays in the same

boundaries.

Figure 12. The relationship between Resources and Latency

of the Simple parser with a different data bus width

5.1.2 Full Parser Test

The Full parser is much larger than the Simple parser in the

size because it parses many protocols. The Full parser's

state-space with the combinations of the set parameters is

enormous for each word width. Therefore, HP4 synthesized

only some hand-picked and randomly selected

configurations of the possibilities. Figure 13 shows the

resource utilization and effective throughput of the

synthesized Full parsers. The resource utilization reaches

nearly two times higher values.

Figure 13. The relationship between Throughput and

Resources of the Full parser with a different data bus width.

Figure 14 shows the latency and throughput relation of

different configurations of Full parsers.

Figure 14. The relationship between Throughput and

Latency of the Full parser with a different data bus width

The full parsers use more of the pipeline stages. Hence, their

latency and resource utilization are much higher, nearly four

times in some cases than the simple parsers. Figures 14 and

15 show the latency and throughput relation of the full

parsers with different configurations.

0

50

100

150

200

250

0 25000 50000 75000 100000125000150000175000

L
at

en
cy

 (
n

s)

Resource Utilization

512 b

1024 b

2048 b

4096 b

Figure 15. The relationship between Resources and Latency

of the Full parser with a different data bus width

5.1.3 Summary of the Parser Test

Figure 16 shows sets of tested parsers with Pareto optimal

results of the resource utilization with the throughput. The

Full parsers' resource utilization is up to two times larger

than the Simple parser from the graph.

Figure 17 shows Pareto optimal sets of parsers

configurations in latency to throughput, where the latency

362
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

increases with the throughput.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400 500 600 700

R
es

o
u

rc
e

U
ti

li
za

ti
o
n

Throughput (Gb/S)

Simple Parser Full Parser

Figure 16. Pareto optimization of throughput and resources

for different parses and data bus width

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

L
at

en
cy

 (
n

s)

Throughput (Gb/s)

Simple Parser Full Parser

Figure 17. Pareto optimization of throughput and latency for

different parses and data bus width

The results demonstrated that the data bus width increment

tended to increment throughput (as intended). With doubling

the data bus width, the resource utilization is slightly less

than the double. The latency remained large with the

increasing data bus.

5.2 Evaluation

Table 1 presents a comparative study between HP4 and other

parsers: Gibb [13], handwritten VHDL parser (Golden) [6],

Benácek (BK) [6] and Silva [4] with a throughput of less

than or equal to 100 Gb/s in both Simple and Full parsers.

HP4 nearly achieves the same performance with the same

constraints while reducing the resource utilization and

latency as BK [6] in the cases of Simple and Full parses. The

best is the Golden parser, where it is hand-optimized.

However, due to the additional pipeline registers and the full

data bus width, HP4 design requires more resources than

Gibb [13]. However, the HP4 throughput can reach high

even in processing the shortest packets. Due to the low data

bus and throughput, Gibb achieved less resource utilization

than HP4.

Table 1. Comparative Study-1

Parser Type
Data
Bus [b]

Throughput
[Gb/s]

Resources
Utilization

Latency
[ns]

Gibb [13]

Simple
Parser

256 47 2.22% N/A

Golden [6] 512 100 1.49% 15

BK [6] 512 100 3.58% 29

Silva [4] 320 100 2.03% 19.2

HP4 4096 100 2.45% 22.3

Gibb [13]

Full
Parser

64 11 1.18% N/A

Golden [6] 512 100 1.94% 27

BK [6] 512 100 3.79% 46.1

Silva [4] 320 100 2.67% 25.6

HP4 4096 100 2.98% 33.53

Also, the HP4 compared with the other parsers: Puš [2],

Attig and Brebner (AB) [12], Golden parser [6], and Jakub

Config [9] for the same protocol stack (Simple and Full) and

throughput ranges from 100 to 400 Gb/s based on Xilinx

Virtex-7 XCVH870T as shown in Table 2. The throughput

of AB parser is up to 578 Gb/s, BK parser up to 478 Gb/s,

and Config parser with a maximum of 926 Gb/s. HP4

(highlighted) requires less resource utilization and latency as

opposed to the AB parser. The Golden and Config parsers

are better in both dimensions than HP4. To overcome these

limitations, HP4 can use and repeat the Golden parser (e.g.,

4 x 400 Gb/s) and replace the Viretex-7 platform with

UltraScale FPGA. Thus HP4 resource utilization and latency

will decrease, and the throughput increase.

Table 2. Comparative Study-2
Parser Throughput Resources Utilization Latency

Puš [2]

> 100Gb/s

1.19% 21.1

AB [12] 9.5% 320 ns

Golden [6] 1.94% 45 ns

Config [9] 2.05% 69 ns

HP4 5.85% 76 ns
Puš [2]

>400 Gb/s

4.88% 35.8

AB [12] 22.7% 365 ns

Golden [6] 5.87% 56 ns

Config [9] 6.38% 67 ns

HP4 7.42% 88 ns

6. Conclusions

Most of the network devices need the packet parser to

complete their functions. This paper presented a novel

architecture of high-performance programmable pipeline

packet parser HP4 based on FPGA at the line rate.

HP4 used the P4 language to describe the packet header

parsing to generate FPGA-appropriate VHDL code

dynamically.

The generating unit converts the abstract definition to FPGA

synthesis without in-depth knowledge of the hardware

definition language. It minimized the design and

implementation time. The data bus width and the number of

pipeline stages are configurable parameters to optimize

resource utilization, throughput, and latency.

HP4 evaluated on a variety of characteristics. The results

highlight the scalability of HP4 by illustrating a wide variety

of packet throughputs via adjusting the variable parameters.

HP4 equilibrates the throughput, the used resources, and

latency even in the worst case when parsing a set of short

packets. It can parse a different line-rate throughput from 1

to over 600 Gb/s on a single Xilinx Virtex-7 870HT FPGA

by considering latency and used resources in the case of the

full protocol as well. Latency was about 88 ns, and resource

utilization was nearly 7.42% of the FPGA's resources. Thus,

the rest of the FPGA resources remain available for other

requirements. HP4 can use in accelerators, smart NICs, and

various network security applications (filtering and packet

inspection).

References

[1] Z. Cao, H. Zhang, J. Li, M. Wen and C. Zhang, "A fast

approach for generating efficient parsers on

FPGAs", Symmetry, vol. 11, no. 10, pp. 1265, Oct. 2019.

[2] V. Pus, L. Kekely, and J. Korenek, “Design methodology of

configurable high performance packet parser for fpga,” in

Design and Diagnostics of Electronic Circuits & Systems,

17th International Symposium on, pp. 189–194, April 2014.

363
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

[3] X. Wang, L. Qinrang, and Y. Binghao, "A Design of

Programmable Parser Generation System Based on Dynamic

Programming." In 2017 International Conference on

Information, Communication and Engineering (ICICE), pp.

325-328. IEEE, 2017.

[4] J. Santiago da Silva, F.-R. Boyer, and J. Langlois, "P4-

Compatible High-Level Synthesis of Low Latency 100 Gb/s

Streaming Packet Parsers in FPGAs," in Proceedings of the

2018 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 147-152, : ACM, 2018.

[5] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The

P4 → NetFPGA workflow for line-rate packet processing,” in

Proceedings of the 2019 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. ACM, pp.

1–9, 2019.

[6] P. Bencek, V. Pu, and H. Kubtov, “P4-to-VHDL: Automatic

Generation of 100 Gbps Packet Parsers,” in 2016 IEEE 24th

Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM), pp. 148–155, May

2016.

[7] Lixin, M., Qingrang, L., & Xin, W. (), “Software-Defined

Protocol Independent Parser based on FPGA”, In Proceedings

of the International Conference on Industrial Control

Network and System Engineering Research, pp. 42-46, ACM,

March 2019.

[8] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N.

Foster, and H. Weatherspoon, “P4fpga: A rapid prototyping

framework for p4,” in Proceedings of the Symposium on

SDN Research, ser. SOSR ’17, , pp. 122–135, 2017.

[9] J. Cabal, P. Bena´cek, L. Kekely, M. Kekely, V. Pu ˇ s, and J.

Ko ˇ ˇrenek, “Configurable fpga packet parser for terabit

networks with guaranteed wire-speed throughput,” in

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, pp. 249–258, 2018.

[10] C. Kozanitis, J. Huber, S. Singh, and G. Varghese, Leaping

multiple headers in a single bound: Wire-speed parsing using

the Kangaroo system," in IEEE INFOCOM, pp. 830-838,

2010.

[11] Y. H. E. Yang and V. K. Prasanna, “High Throughput and

Large Capacity Pipelined Dynamic Search Tree on FPGA,”

in Proceedings of the 18th annual ACM/SIGDA international

symposium on Field Programmable Gate Arrays (FPGA), pp.

83–92, 2010.

[12] M. Attig and G. Brebner, “400 Gb/s programmable packet

parsing on a single fpga,” in In Proceedings of the 2011

ACMJIEEE Seventh Symposium on Architectures for

Networking and Communications Systems, ANCS ’11. IEEE

Computer Society, pp. 12–23, 2011.

[13] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown,

“Design principles for packet parsers,” in ACM/IEEE

Symposium on Architectures for Networking and

Communications Systems, ser. ANCS’13. IEEE, pp. 13–24,

2013.

[14] M. Budiu and C. Dodd, “The p416 programming language,”

ACM SIGOPS Operating Systems Review, vol. 51, no. 1, pp.

5–14, 2017.

[15] M. Sone, " Physical Layer Security for Wireless Networks

Based on Coset Convolutional Coding ", IJCNIS, vol. 12, no.

1, pp. 95-100, 2020.

[16] https://www.xilinx.com/products/design-tools/ise-design-

suite.html Last Access Date 11/15/2020

https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html

