
52
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Artificial Neural Networks, Support Vector

Machine and Energy Detection for Spectrum

Sensing based on Real Signals

Mohammed Saber1,2, Abdessamad El Rharras1, Rachid Saadane1, Hatim Kharraz Aroussi2 and Mohammed Wahbi1

1Laboratory Engineering system, SIRC/LAGeS-EHTP, Hassania School of Public Works, Casablanca, Morocco
2Laboratory Information Modeling and Communication Systems (IMCS), Ibn Toufail University, Kenitra, Morocco

Abstract: A Cognitive Radio (CR) is an intelligent wireless

communication system, which is able to improve the utilization of

the spectral environment. Spectrum sensing (SS) is one of the most

important phases in the cognitive radio cycle, this operation consists

in detecting signals presence in a particular frequency band. In order

to detect primary user (PU) existence, this paper proposes a low cost

and low power consumption spectrum sensing implementation. Our

proposed platform is tested based on real world signals. Those

signals are generated by a Raspberry Pi card and a 433 MHz Wireless

transmitter (ASK (Amplitude-Shift Keying) and FSK (Frequency-

Shift Keying) modulation type). RTL-SDR dongle is used as a

reception interface. In this work, we compare the performance of

three methods for SS operation: The energy detection technique, the

Artificial neural network (ANN) and the support vector machine

(SVM). So, the received data could be classified as a PU or not

(noise) by the ED method, and by training and testing on a proposed

ANN and SVM classification model. The proposed algorithms are

implemented under MATLAB software. In order to determine the

best architecture, in the case of ANN, two different training

algorithms are compared. Furthermore, we have investigated the

effect of several SVM functions. The main objective is to find out

the best method for signal detection between the three methods. The

performance evaluation of our proposed system is the probability of

detection (𝑷𝒅) and the false alarm probability (𝑷𝒇𝒂). This

Comparative work has shown that the SS operation by SVM can be

more accurate than ANN and ED.

Keywords: Cognitive radio, spectrum sensing, energy detection,

artificial neural networks (ANN), support vector machine (SVM),

Raspberry Pi 3, 433 MHz Wireless transmitter, RTL-SDR.

1. Introduction

The already existed radio resources are becoming
increasingly in demand, because of the wireless
communication emergence (wireless technologies and its
various services). Under a static frequency spectrum
allocation, a study carried out by the Federal Communications
Commission (FCC) [1] has shown that the frequency
spectrum use is not regular; according to the different times
and the geographical position; some frequencies bands are not
occupied or partially occupied and others are highly
demanded [1, 2], the activity is concentrated on cellular radio
and FM bands. The unused frequencies have been termed as
spectrum holes. A spectrum hole is a region of spatiotemporal
frequencies assigned to a licensed user (primary users ‘PU’),
but, at a particular time and specific geographic location, the
band is not being utilized by the PU wherein a secondary and
unique use is possible. As a conclusion of this previous study,
FCC recommends an efficient spectrum management and
access to enhance the spectrum efficiency, and specifies that
unlicensed devices should have the capability of identifying
free bands.

In order to reduce the waste of spectrum resources and
increase the spectral efficiency, the concept of cognitive radio
(CR) was introduced and proposed by Joseph Mitola in 1999
[3, 4]. The CR is defined as an intelligent device that senses
the spectrum holes and makes it available for unlicensed users
(secondary users (SU)). In CR the SUs can take advantage of
these spectral holes dynamically and opportunistically,
without causing any harmful interference to PUs. CR is a
concatenation of software defined radio and artificial
intelligence, with the aim of providing an efficient spectrum
usage, also defined by FCC as: “A radio or system that senses
its operational electromagnetic spectrum environment and
can dynamically and autonomously adjust its radio operating
parameters to modify system operation”. Figure 1 illustrates a
basic cognition cycle model as introduced by Haykin [5].

Figure 1. Basic cognitive cycle. (The figure focuses on three

fundamental cognitive tasks.)

Spectrum sensing (Radio-scene analysis) is an essential
capability of CR. The objective is to sense the spectrum holes
in order to obtain the state of the band (free/occupied). The
various spectrum sensing methods are discussed in [6];
Matched filter detection technique [7, 8], Energy detection
techniques [9, 10] and cyclostationary feature detection
technique [11, 12]. The energy detection (ED) remains the
most used method for spectrum sensing [13], due to its simple
implementation and not requiring any information about the
PU signal. Therefore, in this work, we are interested in the ED
method, in which the energy of the received signal is
measured and compared with a predetermined threshold,
which presents the noise energy present in the channel. If the

53
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

signal energy exceeds the threshold, we declare the presence
of the PU, otherwise it is absent.
During the last years soft computing techniques like artificial
neural networks (ANN) and support vector machine (SVM),
have become extremely successful discriminative approaches
to pattern classification [14-20]. In our context, we propose
an implementation of ANN and SVM for SS operation to
detect the PU signal; we focus on different ANN training
algorithms and SVM functions that can be applied on the set
of input data patterns. Our proposed platform as described in
Fig. 2: transmits a real ASK/FSK signals using the Raspberry
Pi 3 card and the 433 MHz transmitter. The transmitted
signals are received by RTL-SDR dongle connected to
MATLAB software environment. The received signals are
treated as features and fed into a detector to sense the PU
availability, using energy detection method, ANN and SVM.

Figure 2. The proposed system

The rest of this paper is organized as follows: Section II
presents the ASK and FSK radio signal transmitter based on
Raspberry Pi 3 card and 433 MHz Wireless transmitter.
Section III describes the mathematical formulation of
classical energy detection method and explains the MATLAB
implementation of this detector. Section IV gives more
detailed description of the artificial neural network and the
ANN detector architecture. Section V presents the theoretical
foundations of SVM, the mathematical formulation and the
implementation of SVM is presented. Section VI presents the
performance evaluation results for the proposed SS
implementation. Lastly, Section VII concludes the paper.

2. The used Data base

2.1 Database generation:

In order to make our work more authentic, we will generate

our own signals 𝑥(𝑡) using a Raspberry Pi 3 card and a 433

MHz Wireless transmitter (ASK/FSK).

Figure 3. Raspberry Pi 3 card

The Raspberry Pi 3 (fig. 3) card is a low-cost, basic computer
that was originally intended to help spur interest in computing
among school-aged children. It allows running multiple
variants of free operating systems GNU / Linux and
compatible software. One of its great points is that it has GPIO
connectors (General Purpose Input Output). This GPIO pins
can be designated (in software) as an input or output pin and

used for a wide range of purposes. In this work, we will use
the GPIO 4 connector (pin 7) for transmitting signal data to
433 MHz transmitter.

Figure 4. The 433 MHz ASK/FSK transmitter devices

The 433 MHz ASK/FSK transmitter (fig. 4) module is a small
electronic device, it is used to transmit radio signals between
two devices, and widely used in remote control, wireless data
transfer applications, mobile robots and burglar alarms. The
Specifications of the used 433MHz device, are as follows: the
receiver operating voltage: 3V to 12V, the receiver operating
current is 5.5mA, the operating frequency is 433 MHz, the
Transmission Distance: 3 meters (without antenna) up to 100
meters, the modulating technique: ASK (Amplitude shift
keying) / FSK (Frequency-Shift Keying), the data
transmission speed: 10Kbps, and has a Low cost and small
package.

2.2 Database acquisition:

The receiver reconstructs the message sent from the captured
signal by the inverted processing operations done on
transmission. Those processes can be performed using a
single RTL-SDR hardware and MATLAB software. RTL-
SDR (fig. 5) or Software Defined Radio is a radio
communication system, wherein the traditional hardware
components (e.g. mixers, filters, amplifiers,
modulators/demodulators, detectors, etc.) are instead
implemented by means of software on an embedded system
[21]. RTL-SDR is capable of receiving any signal in its
frequency range. This range varies depending on the type of
device used. In this work, the used dongle has a frequency
capability of approximately 25MHz-1750MHz.

Figure 5. RTL-SDR dongle

Figure 6. Synoptic diagram of SDR card

Fig. 6 shows the block diagram of the different processing
stages of an RTL-SDR dongle. It is composed of:

54
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

• A configurable analog RF head, consisting of filters,
couplers, mixers, intermediate frequency local
oscillators, broadband and low noise power
amplifiers,

• An analog / digital (ADC) and digital / analogue
(DAC) conversion stage,

• A programmable digital section for shaping the
spectrum, adapting and digital baseband processing,

• Software section providing control and software
configuration of the various stages.

3. The Energy Detection

3.1. Energy detection Model

The problem of spectrum sensing operation can be
mathematically formulated as follows:

{
𝑦(𝑡) = 𝑛(𝑡) ∶ 𝐻0

𝑦(𝑡) = 𝜀 ∗ 𝑥(𝑡) + 𝑛(𝑡) ∶ 𝐻1
 Where 0 < 𝜀 ≤ 1 (1)

Where:

𝑦(𝑡) : The received signal.

𝑥(𝑡) : The signal to be detected, deterministic or random,
but unknown.

𝑛(𝑡) : The presented noise in the channel.

H0 is the hypothesis that the PU is not transmitting,
therefore 𝑥(𝑡) = 0, while H1 is the hypothesis that the PU is
using the channel for transmission. In the energy detection
technique, we receive the signal 𝑦(𝑡), next we measure its
energy by (2). The detection of the primary signal is done by
comparing the measured energy with a threshold 𝜆 that
presents the noise energy.

𝐸 =
1

𝑇
∑ [𝑌(𝑛)]2𝑁

𝑛=1 {
𝐸 > 𝜆 𝐻1

𝐸 < 𝜆 𝐻0
 (2)

3.2. Energy detector implementation

The energy detection implementation is presented in Fig. 7.
First, the received signal y (t), by RTL SDR dongle, is
digitized by an analog to digital convertor (ADC) then passes
through a band-pass filter (BPF), with a center frequency f0
and bandwidth W, using the transfer function (3) to select the
desired band.

𝐻(𝑓) = {

2

√𝑁0
 |𝑓 − 𝑓0| ≤ 𝑊

0 |𝑓 − 𝑓0| > 𝑊
 (3)

Then the filtered signal is transformed into frequency domain
through the fast Fourier transform (FFT) block, and the signal
energy is measured using (4).

 𝐸 =
1

𝑁
∑ |𝑌(𝑓𝑖)|2𝑁

𝑖=1 (4)

Finally, the estimated energy E is compared with a threshold
λ (the noise energy) to decide if a signal is present (𝐻1) or not
(𝐻0).

Figure 7. Block diagram of a frequency domain energy

detector

4. Artificial Neural Networks

4.1. The biological neuron

The biological neuron is a special biological cell that
processes information. According to [22], there are huge
number of neurons in the human brain, approximately 1011,
each neuron is connected to 103 up to 104 other neurons. In
total, approximately 1014 to 1015 interconnections. As shown
in the fig. 8, a typical neuron mainly consists of the following
three parts:

− The dendrites, which are the inputs of the neuron, collect
the electrical information from the nervous system.

− The soma that processes this information and sends back
an electrical signal of impulse type.

− The axon through which the outgoing signal is
transmitted to neighboring neurons.

Figure 8. The biological neuron

4.2. The formal neuron

A formal neuron (fig. 9) is a mathematical function; it is
conceived as a model of biological neuron. Formal neurons
are elementary units in an artificial neural network. The
following diagram represents the general mathematical model
of a formal neuron [23]:

Figure 9. Mathematical model of the formal neuron

The formal neuron that is given in the figure above has n
inputs denoted as {𝑋1, 𝑋2, … , 𝑋𝑛}. Each line that connects
these inputs to the summation junction is assigned a weight
denoted as {𝑊1, 𝑊2, … , 𝑊𝑛}. The net input 𝑦𝑖𝑛 can be
calculated as follows:

𝑦𝑖𝑛 = 𝑥1. 𝑤1 + 𝑥2. 𝑤2 + 𝑥3. 𝑤3 + … + 𝑥𝑛. 𝑤𝑛 + 𝑏 (5)

The activation function 𝐹(𝑎) is One of the most important
parts of a neuron. Several activation functions can be
considered (threshold function, linear function, sigmoid
function …). In this work, we have chosen a sigmoid function
(fig. 10), for its nonlinearity that makes it possible to
approximate any function. Finally, the output 𝒚 of the neuron
is given in the following formula:

55
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

𝑦 = 𝐹(𝑦𝑖𝑛) = 𝐹 (∑ 𝑊𝑖 ∗ 𝑋𝑖 + 𝑏) (6)

Figure 10. sigmoid function

4.3. Multi-Layer Perceptron

The multilayer perceptron (MLP) (fig. 11) is a class of
feedforward artificial neural network that has at least three
layers of nodes. It generates a set of outputs {𝑦1, 𝑦2, … , 𝑦𝑚}
from a set of inputs {𝑋1, 𝑋2, … , 𝑋𝑛}. Except for the input
nodes, each node is a neuron that uses a nonlinear activation
function.

Figure 11. MLP model

A neural network is trained with input and target pair patterns
with the ability of learning. MLP can separate data that is not
linearly distinguishable [24]. It is especially trained using a
supervised learning technique called back-propagation (PB)
algorithm [25], which aims at minimizing the global error
measured at the output layer by the relation bellow:

 𝑒(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑚(𝑡) (7)

Where 𝑦𝑑(𝑡) denotes the desired output, and 𝑦𝑚(𝑡) the
measured output of the neuron.
The BP algorithm uses an iterative supervised learning
procedure, where the MLP is trained with a set of predefined
inputs and outputs. The global error 𝐸𝑔(𝑡) is calculated by

equation (8), this error can be minimized by the gradient
descent technique [22].

 𝐸𝑔(𝑡) =
1

2
∑ (𝑦𝑑,𝑖(𝑡) − 𝑦𝑚,𝑖(𝑡))

2
𝑛
𝑖=1 (8)

There are several training algorithms that can be used to train
an MLP network. In this paper, we will present a qualitative
comparison between two training algorithms: quasi newton
and conjugate gradient. Wherein the used training functions
are respectively: trainlm (Levenberg Marquardt (LM)) and
trainscg (Scaled Conjugate Gradient (SCG)). All these
algorithms are trained by the same data set acquired from the
implementation described in section II.

4.4. ANN implementation

We have proposed an ANN detector for spectrum sensing
(Fig. 12), the ANN detector architecture is similar at the ED
detector (Fig. 7), where the energy calculation block is
replaced by an ANN block (Fig. 13).

Figure 12. ANN detection diagram

The number of input layer neurons n, is fixed by the points
number (features) in the captured signal FFT vector. which is
1024 and we use one (1) neuron in the output layer
(𝐻1 or 𝐻0):

Figure 13. The ANN architecture

5. Support vector machines

Support vector machines (SVMs) are a new discriminating
techniques in the theory of statistical learning, introduced in
1995s by V. Vapnik in his book " The Nature of Statistical
Learning Theory "[26]. SVMs are machine learning methods
that can be used to separate two classes of data [27, 28] by
finding an optimal hyperplane ‘𝐻0’. This technique is
essentially used for binary classification, but possible to
classify samples with multiple classes. In addition, it can be
used to solve both linear and nonlinear classification or
regression problems. In SVMs, each input instance 𝑥, is
represented by a pair (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 ∈ ℝ𝑛 is the data
instance, and 𝑦𝑖 ∈ {1, −1} is the binary class label (positive
or negative). The training data can be defined as:

𝐷 = {(𝑥𝑖 , 𝑦𝑖) ∈ ℜ𝑛 , 𝑖 = 1, … , 𝑚 } (9)

The hyperplane ‘H’ can be defined by equation (10). Where
the vector ‘𝜔’ is the weighing vector that defines the boundary
of different classes of data, and ‘𝑏’ is a scalar threshold.

𝐻 ∶ (𝜔 . 𝑥) + 𝑏 (10)

The objective of SVM classification is to predict the value of
𝑦𝑖 for new data points 𝑥𝑖. There are two types in SVM
classification: Linearly and non-linearly separable
classification.

5.1. Linearly separable classification:

In this section, we present the general method of constructing
the optimal hyperplane (OH), which separates data belonging
to two different linearly separable classes. Fig. 14 gives a
visual representation of the OH (𝐻0) in the case of linearly
separable data, which is satisfying in the following
conditions:

{
𝜔 ∗ 𝑥𝑖 + 𝑏 ≥ 1 𝑖𝑓 𝑦𝑖 = 1
𝜔 ∗ 𝑥𝑖 + 𝑏 ≤ −1 𝑖𝑓 𝑦𝑖 = −1

 (11)

That is equivalent to the next representation:

𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) ≥ 1 , 𝑖 = 1, … … , 𝑚 (12)

56
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 14. Separator hyperplanes: H is any hyperplane, Ho

is the optimal hyperplane and M is the margin that represents

the distance between the different classes and Ho (SV are the

Supports Vectors)

The optimal hyperplane 𝐻0 is a hyperplane that maximizes the
margin M, which represents the smallest distance between the
different data of the two classes and 𝐻0. Maximizing the
margin M is equal to maximizing the sum of the distances
between the two classes relative to 𝐻0. The margin ‘M’ has
the following mathematical expression:

 𝑀 = 𝑚𝑖𝑛
𝑥𝑖|𝑦𝑖=1

𝜔∙𝑥+𝑏

‖𝜔‖
− 𝑚𝑎𝑥

𝑥𝑖|𝑦𝑖=−1

𝜔∙𝑥+𝑏

‖𝜔‖
 (13)

 =
1

‖𝜔‖
−

−1

‖𝜔‖

 𝑀 =
2

‖𝜔‖
 (14)

The optimal hyper plane can be obtained by maximizing the
equation (14). Which is equivalent to minimizing (15):

 min
𝜔

‖𝜔‖2

2
 (15)

The Equation (15) can be solved as a quadratic optimization
problem by Lagrangian function:

𝐿(𝜔, 𝑏, 𝛼) =
1

2
‖𝜔‖2 − ∑ 𝛼𝑖

𝑚

𝑖=1

[𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) − 1] (16)

Where 𝛼𝑖 = (𝛼1, … , 𝛼𝑚) > 0 is a lagrangian multiplier
factors.

By deriving the equation (16) we obtain:

 𝜔 = ∑ 𝛼𝑖

𝑚

𝑖=1

𝑦𝑖𝑥𝑖 (17)

 ∑ 𝛼𝑖

𝑚

𝑖=1

𝑦𝑖 = 0 (18)

Substituting (17) and (18) into Equation (16), the optimal
separating hyperplane can be obtained by solving the
following dual representation of the optimization problem:

 min
𝛼

1

2
∑ 𝑦𝑖𝑦𝑗(

𝑚

𝑖,𝑗=1

𝑥𝑖𝑥𝑗)𝛼𝑖𝛼𝑗 − ∑ 𝛼𝑗 (19)

𝑚

𝑗=1

Subject to ∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖 = 0 , 𝛼𝑖 >

0

By solving this dual Lagrange function (19), 𝛼 is evaluated.
Consequently, 𝜔 is evaluated out from (17), and 𝑏 can be
easily calculated from (20):

 𝑏 = 𝑦𝑗 − ∑ 𝛼𝑖𝑦𝑖(

𝑚

𝑖=1

𝑥𝑖𝑥𝑗) (20)

Knowing that the classification function is defined by (21),
where 𝑠𝑔𝑛 is a Signum function.

 𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛(𝜔 ∙ 𝑥𝑖 + 𝑏) (21)

Finally, we can classify an unknown data x by utilizing the
following function:

 𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛 [∑ 𝛼𝑖𝑦𝑖(

𝑚

𝑖=1

𝑥𝑖𝑥) + 𝑏] (22)

5.2. Non-linearly separable classification:

If the classes of data are mixed (not linearly) (fig. 15), it is
impossible to linearly separate the training data in the original
space. In order to solve this non- linearly separable problem,
the slack variables 𝜉𝑖, which cause little change around
training data, are introduced. Then the training vectors must
satisfy:

𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑖 = 1, … … , 𝑚 (23)

In the case when the data points are not linearly separable in
the data space, the SVM handles this by using a kernel
function to map the data to a transformed feature space (a
higher dimensional space) where a hyperplane is then used to
gain linearly separation. For this, we project the original data
into the feature space using non-linear functions. In this new
space we build the OH that separates the transformed data.
The main problem here is how to manipulate the
transformation of all input vectors in the feature space, so as
to avoid an increase in the cost in number of free parameters.
Let the set 𝐷′ be the image (the transformed feature space) of
the set D defined in previous section, by the transformation:

𝐷′ = {𝜓(𝑥𝑖), 𝑦𝑖) ∈ ℜ𝑛 × {−1,1}, 𝑖 = 1, … , 𝑚| 𝑝 ≥ 𝑛 } (24)

Structuring an optimal hyperplane, defined by the weight
vector 𝜔 and the bias b is solved as a quadratic optimization
problem that maximizes the margin between the classes (The
first part of Eq. 25), and minimizes the errors (The second part
of Eq. 25). It can be expressed as:

𝑚𝑖𝑛 [
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

] (25)

Subject to {
 𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0 ; 𝑖 = 1, … … , 𝑚

Where C is a soft margin constant that is used to control the
training error rate by different values. For high values of C,
the optimization uses a smaller-margin hyperplane if that
hyperplane classified all the training points correctly.
Conversely, a very small value of C will make the optimizer
use a higher-margin separating hyperplane in the case when
the hyperplane misclassifies more points.

57
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 15. Separator hyperplanes in the case of non-linearly

separable (𝜉 is the slack variables)

Using Lagrange multiplier technique, the above optimization
problem (25) can be reformulated as:

𝐿(𝜔, 𝑏, 𝜉, 𝛼, 𝛽) =
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

− ∑ 𝛽𝑖𝜉𝑖

𝑚

𝑖=1

− ∑ 𝛼𝑖

𝑚

𝑖=1

[𝑦𝑖(𝜔𝑇𝜓(𝑥𝑖) + 𝑏) − 1

+ 𝜉𝑖] (26)

Where 𝛼𝑖 and β𝑖 are positive Lagrangian multipliers
parameters that can be found by solving the quadratic
programming problem (26). The obtained vector 𝛼 is known
as a support vector. By applying Karush-Kuhn-Tucker (KKT)
conditions, which is a theorem that plays an important part in
the theory of optimization, to (26), we can obtain:

 𝜔 = ∑ 𝛼𝑖𝑦𝑖𝜓(𝑥𝑖) (27)

𝑚

𝑖=1

 ∑ 𝛼𝑖𝑦𝑖 = 0

𝑚

𝑖=1

 (28)

 𝛼𝑖 = 𝐶 − 𝛽𝑖 (29)

It is noticeable that 0 ≤ 𝛼𝑖 ≤ 𝐶 and 𝛽𝑖 ≥ 0.

By calculating the derivatives with respect to 𝜔, 𝑏 and 𝜉, the
dual representation of the optimization problem in term of
support vectors can be obtained as follows [28].

max ∑ 𝛼𝑖 −
1

2

𝑚

𝑖=1

∑ 𝛼𝑖𝛼𝑗

𝑚

𝑖,𝑗=1

𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) (30)

Subject to

{
 ∑ 𝛼𝑖

𝑚
𝑖=1 𝑦𝑖 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶 ; 𝑖 = 1, … … , 𝑚
 (31)

Where 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜓(𝑥𝑖)𝜓(𝑥𝑗) is the kernel function. Hence,

by solving the optimization function defined in (30), the
resulting nonlinear classification function can be obtained as
follows:

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛 [∑ 𝛼𝑖

𝑥𝑖∈ 𝑉𝑆

𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏] (32)

𝜓(𝑥𝑗) The most common kernel, that are widely used

because of their efficiency in mapping the input data to higher
dimensional space in order to reduce the computational load,
are illustrated as follows (𝑢 and 𝑣 are vectors) [28].

− The linear kernel:

 𝐾(𝑢, 𝑣) = 𝑢. 𝑣 (33)

− The Polynomial kernel:

 𝐾(𝑢, 𝑣) = [(𝑢. 𝑣) + 1]𝑑 (34)

− The RBF kernel (Radial Basis Function):

 𝐾(𝑢, 𝑣) = 𝑒𝑥𝑝(−
‖𝑢 − 𝑣‖2

2𝜎2
) (35)

5.3. SVM implementation:

Support Vector Machine (SVM) model is a powerful
supervised machine learning, it is used for efficient
classification with high precision in various applications like
object detection, speech recognition, bioinformatics, image
classification, medical diagnosis and others [29]. In our
context, we have proposed an SVM detector diagram for
signal classification (spectrum sensing) (Fig. 16). Our SVM
detector have the same steps of the ANN detector (fig. 12),
we have just changed the ANN block by an SVM block.

Figure 16. SVM detection diagram

The SVM kernel choice is critical to define the flexibility and
classification power. The most used kernels are: linear,
polynomial degree ‘p’, and Gaussian. In MATLAB software,
we can find three principle SVM functions for classification
[30]: “fitcsvm”, “fitclinear” and “fitckernel”.

− The Fitcsvm function (fit a classifier using SVM),
trains a support vector machine (SVM) model for binary
classification (two classes), on a low-dimensional or
moderate-dimensional predictor data set.

− The fitclinear (Fit linear classification) function
trains linear classification models for two-class (binary)
learning with high-dimensional. This function minimizes
the objective function using techniques that reduce
computing time (e.g., stochastic gradient descent).

− The fitckernel (fit classifier kernel) function trains a
binary Gaussian kernel classification model for nonlinear
classification. it is more practical for big data applications
that have large training sets, but can also be applied to
smaller data sets. This function maps data in a higher
dimensional space then fits a linear model in the new
space by minimizing the regularized objective function.

6. Implementation and Results

The database used in our spectrum sensing implementation,
was generated by the Raspberry Pi 3 card and the 433 MHz
Wireless transmitter, then captured by RTL-SDR dongle for
different distances between the transmitter and the receiver.

58
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

The collected database contains 1600 signals with ASK and
FSK modulation type. The proposed work is implemented in
MATLAB 9.4.0 (R2018a) for a 64-bit computer with core i3
processor, clock speed 2.4 GHz, and 6 GB RAM.

Table 1 is showing how we have used our database in the
learning phase and test phase:

Table 1. Data-base used in learning and testing

Signal Learning phase Test phase

Primary signal 600 300

Noise 400 300

Figure 17. Chart of the energy detection operation

The performance of an energy detector can be characterized
using two probabilities: 𝑃𝑑 the probability of detection and
𝑃𝑓𝑎 the false alarm probability.

𝑃𝑑 : The probability of detecting a signal in the band of
interest, when this signal is truly present (𝐻1). Failed
detection causes interference with the PU. We calculated 𝑃𝑑
by (36):

𝑃𝑑 = 𝑃 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐻1/𝐻1) =
𝑁𝑐

𝑁
× 100 (36)

𝑃𝑓𝑎 : The probability when the test falsely decides that the

band of interest is occupied, while it is free (𝐻0). The False
alarm reduces the efficiency of spectrum use. We calculated
𝑃𝑓𝑎 by (37):

𝑃𝑓𝑎 = 𝑃 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐻1/𝐻0) =
𝑁𝑒

𝑁
× 100 (37)

Where:
𝑁𝑐 : The number of times in which the signal is detected,

while 𝐻1;

𝑁𝑒 : The number of times in which the signal is detected,
while 𝐻0;

𝑁 : The number of the captured signals.

6.1. Energy Detection results:

The detection of the transmitted signal, using the energy
detection method, is done in MATLAB software according to
the flowchart of Fig. 17. We have as an input a frequency
vector that contains ‘N’ signals data, which is captured by the
RTL-SDR.
Following this flowchart, we calculate the probability of
detection 𝑃𝑑 . While we calculate the false alarm probability
𝑃𝑓𝑎 by stopping the emission operation and following the

same previous steps using (37) instead of (36). The values of
𝑷𝒅 and 𝑷𝒇𝒂 obtained through the energy detector (fig. 7) are

shown in the table 2:

Table 2. The probability of detection and the false alarm

probability of ED

𝑷𝒅 𝑷𝒇𝒂

0.99 0,015

6.2. Artificial neural network results

Supervised learning methods are normally composed of two
main phases: training/learning, and classification. To
determine the most convenient value of the neurons number
in the hidden layer, we have tested experimentally several
architectures, with different hidden layer size for each training
function. We measure the error on training with mean squared
error (MSE). We have used Matlab Neural Network Toolbox
in order to build and train our network. Basic system training
parameters 1000 maximum training epochs, 6 validation
checks, performance goal=0, time=Inf, min_grad=1e-010 and
max_fail=10 are fixed for each training function. Table 3
summarizes the results obtained for different training
functions with different architectures.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj70MqI1v3bAhVGD5oKHeTwBpgQFggqMAA&url=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8292449%2F&usg=AOvVaw3ChpaIbS-8OFj9wZKH92HL

59
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Table 3. Probability of detection and the false alarm

probability in testing phase for ANN detector

Number of

neurons in the

hidden layer

Training

function
𝑷𝒅 𝑷𝒇𝒂

3

SCG 0.983 0.017

LM 0.963 0.020

4

SCG 0.973 0.013

LM 0.966 0.043

5

SCG 0.980 0.0167

LM 0.960 0.046

6

SCG 0.970 0.0167

LM 0.973 0.0167

7

SCG 0.963 0.0267

LM 0.960 0.023

8

SCG 0.970 0.0131

LM 0.983 0.007

10

SCG 0.970 0.0233

LM 0.956 0.0267

The results show that the best performance is obtained for the
training function ‘trainlm’ with 8 hidden neurons, in which
the probabilities 𝑷𝒅 and 𝑷𝒇𝒂 are presented in the following

table.

Table 4. The probability of detection and the false alarm

probability of ANN detection

𝑷𝒅 𝑷𝒇𝒂

0.983 0.007

6.3. Support vector machines results

The SVM training phase builds a model for classifying any
future data based on the Support Vectors (SVs) identified
from a training dataset. The SVs are then used in the
classification phase to predict the appropriate class of an input
test data. In order to determine the most convenient SVM
function for our SVM detector, we have compared the
performance of the above three functions. The
implementation results of the SVM detector (fig. 16) are
presented in table 5, the following table shows the comparison
of classification performance for the three SVM functions.

Table 5. Probability of detection and the false alarm

probability in testing phase for SVM detector

Functions 𝑷𝒅 𝑷𝒇𝒂

fitcsvm

linear 0.9433 0.040

sigmoid 0.9400 0.403

RBF 1 0.66

fitclinear 0.9900 0

fitckernel 0.9733 0

From this table we can see that the function “fitclinear” has

shown high classification accuracy rates outperforming the

other functions.

6.4. Discussion

Energy detection has the advantages of low complexity, ease
of implementation, and extensive use of properties without
knowing the signal. However, when there is a low signal noise
ratio (SNR), there are many problems that decrease the
performance of energy detection method, and make it hard to
set the threshold. In the classic method, we use a static
threshold, but as we know, the threshold depends on the
environmental noise. Whereas the ANN detector and the
SVM detector, give the best results and they have a stable
performance in comparison with the classical energy
detection method. The excellent results have been reported in
applying SVM’s in spectrum sensing.

7. Conclusions

In this paper, we have proposed different implementation of
spectrum sensing based on real signal generated by Raspberry
Pi 3 card and 433 MHz Wireless transmitter. The transmitted
signal is detected in MATLAB software by RTL-SDR dongle
using three methods: the energy detection method, the
artificial neural (ANN) networks and support vector machines
(SVM). The ANN networks implemented using the two
training functions (SCG and LM), are affected according to
the number of neurons in their hidden layer. The SVM
algorithm is implemented using three SVM functions
(fitcsvm, fitclinear and fitckernel). The proposed work is
evaluated in terms of the probability of detection and the false
alarm probability. The obtained results show that the
spectrum sensing will be stable with ANN and SVM
detectors, in comparison with the classical energy detection
method. However, the SVM classifier achieves the highest
detection performance compared to the other classifiers (ED
and ANN).

60
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

References

[1] Federal Communications Commission, Spectrum Policy Task

Force, “Report of the Spectrum Efficiency Working Group,”

November 2002.

[2] P. Kolodzy, "Next generation communications: Kickoff

meeting," in Proc. DARPA, vol. 10, 2001.

[3] J. Mitola G. Q. Maguire, "Cognitive radio: making software

radios more personal," IEEE personal communications, vol. 6,

No. 4, pp. 13-18, 1999.

[4] J. Mitola Iii, "Cognitive radio for flexible mobile multimedia

communications," Mobile Networks and Applications, vol. 6,

No. 5, pp. 435-441, 2001.

[5] S. Haykin, "Cognitive radio: brain-empowered wireless

communications," IEEE journal on selected areas in

communications, vol. 23, No. 2, pp. 201-220, 2005.

[6] T. Yucek H. Arslan, "A survey of spectrum sensing algorithms

for cognitive radio applications," IEEE communications

surveys & tutorials, vol. 11, No. 1, pp. 116-130, 2009.

[7] D. Cabric, S. M. Mishra, R. W. Brodersen, "Implementation

issues in spectrum sensing for cognitive radios," in Signals,

systems and computers, 2004. Conference record of the thirty-

eighth Asilomar conference on, vol. 1, pp. 772-776, 2004.

[8] W. Ejaz, ul Hasan, N., Lee, S. et al. , "Intelligent spectrum

sensing scheme for cognitive radio networks," EURASIP

Journal on Wireless Communications and Networking, vol. 1,

pp. 1-10, 2013.

[9] F. F. Digham, M.-S. Alouini, M. K. Simon, "On the energy

detection of unknown signals over fading channels," IEEE

International Conference on Communications, Anchorage,

AK, USA, vol. 5, pp. 3575-3579, 2003.

[10] V. I. Kostylev, "Energy detection of a signal with random

amplitude," IEEE International Conference on

Communications, New York, USA, vol. 3, pp. 1606-1610,

2002.

[11] K. Kim, I. A. Akbar, K. K. Bae, J.-S. Um, C. M. Spooner, J.

H. Reed, "Cyclostationary approaches to signal detection and

classification in cognitive radio," 2nd IEEE International

Symposium on New Frontiers in Dynamic Spectrum Access

Networks, Dublin, Ireland, pp. 212-215, 2007.

[12] Sai Shankar N, C. Cordeiro and K. Challapali, "Spectrum agile

radios: utilization and sensing architectures," First IEEE

International Symposium on New Frontiers in Dynamic

Spectrum Access Networks, Baltimore, MD, USA, pp. 160-

169, 2005.

[13] S. Atapattu, C. Tellambura, H. Jiang, "Energy detection based

cooperative spectrum sensing in cognitive radio networks,"

IEEE Transactions on wireless communications, vol. 10, No.

4, pp. 1232-1241, 2011.

[14] S. Ali, K. A. Smith, "On learning algorithm selection for

classification," Applied Soft Computing, vol. 6, No. 2, pp. 119-

138, 2006.

[15] K. M. Thilina, K. W. Choi, N. Saquib, E. Hossain, "Machine

learning techniques for cooperative spectrum sensing in

cognitive radio networks," IEEE Journal on selected areas in

communications, vol. 31, No. 11, pp. 2209-2221, 2013.

[16] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, "Gene selection

for cancer classification using support vector machines,"

Machine learning, vol. 46, No. 1-3, pp. 389-422, 2002.

[17] P. Singh, V. Pareek, A. K. Ahlawat, "Designing an Energy

Efficient Network Using Integration of KSOM, ANN and Data

Fusion Techniques," International Journal of Communication

Networks and Information Security (IJCNIS), vol. 9, No. 3,

2017.

[18] B. Benmammar, Y. Benmouna, A. Amraoui, F. Krief, "A

parallel implementation on a multi-core architecture of a

dynamic programming algorithm applied in cognitive radio ad

hoc networks," International Journal of Communication

Networks and Information Security (IJCNIS), vol. 9, No. 2,

2017.

[19] A. Elrharras, R. Saadane, M. Wahbi, A. Hamdoun, "Neural

Networks and PCA for Spectrum Sensing in the context of

Cognitive Radio," Proceedings of the Mediterranean

Conference on Information & Communication Technologies,

pp. 173-181, 2016.

[20] A. Elrharras, R. Saadane, M. Wahbi, A. Hamdoun, "Signal

detection and automatic modulation classification based

spectrum sensing using PCA-ANN with real word signals,"

Applied Mathematical Sciences, vol. 8, No. 160, pp. 7959-

7977, 2014.

[21] M. Dillinger, K. Madani, N. Alonistioti, Software defined

radio: Architectures, systems and functions. John Wiley &

Sons, 2005.

[22] A. K. Jain, J. Mao, K. M. Mohiuddin, "Artificial neural

networks: A tutorial," Computer, vol. 29, No. 3, pp. 31-44,

1996.

[23] M. T. Hagan, H. B. Demuth, M. H. Beale,"Neural network

design," Boston, 1996.

[24] G. Cybenko, "Approximation by superpositions of a sigmoidal

function," Mathematics of control, signals and systems, vol. 2,

No. 4, pp. 303-314, 1989.

[25] K. Tsagkaris, A. Katidiotis, P. Demestichas, "Neural network-

based learning schemes for cognitive radio systems,"

Computer Communications, vol. 31, No. 14, pp. 3394-3404,

2008.

[26] V. Vapnik, The nature of statistical learning theory. Springer

science & business media, 2013.

[27] C. J. Burges, "A tutorial on support vector machines for pattern

recognition," Data mining and knowledge discovery, vol. 2,

No. 2, pp. 121-167, 1998.

[28] C. Cortes V. Vapnik, "Support-vector networks," Machine

learning, vol. 20, No. 3, pp. 273-297, 1995.

[29] J. Nayak, B. Naik, H. Behera, "A comprehensive survey on

support vector machine in data mining tasks: applications &

challenges," International Journal of Database Theory and

Application, vol. 8, No. 1, pp. 169-186, 2015.

[30] https://www.mathworks.com/help/stats/support-vector-

machine-classification.html

https://www.mathworks.com/help/stats/support-vector-machine-classification.html
https://www.mathworks.com/help/stats/support-vector-machine-classification.html

