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Abstract: In this paper, we describe a detailed approach to 

develop a botnet detection system using machine learning (ML) 

techniques. Detecting botnet member hosts, or identifying botnet 

traffic has been the main subject of many research efforts. This 

research aims to overcome two serious limitations of current botnet 

detection systems: First, the need for Deep Packet Inspection-DPI 

and the need to collect traffic from several infected hosts. To 

achieve that, we have analyzed several botware samples of known 

botnets. Based on this analysis, we have identified a set of statistical 

features that may help to distinguish between benign and botnet 

malicious traffic. Then, we have carried several machine learning 

experiments in order to test the suitability of ML techniques and 

also to pick a minimal subset of the identified features that provide 

best detection. We have implemented our approach in a tool called 

BotCap whose test results proved its ability to detect individually 

infected hosts in a local network. 
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1. Introduction 
 

The Internet reflects both the good and the bad sides of the 

physical world. With the emergence of the Internet, new 

kinds of crime –namely cybercrimes– have been flourishing 

and spreading. The new criminals have various goals and 

tools. Malware “malicious software” is considered as the 

main tool in the hands of cyber-criminals.  

Today, new generations of malware are becoming multi-

faceted and more modular. Botnets are one of these 

outcomes.  Botnet – robot network – is a network of Internet-

connected, compromised hosts (also known as bots, bot-

clients, or zombies). Bots are remotely controlled by an 

attacker called botmaster via a Command-and-Control 

(C&C) channel. C&C channels often take place over existing 

network protocols including Internet Chat Rely (IRC), 

Hypertext Transfer Protocol (HTTP), or other Peer-To-Peer 

protocols (P2P). Botnets can be categorized, based on C&C 

system, into centralized and decentralized botnets. The 

centralized botnet has a form of traditional client-server 

network model. A bot acts as a client-side and connects to a 

central C&C server. In decentralized botnets, any bot can act 

as a C&C sever for some other bots instead of a central C&C 

server. Bots serve as a proxy infrastructure and a launch base 

for a wide variety of cyber attacks such as sending SPAM 

emails, launching Distributed Denial-of-Service (DDoS), 

performing identity theft, click frauds, etc. 

In our research on botnets, we tackled the problem in 

different ways: analysis, modelling, and detection. Firstly, we 

have deeply analyzed various botware samples using several 

analysis approaches (static, dynamic and network). As a 

result, we managed to model bots life-cycle in a generic 

model that improves our ability to both understand and 

respond to botnet threats. Moreover, motivated by the lack of 

public representative botnet dataset, we have created our 

BoTGen platform. It is implemented from off-the-shelf open 

source software to provide researchers with a flexible, 

reliable and fully automated platform. This allows not only to 

produce datasets but also to experiment with various and 

complete botnet scenarios in a controlled environment [14].  

The work described in this paper employs Machine Learning 

techniques (Decision Tree and Support Vector Machine) to 

build a botnet detection system: BoTCap. The goal is to 

detect bots independently from their C&C structure and 

protocol. The results showed that our tool can detect bot 

infections with high detection rates up to 80% and 95 % for 

HTTP and IRC based botnet respectively and very small 

false positive rates of nearly 0.05% and 0.025% respectively. 

Because of the shortcomings that we identified in several of 

the previous work (Section 2), we had to design and 

implement another approach to alleviate the following 

limitations: 

1. Detecting only well-known botnets based on signatures 

extracted from binary codes of the malwares (host-based) or 

extracted from network payloads of malicious activities 

(network-based). These approaches often fail in detecting 

bots that are infected by new botware or botware that uses 

obfuscation techniques (host-based) and encrypted traffic 

(network-based). 

2. Being computationally expensive and violates the privacy. 

For example, in case of network-based approaches that 

perform deep packet inspection (DPI) for each packet. 

3. Detecting some botnet types and ignoring others. For 

example, detect http-based only or detect IRC-based only. 

4. Detecting only bots that participate in massive malicious 

activities such as DDoS, spamming and click fraud while it 

cannot detect stealthy or dormant attacks. Such bots include 

usually perform few activities over time to keep undetectable. 

These could be dangerous because they are often employed 

in spying and stealing sensitive data (e.g., credit cards or 

login credentials). 

5. Inability to detect individually infected hosts that belong to 

botnets. In other words: it does not require data correlation 

from several bots to be able to detect botnets. 

The remaining of this paper is organized as follows: Section 

2 presents the related work on ML-based botnet detection. In 

Section 3, we describe our approach and the metrics we use 

to measure detection quality. In Sections 4, we explain the 

process to select a minimal set of distinctive features. Then, 

we describe the design and the implementation of the 

detection model in Section 5. Finally, Section 6 discusses the 

results  and Section 7 concludes the paper. 
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2. Related Work 
 

Several research work focused on machine-learning-based 

approaches for botnet detection. Livadas et al. [35] proposed one 

of the first attempts to utilize ML algorithms to detect IRC-based 

botnets. The authors evaluate several supervised ML algorithms 

to classify IRC-based botnet traffic using a set of network 

statistical features such as bits-per-second, packets-per-second, 

flow duration, etc. The traffic classification is performed in two 

sequential stages. The first stage classifies the traffic into chat-

like (IRC) and non chat-like classes. The second stage separates 

the chat-like class into malicious and non-malicious sub-classes. 

The authors proposed a novel botnet detector based on network 

statistical features only. 

BotMiner [21] detection system is independent of C&C protocol 

and botnet structure. It can be considered as the extended and 

complementary work of BotSniffer [22]. BotMiner performs the 

horizontal behavioral correlation among the local hosts with 

interest in differentiation between the concept of communication 

activities “Who is talking to whom” and malicious activities 

“Who is doing what”. BotMiner consists of three main parts. The 

first part is responsible for the communication activities (C-

plane). It monitors the traffic flows between internal hosts and the 

externals. Each group of flows (C-flows) that share the same 4-

tuple (SrcIP, DstIP, DstPort, and Protocol) are represented by a 

vector of 52 elements extracted from four main network 

statistical features named: the number of flows per hour (fph), the 

number of packets per flow (ppf), the average number of bytes 

per packets (bpp), and the average number of bytes per second 

(bps). Then, it applies two-steps X-means clustering algorithm to 

aggregate hosts that share the same communication activities. 

The second part of BotMiner is responsible for malicious 

activities (A-plane). By using the malicious activities detector 

from BotSniffer, it detects the hosts that are involved in each of 

scan activity, SPAM activity, and binary download activity. After 

that, BotMiner applies two-step clustering algorithm to aggregate 

the hosts involved in the same malicious activities. The final part 

of BotMiner is a cross-plane correlation function. It combines the 

results from C-plane and A-plane to calculate a score for each 

host. Host scores depend on weighted clusters that indicate host 

membership. A host is declared bot if its score is larger than a 

threshold. The major weakness of BotMiner is the biased score 

function; if a host is not involved in any malicious activities (or 

undetectable), it will be classified as a benign whatever its 

communication activities. Besides that, it requires multiple 

infections by the same botware in the local network in order to be 

detectable. 

Traffic Aggregation for Malware Detection (TAMD) [23] aims 

to detect infected hosts in local networks. TAMD uses the 

collected traffic at the edge of the local network to aggregate 

local hosts that share similar three characteristics: destination, 

payload, OS platform. Each characteristic have its aggregation 

function which utilizes ML algorithms. The results of the three 

aggregation functions are then combined in a rule-based system 

to detect bots. TAMD aggregation is similar to the horizontal 

correlation in BotSniffer and BotMiner while the behavioral 

characteristics are different. 

Tegeler et al. [24] utilize ML algorithms to build network-based 

signatures that can differentiates between botnet families. The 

proposed system, named BotFinder, is used to detect HTTP-

based botnet using only five network statistical features. 

BotFinder is based on the observation that the traffic between 

C&C and bots in pulling mode botnet (e.g., HTTP-based botnets 

follow that mode) often has regularity in contents and regularity 

in time. It analyzes network traces to calculate five features: (1) 

The average time interval between two sequential flows in the 

trace, (2) The average duration of flows, (3, 4) The average 

number of bytes per flow sent from source to destination and 

from destination to source respectively, and (5) The most 

significant frequency of Fast Fourier Transform (FFT) that uses 

start time of flows as a time signal. BotFinder has low false 

positive similar to signature-based systems however, its accuracy 

is lower than traditional signature-based. It could be biased to 

botnet configuration rather than botnet family itself. 

Zhang et al. [25] proposed a new packet sampling and spatial-

temporal flow correlation approach to identify suspicious hosts 

that are most likely bots. It applies packet sampling techniques to 

adapt BotMiner and BotSniffer to work in a high speed network. 

All the aforementioned approaches, except BotMiner, focus on 

detecting centralized botnets. Approaches in [26, 27, 28, 29, 30] 

aim to detect P2P botnet. 

Yen et al. [26] proposed an algorithm to separate hosts that run 

legitimate P2P file sharing applications from P2P bots. The 

proposed system uses features related to traffic volume, 

persistence of network connections, and differences between 

human-driven and machine-driven traffic. The features are 

extracted from traffic summaries without DPI. However, the 

proposed system does not take into account other legitimate P2P 

applications such as Skype rather than P2P file sharing 

applications. It also misclassified hosts that are running P2P 

botware and P2P file sharing together. 

Zhang et al. in [29, 30] proposed a detection system capable of 

detecting stealthy P2P botnets without dependency on any 

malicious activities. First, the system separates the hosts that are 

engaged in P2P communications. Then, it derives statistical 

fingerprints of the P2P communications corresponding to 

different P2P applications. Finally, the system distinguishes 

between P2P benign hosts and P2P bots based on two 

observations: (1) P2P bots expose persistent connection and the 

active time of P2P connection is comparable to the active time of 

the host, (2) bots belonging to the same P2P botnet have a high 

overlap of their sets of contacted IPs (simple horizontal 

correlation). This technique needs two or more hosts infected by 

the same botnet to observe the overlap between their sets of 

contacted IPs (i.,e., can not catch single infection). Moreover, it 

needs to have fingerprints for all legitimate P2P application 

which is infeasible. 

J. Wang et al. [1] proposed a two-stage approach for botnet 

detection. During the first stage, it  statistically analyzes network 

flow to detect anomalies that could be a sign of botnet. In the 2nd 

stage, it analyzes network interactions between hosts to detect 

highly co-related hosts using social correlation graphs. Although 

this approach is protocol agnostic, it relies on the presence of 

group activities to be able to detect botnets. 

Tzy-Shiah Wang et al. [2] proposed a botnet detection 

framework that analyzes DNS queries (DBod). It analyzes 

NXDOMAIN queries (i.e., non-existing domain name) in DNS 

traffic. The idea is that certain bots generate an unusual number 

of these queries, and that DNS queries in botnets are typically 

correlated in time and quantity. Therefor, using clustering 

algorithm, and group identification DBod can find unusual and 

highly correlated NXDOMAIN queries. Whereas this approach 

does not require historical data, it is protocol specific and relies 

on group activities. 
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Similar to our approach on feature selection, Nur Hidayah et al. 

[3] have analyzed the influence of feature selection on the 

detection of only HTTP-based botnets. 
 

3. Approach and Basic Evaluation Metrics 
 

The idea behind this approach stems from the basic 

observation that common patterns in botnet traffic often have 

some similarity in both traffic contents and the regularity in 

time. Theoretically, botnet detection can be performed based 

on the observation of several types of botnet interactions 

between botnet elements: botmaster, C&C, individual bots 

and the surrounding environment. Deciding which 

interactions or activities to observe depends on several 

factors such as botnet architecture, network protocols as well 

as the ease of capturing or identifying some botnet 

interaction. 

Generally, botnet communication can be divided into three 

segments: Botmaster<=>C&C segment (Seg1), C&C<=>Bot 

segment (Seg2), and Bot<=>Bot or Bot<=>Other segment 

(Seg3) as shown in Figure 1. C&C point may be single C&C 

server in case of centralized botnet or it could be several 

distributed points, where any bot can act as a C&C server for 

its peer bots like in P2P-based botnet. Communications on 

Seg1 are difficult to observe due to its sparse occurrence. 

Bots are more frequently involved in interactions that occur 

on Seg2 and Seg3. C&C and bots connects together either to 

receive commands or to update status (Seg2). Bots also 

interacts with each other in P2P botnets or with any other 

node outside the botnet to carry out malicious activities on 

Seg3. Thus, in case of centralized botnets (e.g., IRC or 

HTTP), a detection method based on C&C activities in 

Seg1&2 could be more appropriate because it may help in 

discovering connected bots as well as their botmaster. In case 

of P2P botnets, the concept of dedicated centralized C&C 

server does not exist. Therefore, communications in Seg3 are 

more appropriate where interactions and activities between 

individual bots take place.  
 

 

Figure 1. Botnet Communication Segmentation 

The system that we describe hereafter uses network-flow 

information. This choice eliminates the need to inspect 

packet payloads, which has several advantages. First, no 

processing overhead of deep packet inspection, which 

improves system performance. Second, no inspecting packet 

contents means implicitly no privacy violation. Finally, the 

system becomes more resilient to encrypted traffic. 

Besides that, our approach concentrates on botnet traffic that 

is related to maintenance/control messages that may be 

exchanged on segment Seg2 in case of centralized botnets or 

Seg3, in case of peer-2-peer. This enables the detection of 

dormant bots that do not send significant quantity of traffic, 

for example to spam or to carry out DDoS attacks. More 

precisely, we focus on TCP/IP network flow, which is a set 

of packets between any communicating pair that have 5 

features in common: ScrIP, ScrPort, DstIP, DstPort and 

Protocol. Using this 5-tuple features as a flow identifier 

makes each flow unique in the network segment. The flow 

can be bidirectional like TCP flows or unidirectional like 

UDP flows. Figure 2 illustrates a typical example of client-

server flow where the 5-tuples are: ScrIP=192.168.1.1, 

SrcPort=2012, DstIP=173.194.116.112, DstPort=80 and 

Protocol = TCP, HTTP application uses TCP as transport 

layer protocol. TCP/IP Trace or traffic trace for simplicity, is 

an aggregation of TCP/IP flows between any client-server 

pair during a certain period of time. The flows are aggregated 

based on their values of 3-tuple (SrcIP, DstIP, and DstPort). 

The approach consists simply of analyzing a set of statistical 

features of traffic traces to identify signs of bot 

communication in terms of similarity and regularity or 

repetitiveness. To implement this approach in BotCap, we 

have to go through two essential stages: 

1. Feature Selection: in this part, we analyzed a lot of 

statistical features of traffic traces to pick up and define 

an initial set of distinctive features that seems to be 

helpful in botnet detection. 

2. Building ML detection model: in this part, we deal with 

ML model creation process. We employ J48, which is a 

variation of C4.5 algorithm [5] and different SVM 

kernels [6], [7] to identify a feature set that gives good 

detection results for the same ML algorithm. Then, we 

compare results of different algorithms to select the one 

producing the best results. 

This process requires a dataset that contains malicious and 

benign traffic. It will be used for training and testing ML 

algorithms, as well as feature set optimization and reduction. 

For this purpose, we have created a diversified dataset as 

described in [14]. In the following section we present the 

metrics used in evaluating and comparing detection results 

from various ML models/algoritms and feature-sets. 

Figure 2. TCP/IP network flow 

Our evaluation criteria is based on three basic metrics: 

Precision, Recall and F1-Measure. These metrics are derived 

to assess the quality of detection results. The following 

concepts represent some definitions: 

• TP: True Positive = the number of items correctly 

classified as belonging to the positive (Malicious/Botnet) 

class. 

• FN: False Negative = the number of items that is actually 

belonging to the (Malicious/Botnet) positive class but 

misclassified as belonging to the negative (Benign) class. 

• TN: True Negative = the number of items correctly 

classified as belonging to the negative (Benign) class. 

• FP: False Positive = the number of items that is actually 

belonging to the negative (Benign) class but it is wrongly 

classified as belonging to the positive (Malicious/Botnet) 

class. 
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• Confusion matrix: 

 
Actual class 

Positive Negative 
Classified 

class 
Positive TP FP 
Negative FN TN 

 

• Precision: From all items classified as a positive class, 

which portion is actually belonging to a positive class? 
 

  Eq. (1) 
 

Recall: also known as True Positive Rate (TPR) or 

sensitivity. From all items that actually belong to positive 

class, which portion are correctly classified as positive class? 
 

  Eq. (2) 
 

F1-measure: a combined measure that assesses the Precision 

and Recall trade-offs. It is equivalent to the weighted 

harmonic mean of Precision and Recall 
 

 Eq. (3) 

 

4. Feature Selection 
 

Botnet interactions can be observed from different view 

points. For example, botnet manifestations may appear at 

network level or system level where we can collect data 

about their activities by recording network traffic or system 

calls, respectively. It is worth to note that while both views 

complement each other, the network view provides a more 

comprehensive view of botnet activities. Due to the 

multidimensional nature of botnets, we can obtain hundreds 

of features, which complicates feature selection. To filter this 

huge number of features and to obtain only botnet-relevant 

features, we defined the following criteria to be satisfied in 

the selected features: 

(a) Be independent from packet payload contents. 

(b) Be independent from botnet or botware type. 

(c) Can capture regularity in botnet traffic contents. 

(d) Can capture regularity or repetition in time (periodicity). 

In order to provide network-wide botnet detection, we 

decided to focus on network-based features. Besides that, 

statistic-based features can be easily obtained or calculated 

from packet headers or by counting transmitted/received 

packets independently from both botnet/botware types and 

packet contents. It can also capture similarities and 

regularities in botnet traffic. Moore et al. [8] have identified 

a lot of statistical features extracted from packet header fields 

to help in network classification per flow. Riyad et al [9] 

present another set of statistical features to classify encrypted 

VOIP traffic. We have analyzed these features to eliminate 

irrelevant features for botnet detection. To explain that, we 

can divide statistical features extracted from network traffic 

into three categories based on the characteristics of: 

(a) the network itself (network configuration) such as number 

of packets per second, number of bits per second, packet 

inter arrival time. 

(b) general botnet behavior: for example, flow rate, flow 

duration, time interval between successor flows. 

(c) particular botnet family: such as number of packets per 

flow, packet size, window size, number of packets coming 

from server/client. 

In our case, candidate features should characterize general 

botnet features and with less extent botnet family features; 

because our goal is to detect bots not to identify botnet 

families. Features that are network-dependent are completely 

excluded to make our approach suitable for any type of 

network regardless of its speed, bandwidth, topology, etc. 

Regarding the regularity in contents or time, features of 

individual packets cannot capture such properties and hence 

are excluded. The regularity and repetition can be better 

observed in aggregate traffic not individual packets. The 

question that may arise now is about the aggregation level. 

For example, should the features be calculated for traces or 

flows? The desired set of features can be calculated per flow 

or from aggregated set of flows (i.e., per trace). In general, an 

individual flow provides a limited view about what happens 

inside botnets or describes action/response on the C&C-bot 

segment at certain instance of time. On the other hand, the 

mean of observed features can reflect the regularity in 

content and connections over time between C&C and each 

bots. For this reason, we calculate features per trace during 

certain time epoch. 

4.1. Content-Regularity Features 

Regularity in content arises from repeated command-

response patterns. Bots are often pre-programmed with 

predefined hard-coded responses. They respond to the same 

command in a similar manner. From start-up to shutdown 

time, bot can be in two modes, active mode and idle mode. 

The bot becomes in active mode when it receives a command 

from C&C. After the bot executes a command, it returns back 

to idle mode. In idle mode, the bot only connects to its C&C 

to check for new commands and update its status. In 

particular, regularity in traffic contents comes from: 

• In idle mode, fixed format to check new commands and 

fixed format to update its status. 

• In active mode, same commands has similar reactions 

with some variation in the response traffic. 

Content regularity can be observed through statistical 

features such as average number of packets per trace for both 

source and destination. Table 1 summarizes candidate 

features that initially satisfies our selection criteria. 

4.2.  Periodicity Features 

Concerning time regularity (periodicity), for example HTTP-

based botnets have an explicit period where bots follow the 

pulling mode. The botmaster sends new commands to C&C 

server, then each bot periodically checks the C&C server for new 

commands. On the other hand, IRC-based botnets demonstrate 

different kind of periodicity where bots does not follow pulling 

mode and follow instead the pushing mode. When the botmaster 

sends new commands to C&C server, the C&C server instantly 

re-sends these commands to the bots. The periodicity comes 

from the C&C server itself where IRC protocol has a test 

mechanism to detect the presence of active clients by sending 

PING or REQUEST messages at regular intervals. 

Dealing with periodicity needs each network trace represented as 

a time-periodic signal. There are several time-periodic signals 

that can characterize botnet traces, for example: 

 

1. Impulse signal at each flow start time like in botfinder 

[10]. However, it is suitable for HTTP-based but not 

suitable for IRC-based because it consists of single flow 

in most cases. 
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2. Throughput of down-link (bytes per second transfer from 

C&C to bots) 

3. Throughput of up-link (bytes per second transfer from 

bots to C&C) 
 

Table 1. Features extracted for traces 
Feature  
Number 

Abbreviated Description 

1-3 (Tot|avg|std)Pkts 
(sum/avg/std)* of packet count of aggregated 

flows per trace 

4-6 
(Tot|avg|std) 
SrcPkts 

(sum/avg/std) of packet count transmitted by 

the source in aggregated flows per trace 

7-9 
(Tot|avg|std) 

DstPkts 
(sum/avg/std) of packet count transmitted by 

the destination in aggregated flows per trace 

10-12 
(Tot|avg|std)Byte

s 
(sum/avg/std) of byte count of aggregated 

flows per trace 

13-15 
(Tot|avg|std) 
SrcBytes 

(sum/avg/std) of byte count transmitted by 

the source in aggregated flows per trace 

16-18 
(Tot|avg|std) 
DstBytes 

(sum/avg/std) of byte count transmitted by 

the destination in aggregated flows per trace 

19-21 
(Tot|avg|std) 
AppBytes 

(sum/avg/std) of application byte** count of 

aggregated flows per trace 

22-24 
(Tot|avg|std) 
SrcAppBytes 

(sum/avg/std) of application byte count 

transmitted by the source in aggregated flows 

per trace 

25-27 
(Tot|avg|std) 
DstAppBytes 

(sum/avg/std) of application byte count 

transmitted by the destination in aggregated 

flows per trace 

28-29 
(Src|Dst) 
MaxPktSz 

Maximum packet size in traffic transmitted 

by the (source/destination) 

30-31 
(Src|Dst) 
MinPktSz 

Minimum packet size in traffic transmitted 

by the (source/destination) 
32-34 (Tot|avg|std)Dur (sum/avg/std) of flow duration 

35-37 
(Tot|Src|Dst) 
Pkts per Hr 

(Total packets/source packets/destination 

packets) per hour 

38-40 
(Tot|Src|Dst) 
Bytes per Hr 

(bytes/source bytes/destination bytes) per 

hour 

41-43 
(Tot|Src|Dst) 

AppBytes per Hr 
(Total application bytes/source application 

bytes/destination application bytes)per hour 

44-45 
(Src|Dst)Pkts/Tot

Pkts 
percent of the (source/destination) packets 

46 
TotSrcPkts/TotD

stPkts 
Ratio between the source and the destination 

packets 

47-48 
Tot(Src|Dst) 
Bytes/TotBytes 

percent of the (source/destination) bytes 

49 
TotSrcBytes/Tot

DstBytes 
Ratio between the source and the destination 

bytes 

50-51 
Tot(Src|Dst)App

Bytes/TotAppByt

es 

percent of the (source/destination) 

application bytes 

52 
TotSAppBytes/T

otDAppBytes 
Ratio between the source and the destination 

application bytes 
*sum=summation, avg=average, std=standard deviation 
**Application Bytes mean payload of packets without any header 
 

Periodicity features will be calculated for all traces; both 

malicious and benign. Because bots reside in client side of 

sever/client pairs, we can calculate the throughput over 

seconds of up-link connections (in our case a = 5 second) for 

each bot, as shown in Figure 3 (a), the throughput is 

represented as semi-periodic impulse train. As a time signal, 

it corresponds to a finite time impulse and noisy signal. 

There are many techniques to check whether the time signal 

is periodic or not. The most used method is to analyze the 

signal in frequency domain and obtain the peaks to determine 

the frequency. The power estimation is one of frequency 

domain signals that characterizes the time signal. Welch's 

method is an approach for spectral density estimation that 

provides a method for estimating the power of time signal at 

different frequencies [11]. the improvement of Welch's 

method over the standard periodogram spectrum estimation 

method is that it reduces noise in the estimated power 

spectra. Due to the noise caused by imperfect and finite data, 

the noise reduction from Welch's method is often desired. 
 

 
 

Figure 3(a). Up-link Throughput in time domain, (b). Up-

link Throughput in frequency domain 
 

We developed a simple algorithm (Code.1) using Welch's 

method implemented in Numpy & SciPy package [12], [13] 

to check the periodicity of the up-link traffic throughput per 

trace. If periodic, it calculates the frequency. The algorithm 

has three main steps. The first step is to transfer the up-link 

throughput from time domain to frequency domain using 

Welch's method. The next step is to check if the signal is 

periodic or not by passing three check points as follows: 

1- if trace duration is less than MIN_DURATION (in our 

case = 60 minutes), this trace will be assigned as not periodic 

(is_periodic = -2) because Welch's method is based on 

window FFT calculation which depends on the number of 

samples and the sampling rate of the signal. 

2- Count the number of peaks in the power signal over 

threshold, see Figure 3(b). If the number of peaks is less than 

MIN_NUM_of_PEAKS (in our case = 3, arbitrarily 

selected), this trace will be assigned as not periodic 

(is_periodic = -1). The throughput in time domain is a noisy 

impulse train and it will be so in frequency domain. 

Therefore, the more number of peaks increase the probability 

of periodicity. 

3- Calculate the average (freq) and the standard deviation 

(stdfreq) of frequency difference of the first three peaks, see 

Figure 3(b). If stdfreq is larger than gamma percent from freq 

(in our case gamma = 10%) then this trace will be assigned as 

not periodic (is_periodic = 0) otherwise this trace will be 

periodic (is_periodic = 1). 

As a result, time regularity of a trace can be represented by 

three features summarized in Table 2 that complements the 

features in Table 1. 
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Code 1. Periodicity Detection Algorithm. 
 

Table 2. Periodicity features for traces 

Feature 

Number 
Name Description 

53 is_periodic 

{1,0,-1,-2} 
1: uplink throughput is periodic 
0: not periodic due to stdfreq > 10% of freq 
-1: not periodic duo to # of peaks less than 3 
-2: not periodic due to trace duration < 60 

minutes 

54 freq 
average of frequency difference of the first 

three peaks of Welch's spectral 

55 stdfreq 
standard deviation of frequency difference of 

the first three peaks of Welch's spectral 
 

5. Detection Model Design and Implementation 

In this section, we describe the process that we followed to 

create and test the suggested botnet detection mechanism 

using machine learning algorithms, namely J48 and different 

SVM kernels. As shown in Figure 4, this process includes: 

(1) creating datasets (malicious dataset and benign dataset) 

which is used in training and testing the model, (2) selecting 

candidate feature subsets from the primary set of features that 

were identified in the previous section, (3) tuning the 

parameters of the suggested ML algorithms, (4) creating a 

detection model using selected feature subsets from step 2 

and using the parameters of ML obtained from step 3, (5) 

selecting the model that gives the highest detection results, 

and (6) testing that model using another dataset, that neither 

used in training nor in tuning phases. 

The output of this process is three detection models: HTTP-

only to detect HTTP-based botnets, IRC-only to detect IRC-

based botnets, and TOTAL to detect both IRC and HTTP-

based botnets. The remaining of this section describes these 

six steps in more details. 
 

Figure 4. Creating and testing botnet detection mechanism 

5.1. Dataset Creation 

The dataset consists of two components: malicious and benign. 

To construct the training and tuning dataset, we use six botware 

families: (Aryan [15], [16], Ngr [17]–[19], Rxbot [20]) as IRC-

based and (Blackenrgy [31], [32], Zeus [33]–[34], Vertexnet 

[36]–[38]) as HTTP-based to create the malicious part of the 

dataset. Our decision to include these botwares was based on a 

detailed analysis of several botware samples where we take into 

account the diversity of the dataset. More details about our 

analysis results can be found in [14] 

By using BoTGen, we run 6 botware variations from each family 

for 6 hours separately on 10 virtual machines (VMs). Variations 

differ from each other in botnet and network configuration such 

as (PING/PONG IRC rate, HTTP request rate, start-up/shutdown 

of VMs) and the executed scenario (number of commands, order 

of commands, etc.). 

Regarding the benign dataset, we have analyzed a lot of benign 

datasets that were created by academic and industrial 

organizations. Among the analyzed datasets, we selected the 

UNIBS-2009 dataset [39] as it fits our goal. This dataset was 

created by the telecommunication network group of the 

university Brescia in Italy. It was captured from the edge router 

of the university campus network that serves (20) workstations 

running the GT client daemon -the Ground Truth (GT) system 

[39]. The traffic includes wide range of protocols such as Web 

(HTTP and HTTPS), Mail (POP3, SMTP, IMAP4), Skype, 

traffic generated by P2P applications, and other protocols (FTP, 

SSH, and MSN). To construct the benign part of the training 

dataset, we include 6-hours traffic from UNIBS-2009 dataset. 

Table 3 summarizes the number of traces included in the entire 

training dataset. 

As shown in Table 4 for testing dataset, it was similarly created 

using botware samples that were unseen previously in the 

training dataset. Two botware samples: Athena [40] as IRC-

based and Citadel [41], [42] as HTTP-based to create the 

malicious part of the testing dataset. Two variations from each 

botware run for 6 hours on 10 VMs. The benign part was created 

in the same way using another 6-hours from UNIBS dataset. 

Table 3. Summary of training dataset contents. 

Dataset Part # of trace 
Aryan 55 
Ngr 55 
Rxbot 54 
Blackenergy 55 
Zeus 55 
Vertexnet 54 
Benign(Training) 3211 
Benign(Tuning) 2788 

 

 

Input: throughput_trace, ratio 

Output: is_periodic ∈ {−2,−1,0,1}, freq, stdfreq 

 
begin 

        getTraceDuration(throughput_trace) 

 
        if trace_duration < Min_DURATION then 

                Set is_periodic = -2, freq = 0, stdfreq = 0 

        else 

                /* Calculate Welch power spectral density of 

throughput_trace */ 

                /* P: Power spectral density component corresponds to 

(f) frequency component */ 

 
                f, P = Welch(throughput_trace) 

                global_peak = max(P) 

                threshold = ratio *( 0.5 * global_peak) + (1- ratio)* 

average(P) 

                peaks, peaks_val = find_peaks(P, threshold) 

 
                if number_of_peaks < MIN_NUM_OF_PEAKS then 

                        Set is_periodic = -1, freq =0 stdfreq = 0 

                else 

                        freq = average(f(peaks)) 

                        stdfreq = std(f(peaks)) 

 
                        if stdfreq > gamma * freq then 

                                set is_periodic = 0 

                        else 

                                set is_periodic = 1 

                        end 

                end 

        end 

end 
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Table 4. Summary of testing dataset contents 

Dataset Part # of trace 

Athena 20 

Citadel 20 

Benign 3994 

5.2. Feature-Set Reduction and Optimization 

As explained in Section 4, the primary feature set consists of 55 

features that may have some redundant or interdependent 

features. To enhance the performance, we had to reduce the 

number of features and select candidate subsets of the primary 

set. To achieve that, we have applied two selection methods: ML 

algorithm for attribute selection as implemented in Weka [4] and 

manual selection based on J48-ML experimental results. 

Consequently, we obtained 9 feature subsets as shown in Table 5. 

The features are represented as an absolute value 

(NotNormalized) or normalized value (Normalized). The 

normalization process aims to scale feature values in the range 

[0, 1]. Weka applies “BestFirst” as a search algorithm and 

“CfsSubsetEval” (Correlation-based Feature Subset Selection) as 

an evaluation method. 

Table 5. Summary of candidate feature subsets. 

ID Feature set # of 

features Note 

1 {Primary} 55  

2 

{stdDur, 

TotBytes/hour, 

TotSrcPkts/TotPkts, 

is_periodic, 

Frequency, 

avgTotPkts} 

6 
Using “select attributes” machine 

learning algorithm on IRC-only 

dataset 

3 

{avgSrcPkts, 

SrcMinPktSz, 

is_periodic, 

Frequency, 

TotSrcBytes, 

SrcMaxPktSz} 

6 
Using “select attributes” machine 

learning algorithm on HTTP-only 

dataset 

4 
{3} – 

{SrcMaxPktSz} 
5 

Manual selection by removing 

SrcMaxPktSz from set-3 

5 {4} – {Frequency} 4 
Manual selection by removing 

Frequency from set-4 

6 {2} – {Frequency} 5 
Manual selection by removing 

Frequency from set-2 

7 
{6}– 

{TotSrcPkts/TotPkts} 
4 

Manual selection by removing 

“TotSrcPkts/TotPkts“ from set-6 

8 {6} – {avgTotPkts} 4 
Manual selection by removing 

avgTotPkts from set-6 

9 

{SrcMinPktSz, 

is_periodic, 

Frequency, 

TotDstPkts} 

4 
Using “select attributes” machine 

learning algorithm on combined 

(HTTP+IRC) datasets 

5.3. Parameter Selection 

In general, ML can be considered as an optimization problem 

[43]. There are many factors that may affect the performance of 

ML algorithms such as features, quality and quantity of dataset 

used in training. Moreover, the ML algorithm itself may have 

parameters that control its function (hyper-parameter). To 

optimize ML learning algorithms, their parameters should be set 

appropriately. In the following, we explain various parameters of 

the two ML algorithms that we use (i.e., J.48 and SVM). Then 

we present parameter values that produce best results during our 

experiments on each feature subset according to F1-measure as a 

performance indicator. There are several methods for hyper-

parameter optimization problem such as [43], [44], [45]. Grid-

search is a simple mechanism that scans all or subset of values in 

the parameter space of a ML algorithm to obtain the optimized 

value. Grid-search is performed in two sequential steps: coarse-

grained to enclose the optimized value in a small region on the 

parameter space, then fine-grained where the search is preformed 

in this small region to determine the optimized value. The grid-

search algorithm must be guided by some performance metric, 

typically measured by cross-validation (CV) on the training set. 

Normally, botnet datasets contain a number of positive instances 

“malicious instances” much less than the number of negative 

instances “benign instances”. In other words, botnet datasets are 

some kind of imbalanced dataset.  Therefore, F1-measure could 

be a good performance metric to assess the detection model and 

to guide grid search algorithm [46]. Our version of grid-search 

algorithm performs a 5-fold cross-validation (CV) on the training 

dataset and selects the hyper-parameter values that give the 

highest F1-measure. In the following, we present the hyper-

parameters for both J48 and different kernels of SVM and the 

corresponding optimal values for each candidate feature subset 

based on our training dataset. The optimization has been carried 

out on both the Normalized and the NotNormalized values of the 

features. 

• J48 has two parameters: 

1. confidenceFactor – C: The confidence factor is used for 

pruning (smaller values incur more pruning). It reduces 

the size of the tree (or the number of nodes) to avoid 

unnecessary complexity and to avoid over-fitting of the 

dataset when classifying new data. C-parameter can be 

assigned values in the range of [0, 1], therefore we test C 

in the range from 0.05 to 1.0 by an increment step of 0.05. 

2. minNumObj – M: The minimum number of instances per 

leaf, M ≥ 1. We test M in the range from 1.0 to 20 by an 

increment step of 1.0. 

For each feature subset, Table 6 presents C and M values that 

produce best results for 18 candidate feature subsets (nine 

NotNormalized + nine Normalized). 
 

Table 6. J48 Hyper-parameter values for HTTP-only, IRC-

only, and TOTAL 

Feature 

set ID 

HTTP-only IRC-only TOTAL 
NotNormaliz

ed 
Normalized 

NotNormali

zed 
Normalized 

NotNormali

zed 
Normalized 

C M C M C M C M C M C M 

1 0.55 9 0.45 2 0.55 5 0.55 5 0.35 2 0.35 1 

2 0.55 3 0.05 1 0.4 2 0.1 1 0.05 1 0.05 1 

3 0.55 8 0.05 1 0.55 1 0.55 1 0.1 1 0.25 1 

4 0.05 8 0.05 1 0.55 1 0.55 1 0.05 1 0.05 1 

5 0.05 8 0.2 1 0.05 2 0.55 2 0.5 1 0.5 1 

6 0.55 3 0.1 1 0.05 1 0.5 1 0.05 1 0.1 1 

7 0.05 9 0.05 1 0.2 3 0.05 1 0.5 1 0.1 3 

8 0.55 4 0.05 1 0.4 1 0.55 1 0.05 1 0.05 1 

9 0.05 1 0.05 1 0.05 1 0.05 1 0.05 1 0.05 1 
 

• SVM-K0 (linear kernel): K(Xi,Xj) = Xi
TXj  

SVM algorithm has several variations. LibSVM [6] is a soft 

margin version of SVM that allows misclassified instances to 

reduce the over-fitting of the hyperplane. Therefore it adds a 

new hyper-parameter: regularization cost– C, to manage the 

error penalty of the misclassified instance. Linear kernel 

(SVM-K0) has only single parameter: the regularization cost 

C > 0. It has no limits therefore, we estimate its range 
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manually by increasing C, from soft margin to hard margin. 

We test C with exponentially growing sequences as C = 1 × 

10e , where e ranges from 0.0 to 10.0 by an increment step of 

1.0. For each feature subset, Table 7 presents C values of 

SVM-K0 that produce the best results. 

Table 7. SVM-K0 Hyper-parameters values for HTTP-only, 

IRC-only, and TOTAL.  

Feature 

set ID 

HTTP-only IRC-only TOTAL 

NotNormali

zed Normalized NotNormalized Normaliz

ed 
NotNorm

alized 
Normaliz

ed 

e e e e e e 

1 0 2 0 3 0 3 

2 0 6 0 2 0 2 

3 0 0 0 5 7 4 

4 0 6 0 0 5 4 

5 0 5 1 0 1 1 

6 0 2 0 5 0 4 

7 0 9 0 3 0 2 

8 0 6 0 1 0 5 

9 0 5 0 0 0 1 
 

• SVM-K1 (polynomial kernel): K(Xi,Xj) = (mXi
TXj)D, m 

>0 

SVM Kernel 1 has three parameters: 

1. D: degree of the polynomial, we test values in the range 

from 3.0 to 5.0 by an increment step of 1.0. 

2. m: scaling factor of the polynomial, we test in the range 

from 0.0 to 1.0 by an increment step of 0.1. (if m = 0, 

Weka use it as m = 1/number of features). 

3. regularization cost – C, we test C as C = 1 × 10e, where 

e ranges from 0.0 to 10.0 by an increment step of 1.0. 

For each feature subset, Table 8 presents the parameter 

values of SVM-K1 that produce best results. 

Table 8. SVM-K1 Hyper-parameters values for HTTP-only, 

IRC-only, and TOTAL 

Feature 

set ID 

HTTP-only IRC-only TOTAL 

NotNormaliz

ed Normalized NotNormali

zed Normalized NotNormaliz

ed Normalized 

D e m D e m D e m D e m D e m D e m 

1 3 0 0 4 4 0.3 3 0 0 3 0 1 3 0 0 4 2 1 

2 3 0 1 4 5 0.9 4 0 1 4 5 0 3 0 0.7 5 5 0.9 

3 3 4 0.1 3 4 0.7 3 0 0.9 4 10 0.7 3 10 0.1 3 5 0.7 

4 3 5 0.1 5 6 1 3 4 0.8 3 6 0 3 4 0.3 5 5 0.9 

5 3 3 0.1 4 8 0.8 3 0 0.8 5 7 0.8 3 2 0.3 4 6 0.8 

6 4 0 0.9 4 10 0.1 5 2 0.4 3 0 0.9 3 0 0.1 5 6 0.8 

7 3 0 0.9 5 10 0 5 5 0.4 4 6 0.4 5 0 0.1 4 6 1 

8 4 0 0.4 5 9 0.3 3 1 0.1 3 0 0.9 3 1 0.1 5 7 0.6 

9 3 3 0.2 4 6 1 4 2 0.2 3 5 0.6 3 5 0.1 4 6 0.7 
 

• SVM-K2 (radial basis function- RBF- kernel): 

K(Xi,Xj) = exp(−γ||Xi − Xj||2),γ >0 

SVM-K2 has two parameters: 

1. regularization cost – C, we test C as C = 1 × 10e ,where 

e ranges from 0.0 to 10.0 by an increment of 1.0. 

2. γ : scaling factor of Gaussian exponential function, we 

test in the range from 0.0 to 1.0 by an increment of 0.1. 

(if γ = 0, Weka use it as γ = 1/number of features) 

For each feature subset, Table 9 presents the parameter 

values of SVM-K2 that produce best results. 

Table 9. SVM-K2 Hyper-parameters values for HTTP-only, 

IRC-only, and TOTAL 

Feature 

set ID 

HTTP-only IRC-only TOTAL 

NotNormali

zed Normalized NotNormaliz

ed Normalized NotNormaliz

ed Normalized 

e γ e γ e γ e γ e γ e γ 

1 1 0 6 0 0 0 1 0.5 1 0 3 0.6 

2 1 0.1 7 0.3 1 0.1 8 0.5 1 0.1 7 0.7 

3 1 0.1 3 0.5 1 0.1 3 0.4 1 0.1 6 0.1 

4 1 0.1 10 0.7 1 0.1 8 0.3 1 0 6 0.9 

5 1 0.1 6 0.4 1 0.1 8 0.3 1 0.1 6 0.7 

6 1 0.1 7 0.9 1 0.1 9 0.9 1 0.1 8 1 

7 1 0.1 10 1 1 0.1 7 0.1 1 0.1 10 1 

8 1 0.1 8 0.9 3 0.1 6 0.9 4 0.1 7 1 

9 3 0.1 5 1 1 0.1 3 0.5 1 0.1 6 0.8 

5.4. Model Creation 

After getting the optimized hyper-parameter values for both 

J48 and different SVM kernels, the next step is to create the 

detection model using those hyper-parameters by 

experimenting with each candidate feature set. The final 

objective is to determine which feature subset produces best 

detection results. 

During parameter selection step, an initial model is already 

created with 5-fold cross-validation (CV) performance 

estimation. In 5-fold cross-validation (CV), the training 

dataset (malicious + benign) is randomly partitioned into 5 

equal size datasets. Each dataset is used once to validate the 

model that was created using the remaining 4 datasets. Then, 

all 5 F1-measure values are combined in a single value that is 

used in hyper-parameter optimization as described in next 

section. In addition to the above splitting mechanisms, which 

is completely random, we applied two other mechanisms 

(combination and split 64-36%) to split the malicious dataset 

between training and validation phase: 

• In combination mechanism, traces from two botware 

families (IRC or/and HTTP) are used in training phase and 

the third family is kept for validation. For example, in 

HTTP-only model, if the two families (Blackenergy and 

Zeus) are used in training phase, Vertexnet family will be 

used in validation phase. This step is repeated for all 

family pairs, and then a combined F1-measure is 

calculated from F1-measure of all combinations. We can 

consider the combination mechanism as a concrete 

partitioned 3-fold cross-validation. The advantage of this 

method is to ensure that our model is more generic and 

independent on botware families. 

• In split 66-34% mechanism, all botware families will be 

used in training and validation phase. However, only 

traces of 4-runs are used in the training phase out from the 

6-run samples. This makes 66% of dataset size dedicated 
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for training and the other %34 dedicated for validation. 

The advantage of this method is to ensure that the 

detection model is more generic and independent on 

botnet configuration because each run of the botware 

sample is different from the others with regard to botnet 

and network configuration. 

5.5. Model Selection 

In our experiments, we create three different models to detect 

HTTP-based botnet (HTTP-only), IRC-based botnet (IRC-

only) and both HTTP and IRC botnet (TOTAL). For each of 

these models, there are 18-candidates features subsets (9-

normalized features subsets + 9-not normalized features 

subsets). For each of these features subset, we applied the 

three split mechanisms (Cross Validation-CV, Combination, 

and split 66%-34%) to divide the dataset between training 

and validation phase. As mentioned before, we use J48 and 

three different kernels in SVM as machine learning 

algorithm. The goal now is to answer the question of which is 

the best performing feature-subset with which model and 

which machine learning algorithm?. 

As explained earlier, the botnet dataset is an imbalanced 

dataset where the number of positive instances is far less than 

the number of negative instances. F1-measure is a trade off 

between Precision and Recall metrics to assess the detection 

quality. It is recommended as a performance metric for such 

imbalanced datasets [46]. However, in our case, there are 

three different F1-measure values coming form Cross 

Validation, Combination, and split 66%-34% results. 

Therefore, we need a method to combine or average these 

different values. There are mainly two methods for this 

purpose; either by calculating the micro-average or the 

macro-average. 

• Micro-average Method: we first calculate the total of 

TP, FP, and FN which are the summation of their values 

for different datasets (or folds). Then calculate F1-

measure using the formula in Equation (4): 
 

 

 

 
 

 Eq. (4) 

• Macro-average Method: Instead of calculating F1-

measure based on overall TP, FP and FN, we calculate the 

F1-measure for different datasets (or folds), Equation (5). 

Then, we take the average of these F1-measures, Equation 

(6): 
 

 Eq. (5) 
 

  Eq. (6) 

Based on previous research in [47], [48], the micro-average 

method is less biased and more precise than the macro-average 

method for equally sized datasets (or folds). Therefore we 

decided to use the micro-average method in 5-fold cross-

validation and combination mechanisms. Then to equally 

weight the results from all experiments (i.e., cross-validation, 

combination, and split 66%-34% mechanisms), the macro-

average method is used to calculate a single F1-measure for the 

whole experiment. This single value of F1-measure will be the 

performance metric upon which we can determine the best 

model created over 18 feature subsets using J48 and three 

different SVM Kernels. 

The final output of model selection process is three models for 

HTTP-only, IRC-only and TOTAL. These models will be 

integrated into BoTCap as explained in next section. To 

evaluate the performance of BoTCap, we test these models 

using the unseen dataset that was described in Section 5.1 (i.e., 

neither used in training nor in hyper-parameter optimization 

phase). 
 

5.6. Implementation 
 

In this section, we present a prototype of BoTCap detection 

system that we implemented in Python. BoTCap is designed 

and implemented to detect local infected hosts by comparing 

a set of statistical features, extracted per trace, through a pre-

trained machine learning model. As shown in Figure 5, 

BoTCap consists of four main components: Preprocessing, 

Trace Extractor, Feature Extractor, and Model Matcher. 

 

 

 

 
 

Figure 5. BoTCap component 
 

Preprocessing: The input for BoTCap is a network traffic 

capture that normally consists of a wide range of internet 

protocols. Preprocessing module filters out botnet-irrelevant 

traffic and keeps only TCP and UDP traffic. 

Trace Extractor: the captured traffic is in the form of 

sporadic packets. BoTCap reassembles flows from the 

captured packet data. After that, it aggregates the flows that 

have the same 3-tuple (SrcIP, DstIP, DstPort) as a trace. 

Feature Extractor: For each trace, a set of statistical 

features are extracted. Feature extraction is performed in 

three steps. Firstly, it extracts statistical features per flow 

using Argus (Audit Record Generation and Utilization 

System) [49]. After that, we calculate the features in Table 1 

per trace based on the trace's flows. Regarding the periodicity 

features (Table 2), we modified CAPTCP [50] to be 

applicable for both TCP and UDP traffic. It calculates the 

throughput of the up-link traffic. Then, it extracts the 

periodicity features using the algorithm described in (Code 

1). The output of feature extractor is represented as a vector 

of features. 

Model Matcher: To check whether a trace is a botnet trace, 

BoTCap compares the trace's vector of features to HTTP-

only, IRC-only or TOTAL models. If the trace matches any 

model, BoTCap produces a detailed report that includes the 

internal host IP (bot) that produced this trace and the remote 

server IP which may be the C&C server of centralized botnet 

or another bot in the P2P botnet. 

6. Results and Discussion 

In the first part of this section, we report and discuss the 

output of model selection step. After that, we evaluate the 
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performance of BoTCap using the test dataset. The results of 

the evaluation step will be reported in the second part. 

6.1. Model Selection Results 

The next sets of figures present a histogram of F1-measure 

values calculated as described in Section 5.5. In each figure, 

the X-axis represents the ID of the feature set that were 

presented in Table 5. In the left half (NotNormalized), it 

shows the absolute values of the features while the right half 

(Normalized) shows the normalized values of the features. 

The columns of the histogram corresponds to F1-measure 

values for 5-fold CV, Combination, and split 64-36 

respectively. Numbers in the top of the columns present the 

macro-average of F1-measure values as calculated by 

Equation (6). 
 

6.1.1. J48 Algorithm 

Figures I-(a, b, c), in Appendix A, display J48 results for 

HTTP-only, IRC-only and Total respectively. In Figure I-(a), 

we notice that the feature set with ID (5)-Normalized 

produces the best results (i.e., Highest F1-measure). When 

we examine the results of IRC-only shown in Figure I-(b), we 

find that feature set with ID (6)-NotNormalized has the 

highest F1-measure value. Finally, the results of TOTAL, 

indicates that feature set with ID (5) – NotNormalized has the 

highest F1-measure value, Figure I-(c). Over all, we observed 

that J48 results have more variations between the different 

feature sets in the case of HTTP-only regardless of being 

normalized or not where combined F1 measures (macro 

average) ranges from 0.667 to 0.957. By contrast, almost all 

J48 results of the IRC-only are more than 0.85 whereas all 

TOTAL results are approximately near 0.9. 
 

6.1.2. SVM-K0 

Figures II-(a, b, c) display the results obtained from SVM-K0 

algorithm “linear kernel”. As shown in Figure II-(a), HTTP-

only detection models using feature sets with IDs (2, 6, 7) – 

NotNormalized have the highest and the same value of F1-

measure (0.903). By reference to Table 5, feature set-6 is 

subset from set-2 and set-7 is subset form set-6. We believe 

that is the reason why three sets give the same F1-measure 

value. This also means that the set with smallest number of 

features eliminates the need for extra features in the other 

two sets that seem to be redundant and have no effect. 

Therefore, we select feature set with ID-7-NotNormalized. 

Referring to Figures II-(b) and II-(c), the normalization 

process generally enhances the performance of IRC-only and 

TOTAL detection models. In IRC-only normalized feature 

set, F1-measure starts from 0.625 up to 0.958 but the highest 

F1-measure value 0.972, using feature set with ID (1)-

NotNormalized. In TOTAL model, feature set with ID (1)–

Normalized has the highest F1-measure value. 
 

6.1.3. SVM-k1 

As shown in Figures III-(a, b, c), the normalization process 

have a significant impact on the performance of the models 

that use SVM-K1 algorithm “polynomial kernel”. As shown 

in Figure III-(a), all feature sets that are Normalized, for 

HTTP-only models have more than 0.60 F1-measure value. 

Despite that the macro-average of F1-measure for 5-fold CV, 

Combination and split experiments in some sets such as sets 

(1, 3, 6, 8) can reach more than 0.75, but the result of the 

three experiments are not consistent. Feature set with ID-5 – 

Normalized produces the highest and more consistent F1-

measure (0.947) for HTTP-only. Referring to Figures III-(b) 

and III-(c) respectively, feature set with ID (1) – Normalized 

have the highest F1-measure (0.993) for IRC-only and 

feature set with ID (5) – Normalized have the highest F1-

measure (0.941) for TOTAL model. 
 

6.1.4. SVM-k2 

Figures IV-(a, b, c) illustrate the results of using SVM-K2 

algorithm “radial kernel”. Like SVM-K1, the normalization 

process have a significant impact on the performance of the 

models that use SVM-K2 algorithm. As shown in Figures IV-

(a), and IV-(c), feature set with ID (5)–Normalized has the 

highest F1-measure value for HTTP-only model (0.937) and 

for TOTAL model (0.951) respectively. In Figure IV-(b), the 

model that uses feature set with ID (1)- NotNormalized 

cannot classify correctly any actual IRC malicious trace as a 

positive class “malicious class”. In contrast, the same feature 

set with ID (1) but 'Normalized' produces the highest F1-

measure (0.997) for IRC-only. 
 

6.1.5. Final Selection 

Table 10 summarizes the results that leads to answer the first part 

of the question that was raised in Section 5.5, “which is the best 

performing feature-subset?”. The remaining part of the question 

is which ML algorithm gives the highest detection performance? 

In order to be integrated in BoTCap.  

As shown in Table 10, both J48 and the three different kernels of 

SVM are performing well in terms of F1-measure. Therefore, a 

good compromise is to combine these ML algorithms in multi-

stage detection (voting majority rule or weighted models) or 

simply pick up the one that gives the highest performance; as we 

did hereafter in “Selection” column. 

Table 10. Summary of Model Selection 

Model 
ML 

Algorithm 
Feature-Set F1-measure Selection 

HTTP-

only 

J48 5 Normalized 0.957 
Algorithm: J48, 
Feature-Set: (5- 

Normalized ) 

SVM-K0 7 NotNormalized 0.903 
SVM-K1 5 Normalized 0.947 
SVM-K2 5 Normalized 0.937 

IRC-

only 

J48 6 NotNormalized 0.981 
Algorithm: SVM-K2, 

Feature-Set: (1- 

Normalized ) 

SVM-K0 1 NotNormalized 0.972 
SVM-K1 1 Normalized 0.993 
SVM-K2 1 Normalized 0.997 

TOTAL 

J48 5 NotNormalized 0.95 
Algorithm:J48, 
Feature-Set: (5- 

NotNormalized ) 

SVM-K0 1 Normalized 0.922 
SVM-K1 5 Normalized 0.941 
SVM-K2 5 Normalized 0.941 

6.2. BoTCap Evaluation result 

To evaluate BoTCap, another dataset different from the training 

and the testing dataset was employed. We compare the values of 

the three metrics: F1-measure, TPR, and FPR. F1-measure is the 

metric that we have used during all design steps due to the 

imbalance of the botnet dataset. TPR and FPR provide more 

detailed results and fine-grain perspective about the performance 

of BoTCap. Moreover, they are most frequently used in 

evaluating previous works, which enables the comparison of the 

performance of our approach with other previous research work. 

The TPR – True Positive Rate, known also as the “recall” or the 

“sensitivity measure” reflects the capability of BoTCap to 

capture correctly the malicious traces. On the other hand, FPR – 

False Positive Rate – reflects the total number of misclassified 
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benign traces that are classified as malicious. TPR and F1-

Measure are already defined by Equations (2 and 3), while FPR 

is defined in Equation (7): 

 Eq. (7) 
 

As shown in Table 11, BoTCap can achieve 80% TPR with 

0.05% of FPR in HTTP botnet detection, and 100% TPR 

with 0.025% of FPR in IRC botnet detection. Regarding the 

TOTAL model, it achieves 65% TPR with 0.15% FPR, 

which is an acceptable performance in botnet detection 

research field. 

Table 11: BoTCap performance 

Model 
ML 

Algorithm 
Feature-set 

Training 

Dataset 
Testing Dataset 

F1-

measure 
F1-

measure 
TPR FPR 

HTTP-only J48 5-Normalized 0.957 0.842 0.8 0.000501 

IRC-only SVM-K2 1-Normalized 0.997 0.976 0.95 0.00025 

TOTAL J48 
5-

NotNormalized 
0.95 0.722 0.65 0.001502 

 

It is worth to note that we have also evaluated our BoTCap 

against a portion of CTU dataset that contains botnet traffic 

[51]. CTU-10 was selected for two reasons: Firstly, it is well 

described and annotated bot-C&C trace and secondly the 

number of bots and duration of traffic are satisfying our 

conditions (more than one bot and duration ~ 6 Hours). 

Unfortunately, after using the dataset as it is, BoTCap gets 

100% FNR. By analyzing the CTU-10 dataset, we discovered 

the bad detection result is due to the fast-flux domain 

communication. This why the traffic between each bot and 

the C&C server was extracted in separate traces and are not 

included in the same trace. Having a closer look into the 

evaluation dataset revealed that the scenario of the dataset 

creation experiment contains 4 runs (i.e., start-up/shutdown 

actions) of the VMs. The duration of the first run is one and 

half hour while the other three runs are less than one hour. 

Besides that, the C&C url "irc.freenode.net" is resolved by 

DNS query every time the VMs start-up. Therefore, each 

start-up C&C url is resolved with a different IP which creates 

new trace. Consequently, the duration of extracted traces 

between each bot and C&C server are: 

• one and half hour (only 4 traces) ==> Is_periodic = 0: 

not periodic due to std of freq. more than 10% of the 

freq. 

• less than one hour (other 40 traces) ==> Is_periodic = -2: 

not periodic due to duration. 

In what concerns the fast-flux communication where bots can 

be assigned several varying IPs instead of having fixed IPs. 

In this case, bots do not connect to known IPs but rather they 

connect to domain names that can be mapped to frequently 

changing IPs. This can deceive botnet detection systems 

because each time the bot connects to C&C using different 

IP. We solved this problem by identifying the trace in term of 

"Source IP, Destination domain instead of Destination IP, 

Destination Port" and the Destination domain can be resolved 

to one or more IPs. The procedure that implements fast-flux 

complements the main BoTCap analysis. It extracts DNS 

queries and arrange results in a dictionary. Then, it creates 

the flows using dest. IPs (as before) but while doing reverse 

lookup for each dest. IP in DNS dictionary. If there is a dest. 

domain matching the dest. IP, replace the dest. IP by the dest. 

domain in flows. Otherwise, it keeps the dest. IP as it is and 

BoTCap continues its normal routine. 

Accordingly, BoTCap algorithm and code was modified to 

overcome fast-flux technique where the results given in Table 

11 are produced by the improved BoTCap. 
 

7. Conclusion and Future work 
 

This paper, presents our approach for machine learning-

based botnet detection and its implementation  (BoTCap). It 

aims to detect individual bots based on ML algorithm by 

using a set of distinctive statistical features extracted per 

trace. 

During our research we have met several problems. The lack 

of botnet datasets, the lack of botware samples, fast-flux and 

encrypted botnet communications are just examples of 

challenging problems in botnet research. We have partially 

solved the botnet dataset problem by creating our own. We 

have deployed and operated some botnet samples locally 

within our laboratory. However, this solution is effort 

consuming as we should find botware samples from the wild 

and be able to render it functional, which is intrinsically 

difficult. This was obvious in the dataset that we have 

constructed, which does not contain peer to peer datasets 

because we couldn’t find functioning P2P botware samples 

during the research time window. This is the main reason 

why we decided to focus on centralized botnets (IRC and 

HTTP). Another shortcoming of the dataset is that it does not 

cover the latest trends in botnet communications. For 

example, employing social networks such as Facebook and 

Twitter as communication channels between bots and C&C. 
 

Regarding the encrypted traffic, we argue that the statistical-

based trace feature can solve this problem where the 

detection is independent of traffic contents, which was 

verified by including encrypted botnet traffic in the dataset 

(both learning and testing datasets). 
 

We addressed all ML approach steps to find the set of 

features that give the highest F1-measure using J48 and three 

different kernels of SVM. A botnet dataset was created in 

laboratory from real botware samples of two types: HTTP 

and IRC. Based on this dataset, separate ML models were 

created: HTTP-Only, IRC-Only and TOTAL that contains 

both http and IRC. The models were tested against a 

“foreign” dataset: CTU-10. Unfortunately, it showed some 

glitches related to fast-flux problem. Accordingly, we 

modified the trace extraction part in BoTCap to be able to 

deal with botware that employ fast-flux. Then the trained ML 

models were integrated in a tool called BoTCap. 

The results showed that our tool can detect bot infections 

with high detection rates up to 80% and 95 % for HTTP and 

IRC based botnet respectively and very small false positive 

rates of nearly 0.05% and 0.025% respectively. 

The main contribution of our approach is its ability to detect 

and identify individual bots without the need to collect 

massive data from several infected machines. Besides that, 

our approach is based on statistics features of botnet traffic, 

which means that it is independent of traffic contents. This 

has two advantages: first, it is supposed to detect a wide 

range of botnets not only the ones that were included in the 

training dataset. Second, it is immune to encrypted botnet 

traffic that could hinder bot detection. Additionally, the paper 

presents a detailed description of the design, the 
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experimentation and the implementation in order to help 

other researchers (especially juniors) to reproduce this work 

and avoid the mistakes.  

Several avenues for the future work have been already 

identified for future improvements of the approach and the 

BoTCap tool. The most important task is to extend the 

approach to be able to detect new generations of botnet. In 

particular, P2P botnets and new bots that use new 

communication channels such as social media. 
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Appendix A  

  
Figure I. F1-measure for J48 algorithm: (a) J48-HTTP, (b) J48-IRC, (c) J48-TOTAL 
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Figure II. F1-measure of SVM-K0 algorithm for: (a) HTTP-only, (b) IRC-only and (c) TOTAL 
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Figure III. F1-measure of SVM-K1 algorithm for: (a) HTTP-only, (b) IRC-only and (c) TOTAL 
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Figure IV. F1-measure of SVM-K2 algorithm for: (a) HTTP-only, (b) IRC-only and (c) TOTAL 


