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Abstract: As the popularity of mobile devices are on the rise, 

millions of users are now exposed to mobile malware threats. 

Malware is known for its ability in causing damage to mobile 

devices. Attackers often use it as a way to use the resources 

available and for other cybercriminal benefits such stealing users’ 

data, credentials and credit card number. Various detection 

techniques have been introduced in mitigating mobile malware, yet 

the malware author has its own method to overcome the detection 

method. This paper presents mobile malware analysis approaches 

through opcode analysis. Opcode analysis on mobile malware 

reveals the behavior of malicious application in the binary level. 

The comparison made between the numbers of opcode occurrence 

from a malicious application and benign shows several significant 

traits. These differences can be used in classifying the malicious 

and benign mobile application.  
 

Keywords: Mobile Malware, Mobile Malware Detection, 

Android Malware, Mobile Malware Behavior, Opcode.  
 

1. Introduction 
 

With the vast evolvement of technology and connectivity, 

community worldwide are depending on mobile devices to 

solve various daily tasks [1]. Mobile devices allow everyone 

to connect with each other at any time and at any place. 

Nonetheless, the existence of mobile devices had opened 

enough rooms for attackers to exploits mobile devices by 

injecting malware into the devices without the users’ 

acknowledgement. Due to the intricacy in detecting mobile 

malware, mobile malware now possesses the ability of being 

unrecognized in the application store [2]which causes users 

to be tricked into installing the infected programs. Once the 

applications are installed in the users’ devices, the infiltration 

and replication of malicious codes begins which could cause 

some serious problems if it stays undetected. 

Malware which is also known as malicious software is 

known for its ability in causing damage to computers 

software and hardware. Attackers often use it as a way to use 

the resources available and for other cybercriminal benefits 

such stealing users’ data, credentials and credit card number. 

This attack could happen when victims open an email or 

when they download an infected software. When the 

malicious link or attachments sent in the emails are clicked, 

malware could be installed without user’s consent, 

ransomware attack could occur and freeze the entire system. 

This could also lead the sensitive information, financial and 

business information to be revealed or destroyed. The 

attacker could also gain and extract the victim’s login 

credentials and account information. 

According to the 2018 Internet Security Trend Report issued 

by Symantec Corporation [3], the discovery of latest mobile 

malware variations has significantly increased over the 

course of three years. In 2017, the discovery of new mobile 

malware had surged up to 54% compared to 2016. However, 

in 2018, the number of new mobile malware variations had 

shown a slight decreased of 10% as compared to those in 

2017. Even though the discovery of new variants is lower 

compared to the previous years, the impact of mobile 

malware attacks is still significantly high. In this paper, all of 

the issues encountered by previous researchers in combatting 

the spread of mobile malware have been taken into 

consideration. Moreover, the mobile malware behavior is 

analyzed to identify a new approached to enhanced mobile 

malware detection.  In order to improve accuracy and 

minimize false alarm rates, researchers have implemented 

several techniques to improve mobile malware detection. 

The latest insights on methods used in the recent mobile 

malware detection system is included in this paper.  In 

response to that, this paper is organized based on the 

research questions presented below. 

RQ1: What is the taxonomy of mobile malware and its 

behavior? 

RQ2: What are the features used in mobile malware 

detection? 
 

2. Related Works 
 

2.1. Types of Mobile Malware and its Behavior 
 

A study had shown that with the vast connectivity through 

wireless network, malware is able to spread itself[4] and taint 

victims’ smartphones and mobile devices [5]. Research by 

[6] also agreed that malware are often installed when victims 

accidentally clicked and downloaded malicious applications 

or links. Malware are classified into several classes [7]. 

Virus: Virus tends to infiltrate mobile devices and 

smartphones with the absence of user’s consent. Once they 

managed to invade the system, the viruses then bind with any 

program files and starts to execute malicious function that 

had been programmed.  

Worm: Worms are usually programmed to duplicate itself in 

the computer system. It then works by wrecking data and 

files available in the computer or mobile devices.  

Trojan: Trojans are designed to extract banking information 

or credentials, and flood the computer’s resources with 

Denial of Service (DoS) attacks. 

Backdoor: programmers invent Backdoors so that it is easier 

for them to administer the programs remotely. However, 

when it is used for harmful purposes attackers are able to 

send malware, viruses, and even gain access to computer 

system to perform malicious activities. 

Spyware: Spyware are used to keep an eye on the computer 

activities, which can also be utilized as a way to steal 

victims’ login credentials. 

Adware: Adware gives minimal threats to computers or 

mobile devices as it is only used to send ads that can 

sometimes be malicious. 

Ransomware: Ransomware are a type of malicious 

programs that lock users’ data and files. In order to unlock or 
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decrypt the files and data, victims will be asked to pay a 

hefty sum of money to the attackers. 

Rootkit: On the other hand, rootkit is a malicious tool placed 

in a computer system so that uncertified personnel are able to 

enter the system. The attackers will then run files or even 

adjust the system configurations remotely.  

Botnet: Attackers often used Botnets [8] as a medium to 

execute massive network attacks such DoS attacks to flood 

the resources [4]. 

Keylogger: Keylogger works by keeping all keystroke entry 

that you made. The recorded values are then used to obtain 

login credentials and other financial information. 

Previous studies had shown that mobile malware tend to 

perform certain traits after they had infected any mobile 

devices [7]. The general mobile malware behaviors are 

classified as follows.  
 

• Collect sensitive device and user credentials. 

• Interact with Command and Control (C&C) server. 

• Send premium rates SMS and spam. 

• Optimizing search engines. 

• Update and download package without users’ consent. 

• Causes an exhaustion of resources. 
 

As the current mobile malware are continuously evolving 

[9], an enhanced mobile malware detection technique is 

needed to combat these issues. 
 

2.2. Taxonomy of Mobile Malware Detection 
 

Mobile malware analysis is critical in enlightening how 

malware operates in its environment. These several analysis 

approaches which can be categorized into three different 

approaches that is static analysis, dynamic analysis and lastly 

the hybrid analysis [10]. 

Static analysis mainly works by examining the APK code 

that have been disassembled without any form of execution 

[11]. In other words, [12] stated that the permissions, API 

calls, intent filters, network addresses, hardware components, 

Java code and binary values will be inspected and reviewed 

for any dubious form. This analysis approach requires lesser 

computational resources [13], making it the best approach to 

be adopted in mobile devices. However, there are some fall 

back that might occur when static analysis is implemented 

[14] as it is unable to perceive any code obfuscation, zero-

day and polymorphic malware. 

On the other hand, dynamic analysis is used to investigate 

the behavior of mobile malware [15] while it is running. 

Several features that are frequently inspected [16] are the 

system calls, network traffic, system components, and the 

user interactions. Dynamic analysis is highly reliable as it is 

able to detect any code obfuscation, polymorphism, and any 

modified runtime [17]. Nonetheless, there are few drawbacks 

when using this type of analysis as it requires excessive 

amount of resources and time and it tends to produce a 

significantly larger amount of false alarm rates [14]. 

Next, hybrid analysis is the combination of static and 

dynamic analysis. One of the common approaches 

implemented using the hybrid analysis is the heuristic 

technique. Heuristic technique is used in distinguishing 

between a mobile malware or a legitimate application by 

utilizing the rules that had been set by experts or Machine 

Learning algorithm [18]. This analysis is known for its 

ability in detecting zero-day and polymorphic malware, but 

in the end, it has its own limitations. According to [19], the 

usage of heuristic analysis might promote false positive 

results in which a legitimate application might be diagnosed 

as a mobile malware. Table 1 below summarized the analysis 

approach used by previous researchers. 
 

Table 1. Analysis Approach 
Author/Year Analysis Approach 

Static Dynamic 

Wang et al., 2019   / 

Razak et al., 2019  /  

Yen & Sun, 2019 /  

P. et al., 2019  / 

L. Zhang et al., 2019 /  

Papadopoulos et al., 2018   / 

Kabakus & Dogru, 2018 / / 

Chen et al., 2018   / 

Tong & Yan, 2017 / / 

Sheen et al., 2015  / 

Idrees et al., 2017  /  

Zhao et al., 2018 /  

P. Zhang et al., 2018 /  

Raphael et al., 2014 /  

Yerima et al., 2013 /  

Feldman et al., 2014 /  

Kang, Yerima, Mclaughlin, & 

Sezer, 2016 

/  

Bakhshinejad & Hamzeh, 2017 /  

Canfora, Lorenzo, Medvet, 

Mercaldo, & Visaggio, 2015 

/  

Aminordin et al., 2018 /  

Abdelkhalki et al., 2020 /  

Wan Ahmad Ramzi et al., 2017  / 

Obeidat 2017  / 
 

2.3. Audit Data Source 
 

Audit data source is generally an essential resource in 

constructing a good mobile malware detection model. Any 

malicious behavior left traces that can be used to distinguish 

malicious applications from benign mobile applications.   

Audit data sources can be gathered from five Android 

framework layers that is the application layer, application 

framework, Android runtime, libraries and Linux kernel. 

Each of the framework layers provide a different set of audit 

data. As an example, when doing a collection on the Linux 

kernel interaction with network interface will yield the 

network traffic data. These types of data are usually obtained 

through dynamic analysis prior to its runtime. Data flow, 

system calls, network traffic, system components, and user 

interactions are the example of audit data source that can be 

collected through dynamic analysis. Collection of audit data 

source in dynamic analysis tends to produce a large number 

of logged data which can consume a lot of space in mobile 

devices. On the other hand, static analysis traces are not 

producing as large size of audit source data log, however 

some of the audit data source type can be obfuscated to hide 

the true behavior of the mobile malware. The audit data 

source that can be collected in static analysis are permission, 

manifest files, API, intent, and byte codes. Refer Table 2 for 

the audit data source extracted in previous researches. 

This research explores mobile malware detection through 

opcode or bytecode analysis. As stated by [33] and [34] 

opcode which is an abbreviation of operation code act as a 

set of machine language instructions. These instructions are 

used in initiating certain operation in a computerized system 

[35]. Besides that, [24] agreed that each opcode is specified 

according to each data type and it is available in a byte codes 
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form. According to [36] during the initial state, a set of 

malware codes will be broken up into their respective binary 

forms. The binaries will then be analyzed and any hidden 

codes placed in the binary forms will be extracted [26]. Next, 

the binaries will then be decompiled to obtain the opcodes 

sequence. In a study done by [37], the researchers 

implemented the static analysis and uses deep learning to 

detect malware. The malware undergoes a process of 

unpacking where the opcode is extracted and later converted 

into binary image. A prediction on the binary image is done 

using ResNet in which the model achieves an accuracy of 

93.5% when distinguishing malware and benign software. 

One of the benefits in using opcode is that features can be 

analyzed by only using raw data [38]. Refer Table 2 that is 

attached in Appendix A for the audit data source. 

2.4. Dataset Used 

In this section, all of the dataset that had been used by 

previous researchers will be listed and analyzed. Refer Table 

3 for the datasets obtained in previous research. 

Based on the table provided, it can be seen that most 

researchers are using the Drebin Project dataset. With over 

5,560 malware samples, most researchers are using Drebin 

that offers a significant amount of malware samples and as a 

mean in using a standardized dataset. However, this research 

uses the Android Malware Dataset provided by ArgusLab 

[39] as it carries a larger number of the latest mobile 

malware. Table 3 that is in Appendix B shows the dataset 

used in previous research.  
 

3. Methodology 
 

In this research, a static analysis will be carried out on each 

mobile malware sample in order to reveal its behavior. In 

static analysis, the selected .apk files are decompiled and 

related features are extracted and examined. This analysis is 

widely used in inspecting permissions, API calls, and to 

determine the code structures and components involved in a 

certain .apk files. When the .apk files is decompiled, several 

archives are found residing in it such as the META-INF 

directory, lib, res, assets, AndroidManifest.xml, classes.dex, 

and resources.arsc. The AndroidManifest.xml and 

classes.dex are commonly used in static analysis as it can 

reveal the real intention of any suspicious applications. 

Figure 1 shows the proposed approach for this research. 

Figure 1 shows the steps involved to determine the mobile 

malware behaviors. 

 
Figure 1. Research Approach 

3.1. Experimental Setup 

In static analysis, the framework involved are divided into 

five different phases. The phases include isolation of 

environment setup, extraction of Android package, 

disassembling of codes, opcode and class reviews, and 

reconstruction and correlation analysis. Figure 2 shows the 

graphical representation of the phases involved in this 

experiment 

 
Figure 2. Research Phases  

In the first phase, a controlled environment is set up using 

VMware workstation in order to analyze mobile malware 

without risking the host PC from being infected. Secondly, 

the .apk files are extracted in order to obtain the classes and 

manifest file. Manifest file stores information regarding the 

configuration, activity and permissions invoked by the 

application while classes file contains all of the Java codes 

used. Next, the classes.dex file are decompiled into a Java 

class file also known as .jar. Any malicious request can be 

seen by analyzing the codes and methods contained in Java 

class. Some of the common malicious activities are 

requesting root permission, steal sensitive information such 

as IMEI number and country number, and sending and 

receiving commands from a C&C server. Last but not least, 

in the fifth phase, the results obtained in static analysis are 

used to depict chain of malicious activities. The final step is 

essential as it helps researcher to plot the patterns carried out 

by the malware during an attack. 

Based on the results of the research findings, a proposed 

solution was developed from the results of the data collection 

to solve the problem. The implementation of the solution is 

presented in the following sections. 
 

4. Results and Discussion 
 

4.1. Results and Analysis 
 

An initial experiment was done by examining a total of 500 

benign and malicious samples. 250 malicious .apk were 

downloaded from the Android Malware Dataset shared by 

ArgusLab [39] and 250 benign software was downloaded 

from the Google PlayStore. The benign samples were then 

uploaded to VirusTotal [42] to ensure that they do not 

contain any viruses. 

4.2. Malicious Traces for AndroRat 

Figure 3, in Appendix C, shows the opcode sequence 

involved in an effort to obtain root access. There are several 

‘invoke-static’ and ‘invoke-direct’ operation involved in the 

process shown which is used to invoke a virtual method. As 
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seen in the argument field, it can be seen that one of the 

commands invoked are ‘su’ which is associated in gaining 

root access. Besides that, this piece of malware is also 

attempting to access system files based on the filename 

requested which is ‘#!/system/bin/sh’. The activities carried 

out are suspicious and could cause major problems. 

4.3. Malicious Traces for BankBot 

Figure 4, in Appendix C, shows the opcode sequence for the 

connection made by the program to an external server. Based 

on the connections made, several sensitive information had 

been sent to the C&C server. According to the arguments 

shown in process 1, the IP address of the C&C server is 

‘http://113.10.137.171’. In the second and third process, it 

can be seen that the device information such as phone 

number and IMSI number are being requested to be send 

over to the remote server. All of the device information 

requested are sensitive and should not be shared as attackers 

could use it to clone the affected devices. 

4.4. Malicious Traces for Airpush 

In the first and second process shown in the Figure 5, in 

Appendix C, it can be seen that there is an argument 

requesting for API key and IMEI number. This particular 

piece of device information is essential and should be kept as 

a secret as it can be used to clone the device. The cloned 

device can be used to carry out any malicious activity 

without the victim’s knowledge. 

4.5. Discussion 

One of the ways to represent the behavior obtained is by 

plotting a bar graph of the frequency of importance against 

the opcode sequence. The frequency of importance for each 

opcode sequence is measured using Term Frequency-Inverse 

Document Frequency (TF-IDF) that is also used by [40] and 

[41]. TF-IDF is used to measure the degree of importance for 

each phrase in a document. The term frequency evaluates the 

number of opcode occurrence in each application whereas 

the inverse document frequency calculates the level of 

importance for each opcode value.  The orange colored bars 

are used to represent the frequency of importance from 

malicious mobile applications whereas the blue colored bars 

represent the benign mobile applications. Each opcode is 

represented using its own unique value that is located at the 

X-axis. In contrast, the Y-axis represents the TF-IDF for 

each opcode in the selected mobile applications. Considering 

that the blue chart represents the benign mobile applications, 

it can be seen that the infected applications are producing a 

larger number of opcodes compared to those of benign 

applications. Figure 6 and Figure 7 shows the TF-IDF of 

each opcode sequence in malicious and benign applications 

respectively whereas Figure 8, Appendix D, shows the 

comparison of TF-IDF values in both applications. 

 
Figure 6. Frequency of Opcode Occurrence in Malicious 

Applications 

 
Figure 7. Frequency of Opcode Occurrence in Benign 

Applications 
 

Based on the graph shown, it can be observed that the 

highest number of opcode occurrence in malicious 

applications are the aput-byte, iget-byte, sget-short, sput-

short, iget-short, shl-int/lit8, mul-double/2addr, aput-char, 

mul-int/2addr, and add-int. Whereas in the benign 

applications, the highest opcode occurrence are const-

string/jumbo, not-int, and-int, mul-double, move-

wide/from16, if-ltz, sget, and-long/2addr, mul-int, and 

invoke-static/range.   

According to the findings obtained from the bar chart, it can 

be seen that some of the opcode invoked have its own 

importance in both malicious and benign samples. However, 

those belonging to malicious applications shows a higher 

level of importance. Table 4 shows TF-IDF value for each 

opcode sequence occurring in malicious and benign 

applications 
 

Table 4. Percentage of Opcode Occurrence in Malicious and 

Benign Applications 
Opcode 

(Malicious) 
TF-IDF  Opcode 

(Benign) 
TF-IDF 

 

aput-byte 5044.546 
 const-

string/jumbo 431481.9 
iget-byte 4862.899  not-int 125414.3 
sget-short 4121.822  and-int 29259.81 
sput-short 3040.008  mul-double 28041.54 
 

iget-short 2446.469 
 move-

wide/from16 25152.73 

shl-int/lit8 2373.745  if-ltz 23255.92 

mul-

double/2addr 2281.891 
 sget 

22057.04 

aput-char 

2141.033 
 and-

long/2addr 19477.04 

mul-int/2addr 2092.251  mul-int 19165.74 

 

add-int 1842.727 
 invoke-

static/range 18778.57 
 

Based on the table depicted, it can be observed that the ten 

highest opcode sequence in malicious applications are linked 

to suspicious activities. The opcode listed are usually used to 

carry out the operation that had been determined on the 

selected index. 

5. Conclusion 

In this paper, we analyzed the behavior of mobile malware 

through opcode analysis. Based on the result obtained, it can 

be seen that there is a huge difference in the frequency of 

occurrence for opcode in mobile malware and benign 

applications. Other than that, the behavior of malicious 
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applications is observed and the opcode extracted are 

mapped to its suspicious activities. In future, we would like 

to propose a static analysis based on the ensemble of n-

opcode features in detecting mobile malware. 
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Figure 3. Malicious Traits Found in AndroRat 
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Figure 4. Malicious Traits Found in BankBot 
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Figure 5.  Malicious Traits Found in Airpush 
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Figure 8. Comparison on TF-IDF for Opcode Occurrence in Malicious and Benign Applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


