
345
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Mobile Malware Behavior through Opcode Analysis

Noor Azleen Anuar1, Mohd Zaki Mas’ud1, Nazrulazhar Bahaman1 and Nor Azman Mat Ariff1

1Information Security, Digital Forensic and Computer Networking (INSFORNET), Faculty of Information Technology and

Communication, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

Abstract: As the popularity of mobile devices are on the rise,

millions of users are now exposed to mobile malware threats.

Malware is known for its ability in causing damage to mobile

devices. Attackers often use it as a way to use the resources

available and for other cybercriminal benefits such stealing users’

data, credentials and credit card number. Various detection

techniques have been introduced in mitigating mobile malware, yet

the malware author has its own method to overcome the detection

method. This paper presents mobile malware analysis approaches

through opcode analysis. Opcode analysis on mobile malware

reveals the behavior of malicious application in the binary level.

The comparison made between the numbers of opcode occurrence

from a malicious application and benign shows several significant

traits. These differences can be used in classifying the malicious

and benign mobile application.

Keywords: Mobile Malware, Mobile Malware Detection,

Android Malware, Mobile Malware Behavior, Opcode.

1. Introduction

With the vast evolvement of technology and connectivity,

community worldwide are depending on mobile devices to

solve various daily tasks [1]. Mobile devices allow everyone

to connect with each other at any time and at any place.

Nonetheless, the existence of mobile devices had opened

enough rooms for attackers to exploits mobile devices by

injecting malware into the devices without the users’

acknowledgement. Due to the intricacy in detecting mobile

malware, mobile malware now possesses the ability of being

unrecognized in the application store [2]which causes users

to be tricked into installing the infected programs. Once the

applications are installed in the users’ devices, the infiltration

and replication of malicious codes begins which could cause

some serious problems if it stays undetected.

Malware which is also known as malicious software is

known for its ability in causing damage to computers

software and hardware. Attackers often use it as a way to use

the resources available and for other cybercriminal benefits

such stealing users’ data, credentials and credit card number.

This attack could happen when victims open an email or

when they download an infected software. When the

malicious link or attachments sent in the emails are clicked,

malware could be installed without user’s consent,

ransomware attack could occur and freeze the entire system.

This could also lead the sensitive information, financial and

business information to be revealed or destroyed. The

attacker could also gain and extract the victim’s login

credentials and account information.

According to the 2018 Internet Security Trend Report issued

by Symantec Corporation [3], the discovery of latest mobile

malware variations has significantly increased over the

course of three years. In 2017, the discovery of new mobile

malware had surged up to 54% compared to 2016. However,

in 2018, the number of new mobile malware variations had

shown a slight decreased of 10% as compared to those in

2017. Even though the discovery of new variants is lower

compared to the previous years, the impact of mobile

malware attacks is still significantly high. In this paper, all of

the issues encountered by previous researchers in combatting

the spread of mobile malware have been taken into

consideration. Moreover, the mobile malware behavior is

analyzed to identify a new approached to enhanced mobile

malware detection. In order to improve accuracy and

minimize false alarm rates, researchers have implemented

several techniques to improve mobile malware detection.

The latest insights on methods used in the recent mobile

malware detection system is included in this paper. In

response to that, this paper is organized based on the

research questions presented below.

RQ1: What is the taxonomy of mobile malware and its

behavior?

RQ2: What are the features used in mobile malware

detection?

2. Related Works

2.1. Types of Mobile Malware and its Behavior

A study had shown that with the vast connectivity through

wireless network, malware is able to spread itself[4] and taint

victims’ smartphones and mobile devices [5]. Research by

[6] also agreed that malware are often installed when victims

accidentally clicked and downloaded malicious applications

or links. Malware are classified into several classes [7].

Virus: Virus tends to infiltrate mobile devices and

smartphones with the absence of user’s consent. Once they

managed to invade the system, the viruses then bind with any

program files and starts to execute malicious function that

had been programmed.

Worm: Worms are usually programmed to duplicate itself in

the computer system. It then works by wrecking data and

files available in the computer or mobile devices.

Trojan: Trojans are designed to extract banking information

or credentials, and flood the computer’s resources with

Denial of Service (DoS) attacks.

Backdoor: programmers invent Backdoors so that it is easier

for them to administer the programs remotely. However,

when it is used for harmful purposes attackers are able to

send malware, viruses, and even gain access to computer

system to perform malicious activities.

Spyware: Spyware are used to keep an eye on the computer

activities, which can also be utilized as a way to steal

victims’ login credentials.

Adware: Adware gives minimal threats to computers or

mobile devices as it is only used to send ads that can

sometimes be malicious.

Ransomware: Ransomware are a type of malicious

programs that lock users’ data and files. In order to unlock or

346
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

decrypt the files and data, victims will be asked to pay a

hefty sum of money to the attackers.

Rootkit: On the other hand, rootkit is a malicious tool placed

in a computer system so that uncertified personnel are able to

enter the system. The attackers will then run files or even

adjust the system configurations remotely.

Botnet: Attackers often used Botnets [8] as a medium to

execute massive network attacks such DoS attacks to flood

the resources [4].

Keylogger: Keylogger works by keeping all keystroke entry

that you made. The recorded values are then used to obtain

login credentials and other financial information.

Previous studies had shown that mobile malware tend to

perform certain traits after they had infected any mobile

devices [7]. The general mobile malware behaviors are

classified as follows.

• Collect sensitive device and user credentials.

• Interact with Command and Control (C&C) server.

• Send premium rates SMS and spam.

• Optimizing search engines.

• Update and download package without users’ consent.

• Causes an exhaustion of resources.

As the current mobile malware are continuously evolving

[9], an enhanced mobile malware detection technique is

needed to combat these issues.

2.2. Taxonomy of Mobile Malware Detection

Mobile malware analysis is critical in enlightening how

malware operates in its environment. These several analysis

approaches which can be categorized into three different

approaches that is static analysis, dynamic analysis and lastly

the hybrid analysis [10].

Static analysis mainly works by examining the APK code

that have been disassembled without any form of execution

[11]. In other words, [12] stated that the permissions, API

calls, intent filters, network addresses, hardware components,

Java code and binary values will be inspected and reviewed

for any dubious form. This analysis approach requires lesser

computational resources [13], making it the best approach to

be adopted in mobile devices. However, there are some fall

back that might occur when static analysis is implemented

[14] as it is unable to perceive any code obfuscation, zero-

day and polymorphic malware.

On the other hand, dynamic analysis is used to investigate

the behavior of mobile malware [15] while it is running.

Several features that are frequently inspected [16] are the

system calls, network traffic, system components, and the

user interactions. Dynamic analysis is highly reliable as it is

able to detect any code obfuscation, polymorphism, and any

modified runtime [17]. Nonetheless, there are few drawbacks

when using this type of analysis as it requires excessive

amount of resources and time and it tends to produce a

significantly larger amount of false alarm rates [14].

Next, hybrid analysis is the combination of static and

dynamic analysis. One of the common approaches

implemented using the hybrid analysis is the heuristic

technique. Heuristic technique is used in distinguishing

between a mobile malware or a legitimate application by

utilizing the rules that had been set by experts or Machine

Learning algorithm [18]. This analysis is known for its

ability in detecting zero-day and polymorphic malware, but

in the end, it has its own limitations. According to [19], the

usage of heuristic analysis might promote false positive

results in which a legitimate application might be diagnosed

as a mobile malware. Table 1 below summarized the analysis

approach used by previous researchers.

Table 1. Analysis Approach
Author/Year Analysis Approach

Static Dynamic

Wang et al., 2019 /

Razak et al., 2019 /

Yen & Sun, 2019 /

P. et al., 2019 /

L. Zhang et al., 2019 /

Papadopoulos et al., 2018 /

Kabakus & Dogru, 2018 / /

Chen et al., 2018 /

Tong & Yan, 2017 / /

Sheen et al., 2015 /

Idrees et al., 2017 /

Zhao et al., 2018 /

P. Zhang et al., 2018 /

Raphael et al., 2014 /

Yerima et al., 2013 /

Feldman et al., 2014 /

Kang, Yerima, Mclaughlin, &

Sezer, 2016

/

Bakhshinejad & Hamzeh, 2017 /

Canfora, Lorenzo, Medvet,

Mercaldo, & Visaggio, 2015

/

Aminordin et al., 2018 /

Abdelkhalki et al., 2020 /

Wan Ahmad Ramzi et al., 2017 /

Obeidat 2017 /

2.3. Audit Data Source

Audit data source is generally an essential resource in

constructing a good mobile malware detection model. Any

malicious behavior left traces that can be used to distinguish

malicious applications from benign mobile applications.

Audit data sources can be gathered from five Android

framework layers that is the application layer, application

framework, Android runtime, libraries and Linux kernel.

Each of the framework layers provide a different set of audit

data. As an example, when doing a collection on the Linux

kernel interaction with network interface will yield the

network traffic data. These types of data are usually obtained

through dynamic analysis prior to its runtime. Data flow,

system calls, network traffic, system components, and user

interactions are the example of audit data source that can be

collected through dynamic analysis. Collection of audit data

source in dynamic analysis tends to produce a large number

of logged data which can consume a lot of space in mobile

devices. On the other hand, static analysis traces are not

producing as large size of audit source data log, however

some of the audit data source type can be obfuscated to hide

the true behavior of the mobile malware. The audit data

source that can be collected in static analysis are permission,

manifest files, API, intent, and byte codes. Refer Table 2 for

the audit data source extracted in previous researches.

This research explores mobile malware detection through

opcode or bytecode analysis. As stated by [33] and [34]

opcode which is an abbreviation of operation code act as a

set of machine language instructions. These instructions are

used in initiating certain operation in a computerized system

[35]. Besides that, [24] agreed that each opcode is specified

according to each data type and it is available in a byte codes

347
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

form. According to [36] during the initial state, a set of

malware codes will be broken up into their respective binary

forms. The binaries will then be analyzed and any hidden

codes placed in the binary forms will be extracted [26]. Next,

the binaries will then be decompiled to obtain the opcodes

sequence. In a study done by [37], the researchers

implemented the static analysis and uses deep learning to

detect malware. The malware undergoes a process of

unpacking where the opcode is extracted and later converted

into binary image. A prediction on the binary image is done

using ResNet in which the model achieves an accuracy of

93.5% when distinguishing malware and benign software.

One of the benefits in using opcode is that features can be

analyzed by only using raw data [38]. Refer Table 2 that is

attached in Appendix A for the audit data source.

2.4. Dataset Used

In this section, all of the dataset that had been used by

previous researchers will be listed and analyzed. Refer Table

3 for the datasets obtained in previous research.

Based on the table provided, it can be seen that most

researchers are using the Drebin Project dataset. With over

5,560 malware samples, most researchers are using Drebin

that offers a significant amount of malware samples and as a

mean in using a standardized dataset. However, this research

uses the Android Malware Dataset provided by ArgusLab

[39] as it carries a larger number of the latest mobile

malware. Table 3 that is in Appendix B shows the dataset

used in previous research.

3. Methodology

In this research, a static analysis will be carried out on each

mobile malware sample in order to reveal its behavior. In

static analysis, the selected .apk files are decompiled and

related features are extracted and examined. This analysis is

widely used in inspecting permissions, API calls, and to

determine the code structures and components involved in a

certain .apk files. When the .apk files is decompiled, several

archives are found residing in it such as the META-INF

directory, lib, res, assets, AndroidManifest.xml, classes.dex,

and resources.arsc. The AndroidManifest.xml and

classes.dex are commonly used in static analysis as it can

reveal the real intention of any suspicious applications.

Figure 1 shows the proposed approach for this research.

Figure 1 shows the steps involved to determine the mobile

malware behaviors.

Figure 1. Research Approach

3.1. Experimental Setup

In static analysis, the framework involved are divided into

five different phases. The phases include isolation of

environment setup, extraction of Android package,

disassembling of codes, opcode and class reviews, and

reconstruction and correlation analysis. Figure 2 shows the

graphical representation of the phases involved in this

experiment

Figure 2. Research Phases

In the first phase, a controlled environment is set up using

VMware workstation in order to analyze mobile malware

without risking the host PC from being infected. Secondly,

the .apk files are extracted in order to obtain the classes and

manifest file. Manifest file stores information regarding the

configuration, activity and permissions invoked by the

application while classes file contains all of the Java codes

used. Next, the classes.dex file are decompiled into a Java

class file also known as .jar. Any malicious request can be

seen by analyzing the codes and methods contained in Java

class. Some of the common malicious activities are

requesting root permission, steal sensitive information such

as IMEI number and country number, and sending and

receiving commands from a C&C server. Last but not least,

in the fifth phase, the results obtained in static analysis are

used to depict chain of malicious activities. The final step is

essential as it helps researcher to plot the patterns carried out

by the malware during an attack.

Based on the results of the research findings, a proposed

solution was developed from the results of the data collection

to solve the problem. The implementation of the solution is

presented in the following sections.

4. Results and Discussion

4.1. Results and Analysis

An initial experiment was done by examining a total of 500

benign and malicious samples. 250 malicious .apk were

downloaded from the Android Malware Dataset shared by

ArgusLab [39] and 250 benign software was downloaded

from the Google PlayStore. The benign samples were then

uploaded to VirusTotal [42] to ensure that they do not

contain any viruses.

4.2. Malicious Traces for AndroRat

Figure 3, in Appendix C, shows the opcode sequence

involved in an effort to obtain root access. There are several

‘invoke-static’ and ‘invoke-direct’ operation involved in the

process shown which is used to invoke a virtual method. As

348
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

seen in the argument field, it can be seen that one of the

commands invoked are ‘su’ which is associated in gaining

root access. Besides that, this piece of malware is also

attempting to access system files based on the filename

requested which is ‘#!/system/bin/sh’. The activities carried

out are suspicious and could cause major problems.

4.3. Malicious Traces for BankBot

Figure 4, in Appendix C, shows the opcode sequence for the

connection made by the program to an external server. Based

on the connections made, several sensitive information had

been sent to the C&C server. According to the arguments

shown in process 1, the IP address of the C&C server is

‘http://113.10.137.171’. In the second and third process, it

can be seen that the device information such as phone

number and IMSI number are being requested to be send

over to the remote server. All of the device information

requested are sensitive and should not be shared as attackers

could use it to clone the affected devices.

4.4. Malicious Traces for Airpush

In the first and second process shown in the Figure 5, in

Appendix C, it can be seen that there is an argument

requesting for API key and IMEI number. This particular

piece of device information is essential and should be kept as

a secret as it can be used to clone the device. The cloned

device can be used to carry out any malicious activity

without the victim’s knowledge.

4.5. Discussion

One of the ways to represent the behavior obtained is by

plotting a bar graph of the frequency of importance against

the opcode sequence. The frequency of importance for each

opcode sequence is measured using Term Frequency-Inverse

Document Frequency (TF-IDF) that is also used by [40] and

[41]. TF-IDF is used to measure the degree of importance for

each phrase in a document. The term frequency evaluates the

number of opcode occurrence in each application whereas

the inverse document frequency calculates the level of

importance for each opcode value. The orange colored bars

are used to represent the frequency of importance from

malicious mobile applications whereas the blue colored bars

represent the benign mobile applications. Each opcode is

represented using its own unique value that is located at the

X-axis. In contrast, the Y-axis represents the TF-IDF for

each opcode in the selected mobile applications. Considering

that the blue chart represents the benign mobile applications,

it can be seen that the infected applications are producing a

larger number of opcodes compared to those of benign

applications. Figure 6 and Figure 7 shows the TF-IDF of

each opcode sequence in malicious and benign applications

respectively whereas Figure 8, Appendix D, shows the

comparison of TF-IDF values in both applications.

Figure 6. Frequency of Opcode Occurrence in Malicious

Applications

Figure 7. Frequency of Opcode Occurrence in Benign

Applications

Based on the graph shown, it can be observed that the

highest number of opcode occurrence in malicious

applications are the aput-byte, iget-byte, sget-short, sput-

short, iget-short, shl-int/lit8, mul-double/2addr, aput-char,

mul-int/2addr, and add-int. Whereas in the benign

applications, the highest opcode occurrence are const-

string/jumbo, not-int, and-int, mul-double, move-

wide/from16, if-ltz, sget, and-long/2addr, mul-int, and

invoke-static/range.

According to the findings obtained from the bar chart, it can

be seen that some of the opcode invoked have its own

importance in both malicious and benign samples. However,

those belonging to malicious applications shows a higher

level of importance. Table 4 shows TF-IDF value for each

opcode sequence occurring in malicious and benign

applications

Table 4. Percentage of Opcode Occurrence in Malicious and

Benign Applications
Opcode

(Malicious)
TF-IDF Opcode

(Benign)
TF-IDF

aput-byte 5044.546
 const-

string/jumbo 431481.9
iget-byte 4862.899 not-int 125414.3
sget-short 4121.822 and-int 29259.81
sput-short 3040.008 mul-double 28041.54

iget-short 2446.469
 move-

wide/from16 25152.73

shl-int/lit8 2373.745 if-ltz 23255.92

mul-

double/2addr 2281.891
 sget

22057.04

aput-char

2141.033
 and-

long/2addr 19477.04

mul-int/2addr 2092.251 mul-int 19165.74

add-int 1842.727
 invoke-

static/range 18778.57

Based on the table depicted, it can be observed that the ten

highest opcode sequence in malicious applications are linked

to suspicious activities. The opcode listed are usually used to

carry out the operation that had been determined on the

selected index.

5. Conclusion

In this paper, we analyzed the behavior of mobile malware

through opcode analysis. Based on the result obtained, it can

be seen that there is a huge difference in the frequency of

occurrence for opcode in mobile malware and benign

applications. Other than that, the behavior of malicious

349
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

applications is observed and the opcode extracted are

mapped to its suspicious activities. In future, we would like

to propose a static analysis based on the ensemble of n-

opcode features in detecting mobile malware.

6. Acknowledgement

The authors are grateful to InforsNet Research Group,

Faculty of Information and Communication Technology

(FTMK) of Universiti Teknikal Malaysia Melaka (UTeM)

for the support and special acknowledgement to Ministry of

Higher Education Malaysia (MoHE) for providing financial

support through the Fundamental Research Grant Scheme

(FRGS/2018/FTMK-CACT/F00391).

References

[1] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani,

“Crowdroid: Behavior-based malware detection

system for android,” Proc. ACM Conf. Comput.

Commun. Secur., pp. 15–25, 2011, doi:

10.1145/2046614.2046619.

[2] L. Tenenboim-Chekina et al., “Detecting application

update attack on mobile devices through network

featur,” in 2013 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS),

Apr. 2013, pp. 91–92, doi:

10.1109/INFCOMW.2013.6970755.

[3] S. Corporation, “Executive Summary | 2018 Internet

Security Threat Report,” 2019.

https://www.symantec.com/content/dam/symantec/d

ocs/reports/istr-23-executive-summary-en.pdf

(accessed May 24, 2019).

[4] W. Y. Wan Ahmad Ramzi, M. A. Faizal, M. D.

Rudy Fadhlee, and M. S. Nur Hidayah, “Revealing

influenced selected feature for P2P botnet detection,”

Int. J. Commun. Networks Inf. Secur., vol. 9, no. 3,

pp. 500–506, 2017.

[5] S. Peng, S. Yu, and A. Yang, “Smartphone malware

and its propagation modeling: A survey,” IEEE

Commun. Surv. Tutorials, vol. 16, no. 2, pp. 925–

941, 2014, doi: 10.1109/SURV.2013.070813.00214.

[6] Futai Zou, Tianqi Wan, Siyu Zhang, and Li Pan, “A

survey of android mobile platform security,” in 10th

International Conference on Wireless

Communications, Networking and Mobile

Computing (WiCOM 2014), 2014, pp. 520–527, doi:

10.1049/ic.2014.0155.

[7] A. Skovoroda and D. Gamayunov, “Review of the

Mobile Malware Detection Approaches,” in 2015

23rd Euromicro International Conference on

Parallel, Distributed, and Network-Based

Processing, Mar. 2015, pp. 600–603, doi:

10.1109/PDP.2015.54.

[8] A. A. Obeidat, “Hybrid approach for botnet detection

using k-means and k-medoids with Hopfield neural

network,” Int. J. Commun. Networks Inf. Secur., vol.

9, no. 3, pp. 305–313, 2017.

[9] G. Canfora, F. Mercaldo, E. Medvet, and C. A.

Visaggio, “Detecting Android malware using

sequences of system calls,” 3rd Int. Work. Softw.

Dev. Lifecycle Mobile, DeMobile 2015 - Proc., pp.

13–20, 2015, doi: 10.1145/2804345.2804349.

[10] Y. Salah, I. Hamed, S. Nabil, A. Abdulkader, and M.

M. Mostafa, “Mobile Malware Detection : A

Survey,” Int. J. Comput. Sci. Inf. Secur., vol. 17, no.

1, 2019.

[11] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z.

Jia, “A mobile malware detection method using

behavior features in network traffic,” J. Netw.

Comput. Appl., vol. 133, pp. 15–25, May 2019, doi:

10.1016/j.jnca.2018.12.014.

[12] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-

Tangil, and S. Furnell, “AndroDialysis: Analysis of

Android Intent Effectiveness in Malware Detection,”

Comput. Secur., vol. 65, pp. 121–134, Mar. 2017,

doi: 10.1016/j.cose.2016.11.007.

[13] V. P., A. Zemmari, and M. Conti, “A machine

learning based approach to detect malicious android

apps using discriminant system calls,” Futur. Gener.

Comput. Syst., vol. 94, pp. 333–350, May 2019, doi:

10.1016/j.future.2018.11.021.

[14] J. Abawajy, S. Huda, S. Sharmeen, M. M. Hassan,

and A. Almogren, “Identifying cyber threats to

mobile-IoT applications in edge computing

paradigm,” Futur. Gener. Comput. Syst., vol. 89, pp.

525–538, Dec. 2018, doi:

10.1016/j.future.2018.06.053.

[15] Y.-S. Yen and H.-M. Sun, “An Android mutation

malware detection based on deep learning using

visualization of importance from codes,”

Microelectron. Reliab., vol. 93, no. December 2018,

pp. 109–114, Feb. 2019, doi:

10.1016/j.microrel.2019.01.007.

[16] L. Zhang, V. L. L. Thing, and Y. Cheng, “A scalable

and extensible framework for android malware

detection and family attribution,” Comput. Secur.,

vol. 80, pp. 120–133, Jan. 2019, doi:

10.1016/j.cose.2018.10.001.

[17] H. Papadopoulos, N. Georgiou, C. Eliades, and A.

Konstantinidis, “Android malware detection with

unbiased confidence guarantees,” Neurocomputing,

vol. 280, pp. 3–12, Mar. 2018, doi:

10.1016/j.neucom.2017.08.072.

[18] A. T. Kabakus and I. A. Dogru, “An in-depth

analysis of Android malware using hybrid

techniques,” Digit. Investig., vol. 24, pp. 25–33, Mar.

2018, doi: 10.1016/j.diin.2018.01.001.

[19] Z. Chen et al., “Machine learning based mobile

malware detection using highly imbalanced network

traffic,” Inf. Sci. (Ny)., vol. 433–434, pp. 346–364,

Apr. 2018, doi: 10.1016/j.ins.2017.04.044.

[20] M. F. A. Razak, N. B. Anuar, R. Salleh, A. Firdaus,

M. Faiz, and H. S. Alamri, “‘Less Give More’:

Evaluate and zoning Android applications,”

Measurement, vol. 133, pp. 396–411, Feb. 2019, doi:

10.1016/j.measurement.2018.10.034.

[21] F. Tong and Z. Yan, “A hybrid approach of mobile

malware detection in Android,” J. Parallel Distrib.

Comput., vol. 103, pp. 22–31, May 2017, doi:

10.1016/j.jpdc.2016.10.012.

[22] S. Sheen, R. Anitha, and V. Natarajan, “Android

based malware detection using a multifeature

collaborative decision fusion approach,”

Neurocomputing, vol. 151, no. P2, pp. 905–912,

Mar. 2015, doi: 10.1016/j.neucom.2014.10.004.

[23] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and

Y. Rahulamathavan, “PIndroid: A novel Android

malware detection system using ensemble learning

350
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

methods,” Comput. Secur., vol. 68, pp. 36–46, Jul.

2017, doi: 10.1016/j.cose.2017.03.011.

[24] L. Zhao, D. Li, G. Zheng, and W. Shi, “Deep Neural

Network Based on Android Mobile Malware

Detection System Using Opcode Sequences,” in

2018 IEEE 18th International Conference on

Communication Technology (ICCT), Oct. 2018, vol.

2019-Octob, pp. 1141–1147, doi:

10.1109/ICCT.2018.8600052.

[25] P. Zhang, S. Cheng, S. Lou, and F. Jiang, “A Novel

Android Malware Detection Approach Using

Operand Sequences,” in 2018 Third International

Conference on Security of Smart Cities, Industrial

Control System and Communications (SSIC), Oct.

2018, no. Ssi C, pp. 1–5, doi:

10.1109/SSIC.2018.8556755.

[26] R. Raphael, V. P., and B. Omman, “X-ANOVA and

X-Utest features for Android malware analysis,” in

2014 International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), Sep. 2014, pp. 1643–1649, doi:

10.1109/ICACCI.2014.6968608.

[27] S. Y. Yerima, S. Sezer, G. McWilliams, and I.

Muttik, “A New Android Malware Detection

Approach Using Bayesian Classification,” in 2013

IEEE 27th International Conference on Advanced

Information Networking and Applications (AINA),

Mar. 2013, pp. 121–128, doi:

10.1109/AINA.2013.88.

[28] S. Feldman, D. Stadther, and B. Wang, “Manilyzer:

Automated Android Malware Detection through

Manifest Analysis,” in 2014 IEEE 11th International

Conference on Mobile Ad Hoc and Sensor Systems,

Oct. 2014, pp. 767–772, doi:

10.1109/MASS.2014.65.

[29] B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer,

“N-opcode analysis for android malware

classification and categorization,” in 2016

International Conference On Cyber Security And

Protection Of Digital Services (Cyber Security), Jun.

2016, pp. 1–7, doi:

10.1109/CyberSecPODS.2016.7502343.

[30] N. Bakhshinejad and A. Hamzeh, “A new

compression based method for android malware

detection using opcodes,” in 2017 Artificial

Intelligence and Signal Processing Conference

(AISP), Oct. 2017, vol. 2018-Janua, pp. 256–261,

doi: 10.1109/AISP.2017.8324092.

[31] G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo,

and C. A. Visaggio, “Effectiveness of Opcode

ngrams for Detection of Multi Family Android

Malware,” in 2015 10th International Conference on

Availability, Reliability and Security, Aug. 2015, pp.

333–340, doi: 10.1109/ARES.2015.57.

[32] A. Aminordin, F. MA, R. Y.-J. of T. and Applied,

and U. 2018, “Android Malware Classification Base

on Application Category Using Static Code

Analysis,” Jatit.Org, vol. 96, no. 20, 2018, [Online].

Available:

http://www.jatit.org/volumes/Vol96No20/16Vol96N

o20.pdf.

[33] P. Faruki et al., “Android Security: A Survey of

Issues, Malware Penetration, and Defenses,” IEEE

Commun. Surv. Tutorials, vol. 17, no. 2, pp. 998–

1022, 2015, doi: 10.1109/COMST.2014.2386139.

[34] S. Rezaei, A. Afraz, F. Rezaei, and M. R. Shamani,

“Malware detection using opcodes statistical

features,” in 2016 8th International Symposium on

Telecommunications (IST), Sep. 2016, pp. 151–155,

doi: 10.1109/ISTEL.2016.7881800.

[35] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A Novel

Dynamic Android Malware Detection System With

Ensemble Learning,” IEEE Access, vol. 6, no. c, pp.

30996–31011, 2018, doi:

10.1109/ACCESS.2018.2844349.

[36] M. Zaki, S. Shahib, M. F. Abdollah, S. R. Selamat,

and C. Y. Huoy, “A Comparative Study on Feature

Selection Method for N-gram Mobile Malware

Detection,” Int. J. Netw. Secur., vol. 19, no. 5, pp. 1–

7, 2017, doi: 10.6633/IJNS.201709.19(5).10.

[37] J. El Abdelkhalki, M. Ben Ahmed, and B. A.

Abdelhakim, “Image Malware Detection using Deep

Learning,” Int. J. Commun. Networks Inf. Secur., vol.

12, no. 2, pp. 180–189, 2020, [Online]. Available:

https://search.proquest.com/openview/fb31622f0f2b

391af47271dfcdd44444/1?pq-

origsite=gscholar&cbl=52057.

[38] A. Yewale and M. Singh, “Malware detection based

on opcode frequency,” in 2016 International

Conference on Advanced Communication Control

and Computing Technologies (ICACCCT), May

2016, no. 978, pp. 646–649, doi:

10.1109/ICACCCT.2016.7831719.

[39] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep

Ground Truth Analysis of Current Android

Malware,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics),

vol. 10327 LNCS, 2017, pp. 252–276.

[40] M. Fan et al., “Frequent Subgraph Based Familial

Classification of Android Malware,” Proc. - Int.

Symp. Softw. Reliab. Eng. ISSRE, vol. 0, pp. 24–35,

2016, doi: 10.1109/ISSRE.2016.14.

[41] W. Li, J. Ge, and G. Dai, “Detecting Malware for

Android Platform: An SVM-Based Approach,” Proc.

- 2nd IEEE Int. Conf. Cyber Secur. Cloud Comput.

CSCloud 2015 - IEEE Int. Symp. Smart Cloud, IEEE

SSC 2015, pp. 464–469, 2016, doi:

10.1109/CSCloud.2015.50.

[42] VirusTotal, "VirusTotal," 2019. [Online]. Available:

https://virustotal.com/gui/home/upload. [Accessed

22 September 2019].

351
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Appendix A

Table 2. Audit Data Source

Author/Year Static Features Dynamic Features

P
er

m
is

si
o

n

J
a

v
a

 c
o
d

e

In
te

n
t

A
P

I
ca

ll
s

S
tr

in
g

s

H
a

rd
w

a
re

co
m

p
o

n
en

t

S
y

st
em

 c
a

ll

N
et

w
o

rk
 t

ra
ff

ic

S
y

st
em

co
m

p
o

n
en

t

U
se

r
in

te
ra

ct
io

n

Wang et al., 2019 /

Razak et al., 2019 /

Yen & Sun, 2019 /

P. et al., 2019 /

L. Zhang et al., 2019 / /

Papadopoulos et al., 2018 / / /

Kabakus & Dogru, 2018 / / /

Chen et al., 2018 /

Tong & Yan, 2017 /

Sheen et al., 2015 /

Idrees et al., 2017 / /

Zhao et al., 2018 / /

P. Zhang et al., 2018 /

Raphael et al., 2014 /

Yerima et al., 2013 / /

Feldman et al., 2014 /

Kang, Yerima,

Mclaughlin, & Sezer, 2016

/

Bakhshinejad & Hamzeh,

2017

 /

Canfora, Lorenzo, Medvet,

Mercaldo, & Visaggio,

2015

 /

Aminordin et al., 2018 / /

Abdelkhalki et al., 2020 /

Wan Ahmad Ramzi et al.,

2017

 /

Obeidat 2017 /

352
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Appendix B

Table 3. Dataset Used in Previous Research

Malicious Software Benign Software Used in

Collected from Amount Collected from Amount

Drebin Project 5560 Downloaded from multiple app

market by app crawler

8321 Wang et al., 2019

Drebin Project 5000 AndroZoo 5000 Razak et al., 2019

Apk files 720 Apk files 720 Yen & Sun, 2019

Dataset 1: Drebin Project

Dataset 2: Koodous, user

agencies and collection of

ransomwares

2520

Not mentioned

Dataset 1: Google Playstore,

Chines market, Koodous, and

third-party Android market

Dataset 2: Similar with the first

dataset

3130

3130

P. et al., 2019

Genome Project

Drebin Project

In-the-wild

928

5560

33259

In-the-wild 37224 L. Zhang et al., 2019

AndroZoo 1866 AndroZoo 4816 Papadopoulos et al., 2018

ASHISHB

Genome Project

Drebin Project

Contagio Mobile

Total

58

728

1953

70

2809

Google PlayStore 2999 Kabakus & Dogru, 2018

Dataset 1: Drebin Project

Dataset 2: Contagio

Dump, AndroTotal, and

AndroMalShare

5553

4317

Dataset 1: PlayDrone archive

Dataset 2: PlayDrone archive

5818

587

Chen et al., 2018

Drebin project 5560 A collection of apps installed

from Hiapk market, 91Play

market, Baidu market and

Qihu360 market

6178 Tong & Yan, 2017

Malware Genome Project

Dataset 1:

Dataset 2:

300

643

Obtained from Ministry of

Education Key Laboratory of

Intelligent Network and

Network Security, Xi’an

JiaoTong University, China

Dataset 1:

Dataset 2:

130

267

Sheen et al., 2015

Malware Genome Project 1073 Not mentioned 904 Idrees et al., 2017

Contagio Dump

Drebin Project

Malware Genome

VirusTotal

AndroZoo

MalShare

VirusShare

60

100

1000

70

20

25

25

Google Playstore 445 Zhao et al., 2018

Drebin Project 5560 Obtained from various Chinese

market

10000 P. Zhang et al., 2018

Drebin Project

Contagio Mobile Malware

5560

361

Google Playstore 59000 Raphael et al., 2014

Contagio Dump Not mentioned Google Playstore Not

mentioned

Yerima et al., 2013

Malware Genome Project 1000 Android markets 1000 Feldman et al., 2014

Malware Genome Project 1260 Google Playstore 1260 Kang, Yerima, Mclaughlin, &

Sezer, 2016

Drebin Project 3000 Google Playstore 3000 Bakhshinejad & Hamzeh, 2017

Drebin Project 5560 Google Playstore 5560 Canfora, Lorenzo, Medvet,

Mercaldo, & Visaggio, 2015

AndroZoo 4434 Google Playstore 5823 Aminordin et al., 2018

Not mentioned 3012 Not mentioned 3000 Abdelkhalki et al., 2020

353
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Appendix C

Opcode Arguments in Opcode

invoke-static

move-result-object

const/4

new-array

const/4

const-string

aput-object

const/4

const-string

aput-object

const/4

aput-object

invoke-virtual

move-result-object

new-instance

new-instance

invoke-virtual

Ljava/lang/Runtime;->getRuntime()Ljava/lang/Runtime;

0x3

Ljava/lang/String;

0x0

 su

0x1

 -c

0x2

Ljava/lang/Runtime;->exec([Ljava/lang/String;)Ljava/lang/Process;

Ljava/io/BufferedReader;

Ljava/io/InputStreamReader;

Ljava/lang/Process;->getInputStream()Ljava/io/InputStream;

new-instance

new instance

const/4

invoke-direct

invoke-direct

new-instance

new-instance

const-string

invoke-direct

invoke-virtual

move-result-object

invoke-virtual

move-result-object

invoke-direct

invoke-virtual

move-result-object

invoke-virtual

invoke-virtual

invoke-virtual

Ljava/io/BufferedOutputStream;

Ljava/io/FileOutputStream;

0x1

Ljava/io/FileOutputStream;-><init>(Ljava/lang/String;Z)V

Ljava/io/BufferedOutputStream;-><init>(Ljava/io/OutputStraem;)V

Ljava/lang/String;

Ljava/lang/StringBuilder;

 #!/system/bin/sh \n

Ljava/lang/StringBuilder;-><init>(Ljava/lang/String;)V

Ljava/lang/StringBuilder;->append(Ljava/lang/String;)Ljava/lang/StringBuilder;

Ljava/lang/StringBuilder;->toString()Ljava/lang/String;

Ljava/lang/String;-><init>(Ljava/lang/String;)V

Ljava/lang/String;->getBytes()[B

Ljava/io/OutputStream;->write([B)V

Ljava/io/OutputStream;->flush()V

Ljava/io/OutputStream;->close()V

AndroRat

Requesting

for Root

access

Accessing

system files

Figure 3. Malicious Traits Found in AndroRat

Opcode Arguments in Opcode

const-string

sput-object

const-string

sput-object

new-instance

sget-object

invoke-static

move-result-object

invoke-direct

 http://113.10.137.171

Lcom/bull88/bull99/Config;->Config;->SERVER_HOST Ljava/lang/String;

 /kbs.php?m=Api&a=

Lcom/bull88/bull99/Config;->SERVER_ADDRESS Ljava/lang/String;

Ljava/lang/StringBuilder;

Lcom/bull88/bull99/Config;->SERVER_HOST Ljava/lang/String;

Ljava/lang/String;->valueOf(Ljava/lang/Object;)Ljava/lang/String;

Ljava/lang/StringBuilder;-><init>(Ljava/lang/String;)V

Connection

between

server

const-string

invoke-virtual

move-result-object

check-cast

invoke-virtual

move-result-object

invoke-virtual

move-result-object

 phone

Landroid/content/Context;->getSystemService(Ljava/lang/String;)Ljava/lang/

Object;

Landroid/telephony/TelephonyManager;

Landroid/telephony/TelephonyManager;->getLine1Number()Ljava/lang/String;

Ljava/lang/String;->trim()Ljava/lang/String;

 phone

Landroid/content/Context;->getSystemService(Ljava/lang/String;)Ljava/lang/

Object;

Landroid/telephony/TelephonyManager;

Landroid/telephony/TelephonyManager;->getSubscriberId()Ljava/lang/String;

Ljava/lang/String;->trim()Ljava/lang/String;

const-string

invoke-virtual

move-result-object

check-cast

invoke-virtual

move-result-object

invoke-virtual

move-result-object
Requesting

IMSI number

Requesting

phone

number

BankBot

Figure 4. Malicious Traits Found in BankBot

354
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Opcode Arguments in Opcode

sget-object

const-string

const-string

invoke-interface

move-result-object

invoke-static

sget-object

const-string

const-string

invoke-interface

move-result-object

invoke-static

Lcom/FEBEturCq/QzbhjGcug133198/SetPreferences;->preferences Landroid/content/SharedPreferences

 APIKEY

 airpush

Landroid/content/SharedPreferences;->getString(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String

Lcom/FEBEturCq/QzbhjGcug133198/Util;->setApiKey(Ljava/lang/String;)V

Airpush

Lcom/FEBEturCq/QzbhjGcug133198/SetPreferences;->preferences Landroid/content/SharedPreferences

 imei

 invalid

Landroid/content/SharedPreferences;->getString(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String

Lcom/FEBEturCq/QzbhjGcug133198/Util;->setImei(Ljava/lang/String;)V

Requesting

API Key

Requesting

IMEI number

Figure 5. Malicious Traits Found in Airpush

Appendix D

Figure 8. Comparison on TF-IDF for Opcode Occurrence in Malicious and Benign Applications

