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Abstract: We are currently living in an area where artificial 

intelligence is making out every day to day life much easier to 

manage. Some researchers are continuously developing the codes of 

artificial intelligence to utilize the benefits of the human being. And 

there is the process called data mining, which is used in many 

domains, including finance, engineering, biomedicine, and cyber 

security. The utilization of data mining, artificial intelligence 

algorithms like deep learning is so vast that we can't even name 

them all. This technology has almost touched every industry and 

cyber security is the most beneficial. The process of enhancing 

cyber security with the help of deep learning methods has come out 

of the theory books and many organizations are utilizing them 

rather than using a traditional piece of software to defend against 

online threats. Especially in the field of recognizing and classifying 

codes or malware. And this is essential, because, with the advent of 

cloud computing and the Internet of Things, expand potential 

malware infection sites from PCs to any electronic device. This 

makes our day to day life very unsafe. In this post, first, we will 

describe in brief how deep learning can be the most useful and 

promising techniques to detect malware. Besides this we will go 

through a deep neural network, ResNet for malware dynamic 

behavior classification  jobs. 

Keywords:Malware,detection,Malware,CNN,ResNet, Cyber 

security. 
 

1. Introduction 
 

Nowadays, data analysis is a crucial step for any project in 

several areas such as IT, marketing, finance. In this context, 

the analysis of the log files motivated a large number of 

researchers. The latter conducted their research studies on 

the different data are in the volumetric log files[1].This 

particular method of data analyzing is showing a promising 

feature in the context of malware detection. Therefore, 

Malware detection is a process of analyzing any suspicious 

applications that exist in the PC[2]. It is a key part of 

software safety research.  

Generally, to detect and classify malware, there are clear sets 

of detection methods. Since there are many methods to detect 

malware, the result is not the same all the time. Most of the 

time, we see users are making use of generic anti-virus 

software to shield against malicious applications or software. 

However, this is not a trustworthy system, to begin 

with[3].This software most of the time are unable to classify 

and unable to detect malware mutation, variants, and rapid 

code changes. As a result, the user left the PC vulnerable to 

numerous threats.What is making his worse is the continuous 

changes in the way malicious software or codes are being 

made. And, besides this, every now and then there's new 

malware popping up in the market. According to "China 

Internet Security Report for the First Half of 2018": with the 

help of 360 Internet Security center, researchers found out 

that in the  

first half of 2018 alone, there were more than 140 million 

occurrences of new malicious programs, which were 

detected by the  Internet Security software and 795,000 new 

malicious software were being intercepted regularly. 

Amongst them, the number of malicious software built for 

the PC was 149,098,000 hence 779,000 new harmful 

applications were being intercepted per day. The same 

program detected about 2.831 million malicious programs 

build to affect the Android platform, and they were 

intercepting about 16,000 new malicious programs every 

day. After going through the stats, we can obviously see why 

it is becoming more and more difficult to find a suitable 

solution to detect malware. However, it is a concern for 

everyone who needs a proper and efficient answer[4]. The 

method that can actively used in order to answer to the 

problem of detecting or classifying malware, is the method 

of deep learning.  

In this paper, we study, at the beginning, the research work 

in relation to malware especially those based in detection 

malware using different methods. We presented a deep 

learning model for malware detection using malware image. 

Deep learning is widely used in image recognition. 
 

2. Related works 
 

Family since different anti-virus software has different tags 

for one group. Marcos Sebastiain[5] advocated AV Class 

which makes use of the semantic analysis of malicious 

program name tags produced by various engines to recognize 

the same familiarly Bartos[6] stated that undiscovered 

malicious code variants could be identified by drawing out 

statistical characteristics from the network stream without 

proper code fingerprints features. YuFeng et al. [7] advised 

to make use of a method called ASTROID. This exceptional 

method can automatically extract common malicious features 

from a known malware family database to detect new 

malicious codes. This technique changes the homogeneous 

harmful code detection into highest satisfiability problem 

solving by exploring the most suspicious common subgraph 

(MSCS) from a small number of identified malware family 

examples. The outcomes show that the suggested method is 

better to the manual technique in detection efficiency and 

accuracy rate, also can defeat behavioral obfuscation and 

other counter measures. Advancement of malware 

technologies. And today, if we research a bit about different 

types of malware detection technologies, we will be able to 

find a few exceptional detection methods of malware codes, 

and here they follow: Rules-based method[8], Heuristic 

Analysis[9], DNA Analysis[10],and Deep Learning 

Method[11], [12]. 

They aim to prove how gene sequence classifier can be 

applied to classify malware and how rapidly it acts as 

opposed to other hybrid techniques. BIG15 dataset consists 

of another important which is family classification, the 

reason is, to understand how malware affects the affected 

device, recognizing the family classification is crucial to 

know threat level they pose, and how to defend against them 

[13]. Various machine learning methods have been employed 

so far for malware family classification. Some use opcodes 

or instructions of assembly code to predict representative 
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classes and some make images of machine language code to 

classify given malware, while other use hybrid approaches. 

To summarize, malware image analysis highlighted in the 

related works. However ,a huge effort still required to 

progress and promote the system efficiency. In this purpose, 

it is necessary to monitor and detect malware by following 

specific methodologies using deep learning and provide a 

prediction of malware image. 
 

3. Background 
 

3.1 Deep learning  
 

Deep learning or deep neural networks (DNNs) takes 

inspiration from how the brain works and forms a sub 

module of artificial intelligence. The main strength of deep 

learning architectures is the capability to understand the 

meaning of data when it is in large amounts and to 

automatically tune the derived meaning with new data with 

brand-new data without the necessity for an area expert 

knowledge. Convolutional neural networks (CNNs) and 

Recurrent neural networks (RNNs) are two types of deep 

learning architectures predominantly applied in real-life 

scenarios. Generally, CNN architectures are used for spatial 

data.  

The concepts behind the various deep learning architectures 

are discussed in a mathematical way.  

3.1.1 Deep Neural Network (DNN) 

DEEP NEURAL NETWORK (DNN) A feed forward neural 

network (FFN) creates a directed graph in which a graph is 

composed of nodes and edges. FFN passes information along 

edges from one node to another without formation of a cycle. 

Multi-layer perceptron (MLP) is a type of FFN that contains 

3 or more layers, specifically one input layer, one or more 

hidden layer and an output layer in which each layer has 

many neurons, called as units in mathematical notation. The 

number of hidden layers is selected by following a hyper 

parameter tuning approach[14]. 

A (FFN) feed forward neural network creates a directed 

graph in which a graph is composed of nodes and edges. The 

information passed by the FFN along edges from one node to 

another without formation of a cycle. (MLP) Multi-layer 

perceptron is a type of FFN that contains 3 or more layers, 

precisely one input layer, one or more hidden layer and an 

output layer in which each layer has many neurons, called as 

units in mathematical notation. The number of hidden layers 

is selected by following a hyper parameter tuning approach. 

The transformation of information from one layer to another 

is done in the direct without considering the past values. 

Moreover, neurons in each layer are fully connected .An 

MLP with n hidden layers can be mathematically formulated 

as given below: 
 

𝐻(𝑥) = 𝐻𝑛(𝐻𝑛−1(𝐻𝑛−2(• • • (𝐻1(𝑥)))))                         (1) 
 

H defines hidden layer. This way of stacking hidden layers is 

typically called as deep neural networks (DNNs)[Fig 1].  

shows a pictorial representation of DNN architecture with n 

hidden layers. It takes input: 
 

𝑋 = 𝑋1, 𝑋2, • • •, 𝑋𝑝−1, 𝑋𝑝(2)  
 

𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠:  𝑂 = 𝑂1, 𝑂2, • • •, 𝑂𝑐−1, 𝑂𝑐    (3) 

Each hidden layer uses Rectified linear units (ReLU) as the 

non-linear activation function. This helps to reduce the state 

of vanishing and error. 

 

Figure 1. Architecture of DNN with n hidden layers 

Gradient issue. ReLU has been turned out to be more 

proficient and capable of accelerating the entire training 

process altogether[15]. ReLU is defined mathematically as 

follows: 
 

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥)   (4) 
 

Where x denotes input 

3.1.2 Convolutional Neural Network (CNN) 

Before we review how deep learning is employed for 

malware classification, let us revisit how convolutional 

neural networks are used for image classification. An image 

is input to the network in its raw pixel format. The image 

goes through a sequence of convolutional layers which can 

be viewed as automatically computing image features at 

different levels of abstraction. The spatial dimension of 

feature maps decreases due to max pooling layers. Neurons 

in higher layers correspond to larger receptive fields of pixels 

in the input image over which features are being computed. 

These convolutional layers are followed by fully connected 

layers (dense layers), or in more modern architectures, by 

global average pooling layer. Right in the end, we have 

classification output layer which outputs probabilities of the 

image being in different categories. For speech recognition, 

we can convert speech signal into a 2-D image called 

spectrogram in which time is one axis and other is frequency, 

and we can apply similar techniques[16]. 

It is shown in [Fig 2]., where all connections and hidden 

layers and its units are not shown. Here, m implies the total 

number of filters, ln denotes the number of input features 

&amp; on the other hand p implies decreased feature 

dimension, it depends on pooling length. In this work, CNN 

network comprised of convolution 1Dlayer, pooling 1D 

layer, and fully connected layer. A CNN network can have 

more than one convolution 1D layer, pooling1D layer and 

fully connected layer. In convolutional 1D layer, the filters 

slide over the 1D sequence data and extracts optimal 

features. The features that are extracted from each filter are 

grouped into a new feature set called as feature map. The 

number of filters and the length are chosen by following a 

hyperparameter tuning method. This in turn uses non-linear 

activation function, ReLU on each element. The dimensions  

of the optimal features are reduced using pooling 1D layer 

using either max pooling, min pooling or average pooling. 

Since the maximum output within a selected region is 

selected in max pooling, we adopt max pooling in this work. 

Finally, the CNN network contains fully connected layer for 

classification. In fully connected layer, each neuron contains 

a connection to every other neuron. Instead of passing the 

pooling 1D layer features into fully connected layer, it can 

also be given to recurrent layer, LSTM to capture the 
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sequence related information. Finally, the LSTM features are 

passed into fully connected layer for classification [17]. 

Convolutional layers: These layers apply a certain number of 

convolution operations (linear filtering) to the image in 

sequence. Typically, these filters extract edge, color, and 

shape information from the input image. Basically, the filters 

operate on subregions of an image and perform computation 

such that it produces a single value as output for each 

subregion. The output (say x) of this layer is typically 

forwarded to a non-linear function (called ReLU activation) 

which is defined as:  

(𝑥) = (0, 𝑥)  (5) 

Pooling layers: This layer is responsible for down sampling 

(i.e. reducing the spatial resolution of the input layers) the 

data produced from convolution layers so that processing 

time can be reduced, and so that computational resources can 

handle the scale of the data. This is due to that fact that as a 

result of pooling, the number of learnable parameters is 

reduced in the subsequent layers of the network. Max 

pooling is a commonly used pooling technique that keeps the 

maximum value in a region (e.g. 2x2 non-overlapping 

regions of data) and discards the remaining values. 

Fully connected layers: This layer performs classification on 

the output generated from convolution layers and pooling 

layers. Every neuron in this layer is connected to every 

neuron present in the previous layer. This type of layer is 

typically followed by a Dropout layer that improves the 

generalization capability of the model by preventing over-

fitting which is commonly occurring problem in deep 

learning domain [18] [Fig 2]. 

 
Figure 2. Architecture of CNN for malware detection[14] 

3.2 Transfer learning 

Transfer learning is what we do every day, it is to take 

advantage of learning acquired previously, to, by analogy, 

solve a similar but different problem. The transfer learning of 

neural networks is based on the same principle. If we trained 

a neural network to differentiate malware, benign, from 

photos, then we can rely on this network to guess what 

category malware belongs to. And even better. This is 

possible because neural networks are stacked in layers, each 

learning from the previous. This is how a CNN (neural 

network by convolution) will have its first layers specialized 

in the recognition of simple shapes (horizontal lines, vertical 

lines, diagonals, ...), its following layers dedicated to the 

recognition of shapes a little more complex (circle, square, 

triangle,…), its following layers oriented towards, for 

example recognition of faces, recognition of body parts,…. 

and the final layers will focus on what is being learned from 

this network (malware or benign). During the learning phase, 

the neural network changes its weights. The weights (which 

are numbers) and the architecture of the network are 

sufficient to characterize it (apart from a few parameters not 

described here). It is therefore very easy to benefit from an 

existing neural network, without having to recalculate what 

has enabled it to reach its optimal configuration, calculated 

for the dataset and the problem for which it was designed  

[Fig 3] [19]. 
 

 
Figure 3. Transfer learning 

3.3. Residential Energy Services Network (ResNet) 

Unfortunately, deep CNNs are hard to train due to vanishing 

gradients in the long forward feed and backward propagate 

process. A residual neural network, on the other hand, has 

shortcut connections parallel to the normal convolutional 

layers. Mathematically, A ResNet layer approximately 

calculates: 

 𝑦 = 𝑓(𝑥) + 𝑖𝑑(𝑥) = 𝑓(𝑥) + 𝑥  (6) 

Those shortcuts act like highways and the gradients can 

easily flow back, resulting in faster training and much more 

layers. The winner model that Microsoft used in ImageNet 

2015 has 152 layers, nearly 8 times deeper than best CNN 

[Fig 4][20]. 
 

 
 

Figure 4. A deeper residual function F for ImageNet[21] 
 

In order to detect malware and compute the accuracy, we 

applied CNN.  The CNN can be based on several different 

models like VGG nets, GoogleNet model, ResNet model… 

In this study, we utilized the ResNet model because it has 

tremendous performance as compare to the other models[22]. 

In this article, we will not consecrate it to give more details 

about the comparison between the others models and ResNet 

model but we will go with another comparison more 

important compared to our study, it is the comparison 

between the architectures of ResNet (18, 34, 50, 101, 152).  

For further, there is several of ResNet model’s architectures, 

it depends on number of hidden layers.  

As we said before, Resnet is one of the most powerful deep 

neural networks- until now- which has achieved excellent 

performance results concerning the classification of 

Malware. We can find many different ResNet architecture 

(The same concept but with a different number of layers: 

ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-

110, ResNet-152). 

In this paragraph, we will explain more about the models of 

ResNet. Therefore, regarding the small networks (ResNet 18 

and ResNet 34), it used a block with two layers deep. While 
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the other architectures of ResNet (50, 101,152) used three 

layers deep [Fig 5]. 

In order to get 50- layer ResNet, the block with three layers 

replace the block with two layers in the 34-layer net. This 

model has 3.8 billion FLOPs. The same method is applied 

with 101-layer and 152-layer ResNets, they are constructed 

by using more 3-layer blocks Even after the depth is 

increased, the 152-layer ResNet (11.3 billion FLOPs) [Fig 

5].  

 
Figure 5. Sizes of outputs and convolutional kernels for 

ResNet[28] 
 

4. Methodology of the proposed models 

4.1 Malware detection 
 

The machine learning approach to predict the capability of 

countering a code mutation, variation and reverse 

engineering of the codes, which can be used to determine the 

strength of the harmful alien code obfuscation variants that 

produced soon afterward[23]. This method is effective 

against successfully predict or counter the new malicious 

samples and recognize the class variants by making use of 

deep learning method. And there's a possibility to use this 

technique to automate the detection of malware which will 

reduce a lot of human resources and efforts. It is a promising 

chapter of malware detection technology and can offer a new 

path for anti-malware research and application. 

4.2 The proposed system 

In this section, we introduce a deep learning model for 

malware detection using malware image. Deep learning is 

widely used in image recognition. Especially convolutional 

neural network CNN is mainly used. In neural network, each 

node in the previous layer gives effects to all node in the next 

layer. However, in CNN, only several nodes in the current 

layer give effects to the nodes in the next layer.so, CNNs are 

able to use local correlation. It means that   CNN learns 

features   from the image. 

Using the process of training and inference framework has a 

similar process, during the training phase, a known set of 

data is transmitted to an untrained neural network. The 

results of the framework are compared to the results of 

known data sets. Next, the framework reassesses the error 

value and updates the weight of the data set in the layers of 

the neural network depending on how the value is correct or 

incorrect. This reassessment is very important for the training 

stage because it adjusts the neural network to improve the 

performance of the next task that it learns. In contrast to 

training, inference does not reassess or adjust the layers of 

the neural network based on the results. Inference infers the 

knowledge of a trained neural network model and uses it to 

infer a result. Thus, when a new unknown data set is entered 

via a trained neural network, it generates a prediction based 

on the predictive accuracy of the neural network. Inference 

comes after training because it requires a trained neural 

network model. While a deep learning system can be used 

for inference, the important aspects of inference make a deep 

learning system not ideal. Deep learning systems are 

optimized to handle large amounts of data to process and re-

evaluate the neural network. This requires high performance 

computing which is more energy, which means more costs. 

The inference can be smaller data sets, but hyper-calibrated 

to many devices [Fig 6]. 
 

 
Figure 6. Model of detection malware 

5. Data Preparation and Environment Setup 

In this segment, we present details regarding dataset numbers 

for both malware & benign apps. Additionally, this segment 

represents how we set up the test conditions to observe 

behavior for these applications. 

To evaluate the effectiveness of classical machine learning 

and deep learning architectures, it is required to create a large 

data set with a variety of different samples. The publicly 

available data sets for possible research in cyber security for 

malware detection are very limited due to the privacy 

preserving policies of the individuals and organizations. 

Over time, as malware have grown it has become 

increasingly difficult to have one source having all types of 

malware families. Many researchers try to collaborate their 

findings but still there is not a single dataset or repository to 

acquire all the required samples. In this research, the publicly 

available dataset contains 3000 benign and 3012 malware 

which were split up into the following: training dataset 

(60%), validation data (20%), and testing data (20%). The 

training dataset was shuffled but the validation and testing 

dataset were not.[Fig 7]. 
 

Figure 7. Data set of malware detection 
 

To classify images using a deep learning model we will need 

images from both benign and malware files. We will only do 

a binary classification (malware and benign class). Multi-
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class classification can also be done using this technique, 

with the idea being that a variant of malware files will have 

images different from the other. 

[Fig 8] presents all steps of the architecture of our system. 

First of all, we started with download malware and begin 

software from open source databases (Download), after that 

we extract this files that contain malware and benign 

software (Unpacking). The third step is the operation code 

from each instruction and then produces a data set in which 

each instance is described by sequences of opcodes(Opcode). 

Next, the binary image matrices are reconstructed by these 

opcode sequences with their probabilities and information 

gains (Binary image). Later, we split dataset into two parts 

training and testing phases (Split Dataset). The next step is to 

implement fastai in PytTorch of the models ResNet:18, 34, 

50, 101 and 152 (Implement the models). After that, we 

optimize the model to reduce Learning Rate (Reduce LR). 

The last step is prediction on test dataset (Malware or 

Benign). 

Figure8. Architecture for proposed model from data 

preparation to prediction 

Once we have our dataset ready, we will convert each file 

into a 256x256 grayscale image (each pixel has a value 

between 0 and 255)[Fig 9]. 

Since malware detection is done in real time, we need to 

classify an image as benign or malware within seconds. 

Therefore, keeping the image generation process simple and 

short will help us save valuable time. 

We used fastai for PyTorch library to implement the image 

classification with Google Colaboratory tool for the purpose 

of classification, the below shows the Neural Network 

generated by the Deep Learning technique.  

Fastai is a deep learning library that provides researchers 

with high-level components that can quickly and easily 

achieve good cutting-edge results in standard deep learning 

areas and provides researchers with low-level components 

that can be mixed and matched to create new patterns. It 

aims to do both things without substantial compromise in 

ease of use, flexibility or performance. This is possible 

through a carefully layered architecture, which expresses the 

common underlying models of many deep learning and data 

processing techniques in terms of decoupled 

abstractions. These abstractions can be expressed concisely 

and clearly by taking advantage of the dynamism of the 

underlying python language and the flexibility of the 

PyTorch library.  

Fastai includes: A new type distribution system for Python 

with a semantic type hierarchy for tensors A computer vision 

library optimized by GPU which can be extended in pure 

Python An optimizer which refactors the common 

functionalities of modern optimizers into two elements basic, 

allowing the algorithms to optimize the code. A new 

bidirectional callback system that can access any part of the 

data, the model or the optimizer and modify it at any time 

during training A new API from data block and much more. 

In this article we have used this library to create our own 

comprehensive deep learning model for detecting malware 

on different images. The library is already widely used in 

research, industry and education [24]. 
 

   
Figure 9. Benign image (left) and malware image (right)  
 

6. Experiments and Evaluation 
 

In this paper, we are going to cover ResNet-152 in detail 

which is the most efficient one for our system. More details 

and explanation are presented in this axis.  

In order to compare the models of ResNet, our system 

calculates four parameters (Accuracy, Precision, Recall and 

F1 score) using four main evaluation metrics [Table 1]: 

Table 1. Evaluation metrics of each indicator 

Indicator Formula 

Accuracy  

 

Precision 
 

Recall 
 

F1 Score 
 

Here below the explanation of each indicator: 

Accuracy is a measure of correct classification.  

Precision is a measure of accurate positive predictions over 

the total amount of positive predictions.  

Recall is a measure of true positive over total actual positive.  

F1 score is used whenever there needs to be a balance 

between Precision and Recall and there is a large imbalance 

in the dataset[Table 1] [25]. 

As we can see in the figure above, our system used four main 

parameters to calculate the accuracy, the precision, the recall 

and the F1 score. 

These parameters are presented as Confusion matrix[Fig 

10][26]. 
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Figure 10. Confusion matrix 

 

Each parameter of confusion matrix is explained below:  

TP: True Positives is the number of correctly identified 

malware samples.  

TN: True Negatives is the number of correctly identified 

benign samples. 

FP: False Positives is the number of samples that were 

benign but identified as malware.  

FN: False Negatives are the samples that were malware but 

not identified correctly by the model[25].  

[Table2] shows the results of each ResNet model (18, 34, 50, 

101 and 152) considered in this research.  

Accuracy: The base models ResNet 18 and ResNet 34 

reached the lowest value accuracy with a negligible 

difference in which ResNet 18 presents 87,9% and ResNet 

34 presents 87%. Note that ResNet 101 with an accuracy of 

91% and ResNet 50 with an accuracy slightly better of 

91,6% perform so good but they still not the best compared 

to ResNet 152 with the highest accuracy of 93,5%. 

Precision: The ResNet 34 have noticeable lower precision 

than all the other model with a percentage of 87,3% followed 

by ResNet 18 with a precision of 88,5%, that means that they 

are incorrectly classifying benign samples as malware.  

ResNet 101 and ResNet 50 achieved a high precision 

of91,8% and 93,2% successively but they still lower than the 

precision achieved by ResNet 152 (93,4%). That indicates 

that most samples classified as infected was indeed infected 

for this model (ResNet 152).  

Recall: All ResNet models were close but ResNet-152 was 

the best (95%). Since recall is a measure of many infected 

samples where missed by the models, ResNet 152 seem to be 

effective at identifying most infected samples. A high recall 

score suggests that the model is strong at identifying less 

obvious malware samples.  

F1 Score:ResNet 152 model scored the highest with a score 

of 94,1%. That indicates ResNet 152 has the best balance of 

precision and recall. In other word, it has the best balance 

between identifying only malware samples and identifying 

most of infected samples over all[Table 2]. 

Concerning the detection time, we have reserved a part just 

above.  

Table 2. Results of confusion matrix for each ResNet model 

Model Accuracy Precision Recall 
F1 

score 
Time (s) 

ResNet 18 0,879 0,885 0,90 0,892 37 

ResNet 34 0,87 0,873 0,91 0,891 40 

ResNet 50 0,916 0,932 0,916 0,923 43 

ResNet 101 0,91 0,918 0,933 0,925 51 

ResNet 152 0,935 0,934 0,95 0,941 56 

 

We present the table above as a graph in order to simplify the 

overview. We can see clearly why we choose ResNet 152 in 

our system (Best accuracy 93,5%, best precision 93,4%, best 

recall 95% and best F1 score 94,1%)[Fig 11]. So, we can say 

it is the better choice to extract the features from images. 

ResNet 152 is a deep learning based image classifier. For our 

task we finetune the ResNet152 mode 1 on our 

malware/benign binary classification dataset. In addition to 

that, ResNet 152 is the new one (It is introduced in 2015), 

that means it is deeper in terms of layers (152), It added a 

large number of layers with strong performance (As we 

already explained previously in the chapter 3.3 Residential 

Energy Services Network).  
 

 
Figure 11.  Comparison for used ResNet models 

[Table 3] presents our ROC curves (The Receiver Operating 

Characteristic), it measures the models’ abilities to detect 

malware and it is calculated with the same parameters that 

we mentioned above (TP, FN, FP and TN) but this time 

using two evaluation metrics:  

Table 3. Evaluation metrics of TPR and FPR 
Indicator Formula 

True Position Rate  (TPR)  
 

False Position Rate  (FPR) 
 

The [Table4] shows True Positive Rate and False Positive 

Rate of each ResNet model, but we generate only the one 

that we are interested in (ResNet 152) [Fig 12]. 

Table 4. FPR and TPR of each model 

[Table 5] shows the confusion matrix successively of ResNet 

18, ResNet 34, ResNet 50, ResNet 101 and ResNet 152. 

We generate ROC curve of ResNet 152. In order to analyze 

this ROC curve, we must measure the area under curve 

(AUC) value. That helps us to know if our model ResNet 

152 has the ability to differentiate between classes. In our 

case, we get AUC=0,94. It is a high value. That means our 

model (ResNet 152) is accurately predicting benign samples 

as benign and malicious samples as malicious. 

Model FPR TPR 

ResNet 18 0,14 0,90 

ResNet 34 0,16 0,910 

ResNet 50 0,08 0,91 

ResNet 101 0,10 0,93 

ResNet 152 0,08 0,94 
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Table 5. Confusion matrix for different model of ResNet 

Models Confusion matrix 
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So, the best performing model is the ResNet 152 model 

because it has the higher precision scores which involve both 

TP and FP values, in other words, with an AUC of 0.94, 

ResNet 152 is arguably a good model for our system [Fig 

12]. 

For our system, we are going to go with ResNet-152 which 

is the most efficient one for our system with an accuracy 

value of 93,52%(We tested all the ResNet architectures: 

18,34,50, 101 and152) [Fig13]. 

As we can observe in the[Fig14], the ResNet152 really 

performed better in terms of prediction accuracy. However, it 

performed poorly in terms of running time on malware 

dataset as compared with the other architectures (ResNet 18, 

34, 50 and 101). But in our case, this difference of running 

time is not too remarkable that is why we accepted it. 
 

 
Figure 12. Receiver Operating characteristic (ROC) 

 
 

Figure 13. Comparison of ResNet models 

0:37 0:40 0:43
0:51 0:56

Running Time (s)

 

Figure 14. Running time of different architectures of 

ResNet 
 

As can be seen from the [Table6], we used 5 parameters in 

order to perform the prediction of malware. The role of every 

parameter is explained below.  

• Poch: Denotes the number of iterations or passes of the 

entire training dataset. 

• Train loss: Loss function output for the training set for 

that particular epoch. The loss function for our case is 

binary-cross entropy loss function. 

• Valid loss: Same as train loss but on the validation / test 

set. For this experiment, validation set is same as test set as 

there is no hyperparameter tuning done 

False Positive Rate    
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• Testing Accuracy: Represents a test method is said to 

be accurate when it measures what it is supposed to 

measure. This is calculated after every epoch. 

• Time (second): time taken to train for the current epoch 

or iteration. 

As we can see in the [Table6], the best accuracy to our 

system is 91,66%. However, we are not sure about this 

value. So, there is a simple way that can help us to 

determinate the reasonable minimum and maximum 

boundary value, this tool is “LR range test”. This test is 

reliable whenever having a new architecture dataset. 

Therefore, all we must do is to run our system for several 

epochs while the learning rate increase and decrease linearly 

between minimum and maximum LR value [Fig 15][24]. 

Table6. Model ResNet 152 before LR range test 

    Epoch 
Testing 

Accuracy 
Train_loss Valid_loss Time 

0 0,824074 0,627386 0,721273 00 :57 

1 0,888889 0,447629 0,320702 00 :57 

2 0,916667 0,318618 0,262 00 :56 

3 0,907407 0,344537 0,495571 00 :56 
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Figure 15. Learning rate plot 
 

The main parameter that can change all the results in terms 

of increasing the accuracy and decreasing the error at a time, 

is the Epoch that indicates the number of times you browse 

the entire dataset. 

We tested several different numbers of iterations of dataset 

using the LR range test and we get the following output. 

For the epoch 0 and 1, we can see the accuracy increases as 

the number of epochs rises. In which the testing accuracy of 

the epoch 0 was 87,96% and it increased to 90,74% in the 

epoch 1 [Table7].  

For the two epochs 2 and 3, the value of testing accuracy is 

constant in the same percentage (93,52%). This step is the 

points that warns us and determines the number of epoch 

necessary to detect the malware. Therefore, in each operation 

of detection of malware, we must increase the epoch (the 

testing accuracy increases too) until the value of the accuracy 

stays constant or begins to decrease. Here we have to stop 

increasing the epochs [Table7]. In this case, the epoch 2 was 

the optimal one that stabilizes the highest accuracy (93,52%). 

[Fig16]: shows the evolution of the Loss function and the 

accuracy as a function of the epoch numbers for ResNet 152. 

 

 

 

Table7. Model ResNet 152 after LR range test 
 

Epoch 
Testing 

Accuracy 
Train_loss Valid_loss Time 

0 0,87963 0,604314 0,257363 00 :57 

1 0,907407 0,408414 0,181318 00:57 

2 0,935185 0,309338 0,167167 00 :56 

3 0,935185 0,26714 0,151349 00 :56 
 

0,00

1,00

2,00

200 400 600 800 1000 1200

Valid Train

Figure 16.  Training and validation loss of our system using 

ResNet152 
 

In order to simplify the total overview and the interpretation, 

the results are displayed as graph with two main parameters: 

The epoch and the Testing Accuracy [Fig17]. 
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Figure 17. The optimal accuracy of ResNet15 
 

Here are images of the output we got after running my code 

(Few images from the training dataset will be shown on 2 

rows) [Table 18]. 

Deep learning provides an exceptional promising path 

towards, efficient, robust malware classification and 

detection.  

After testing all architectures of ResNet model, our system 

performs better with 152 layers. However, this architecture is 

not the best one in terms of time. Despite of this 

‘’negligible’’ difference, this note open a new door of a new 

research about finding a best model in terms of prediction 

accuracy and running time at a time. 

Therefore, this is not the end result. The neural network and 

deep learning method is a vast area that needs more analysis 

and research to bring more promising results and 

applications which will address any shortcoming we 

currently face. 
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Table 18. The images with maximum losses 
 

 

7. Conclusion 
 

If we look at the trend of cyber security, we will find out that 

the whole world is looking forward to a solution to the ever-

growing concern of malware. And thankfully deep learning 

and neural networks are showing new and promising hope. 

From regular articles to academic research papers, everyone 

is showing promising results. 

The model we have presented here is relative simplicity and 

has shown its efficacy in the research that used it in this 

paper. In this work, we design a light-weighted deep 

learning-based malware detection system. Which has been 

proven to be capable enough to work well on different 

datasets. Furthermore, benefited from instruction grouping 

interpretation, the accuracy, and effectiveness of our method 

are all updated. Opposed to other work, our analysis, 

detection and prediction method is more lightweight both in 

aspects of the training data extraction and training time. 

In the future, our goal is to compare the difference between 

the methods of prediction, and we hope to achieve our goal 

so fast. 
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