
242
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Securing One Time Password (OTP) for Multi-

Factor Out-of-Band Authentication through a 128-

bit Blowfish Algorithm

Ariel Roy L. Reyes, Enrique D. Festijo and Ruji P. Medina

Graduate Programs, Technological Institute of the Philippines, Quezon City, Philippines

Abstract: Authentication and cryptography have been used to

address security issues on various online services. However, studies

have shown that even the most commonly-used multi-factor out-of-

band authentication mechanism is vulnerable to attacks while

traditional crypto-algorithms exhibit drawbacks. In the present

study, an innovative modification of the Blowfish cryptographic

algorithm is introduced that capitalizes on the algorithm’s strengths

but supports 128-bits input block size using dynamic selection

encryption method and reduction of cipher function execution

through randomly determined rounds. Experimentation results on

128-bit input text revealed significant performance improvements

with utmost 5.91 % in terms of avalanche effect, 38.97 % for

integrity, and 41.02 % in terms of execution time. The modification

provided an additional layer of security, thus, displaying higher

complexity and stronger diffusion at faster execution time making it

more resilient to attacks by unauthorized parties and desirable to be

used for applications with multiple users respectively. This is a

good contribution to the continuous developments in the field of

information security particularly in cryptography and towards

providing a secure OTP for multifactor out-of-band authentication.

Keywords: Authentication, Cryptography, Crypto-algorithm,

Blowfish, Dynamic Selection Method, OTP, SMS-based OTP.

1. Introduction

Internet users rely on carrying out various activities through

online services that offer accessibility and convenience [1].

However, security issues on personal information have

emerged and are considered as some of the most important

concerns in today’s connected world [2][3]. Therefore, a

more secure online environment is necessary to obtain the

trust and confidence of users [1].

To better enforce security in online services, authentication

has been the major means of defense [1][4][5]. It is a

mechanism to verify the authenticity of a legitimate

personality to access data on protected systems [5]. It is

enacted by multiple means among which single-factor

authentication, or the use of user ID and password, has

served as the traditional security mechanism. However,

significant downsides of single-factor authentication have led

to the increasing adoption of multi-factor authentication

which is considered to offer stronger security mechanism

through additional user requirement such as something the

user knows and have which provides a second layer of

authentication [1][6][7]. To this end, Short Message Service

(SMS)-based One Time Password (OTP) remains one of the

most commonly used multi-factor authentication and

authorization mechanism. This method has found wide use

such as in online banking, email services, social networks,

transactions with financial institutions and online

marketplaces, and online academic information applications

[6][8][9]. But even this enhanced method has not remained

attack-proof. An experimental social engineering attack

against Google’s SMS-based authentication was

demonstrated to have a 50% success rate. The same attack

showed 25% success rate using an out-of-band authentication

modality. Moreover, an increase in the number of attacks

using this method has been reported, with twenty-two (22)

instances of such attack in China in a so-called Verification

Code Forwarding Attack or VCFA [8][10].

To further strengthen security against untrusted environment,

cryptography has been used to make information

indecipherable [11][12][13][14] and promote a safer virtual

world [15][16]. Several cryptographic algorithms or crypto-

algorithms have been developed, categorized as either

symmetric or asymmetric [2][14][17][18][19], of which

symmetric algorithms show good performance with respect to

speed [20][16] and security through strong key size [16].

Blowfish is a symmetric algorithm considered to be best in

terms of security, avalanche effect, throughput, memory

usage, execution time, and power consumption giving it

distinct advantage over other symmetric algorithms [21]. It

has found use in many applications requiring secure

transmission of data such as bulk encryption, packet

encryption, and Internet-based security [21][16]. It is also

very suitable for multiple user applications such as multiple-

factor out-of-band authentication implementations. However,

since symmetric algorithms like Blowfish requires the same

key for encryption and decryption, secrecy and size of the

secret key are the only means of defense [2][20][22].

This paper will secure OTP for multi-factor out-of-band

authentication modality through an alternative approach of

OTP delivery and encryption using a 128-bit Blowfish

algorithm. The primary focus of this paper is to expand the

input text of Blowfish algorithm to 128-bits block size to

improve its execution time for wider block size input,

increase complexity by using dynamic selection encryption

method, and reduce its execution of cipher function in

randomly determined rounds to further improve complexity

and the algorithm’s overall execution time, all without

compromising the security feature of the original Blowfish

algorithm.. The results of this study will be a good

contribution to the continuous developments in the field of

information security particularly in cryptography and towards

providing a secure OTP for out-of-band authentication.

2. Literature Review

SMS-based OTP is the most widely used multi-factor

authentication and authorization scheme for many different

applications because all it requires is a mobile phone as

243
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

additional device [6]. In an SMS-based OTP system (Figure

1), users are required to provide something they know

(username, and password) and something they have (OTP

verification code) before they can access secured systems,

thus, effectively reducing risks against illegitimate access

since both factors have to be broken or to be compromised

[6].

Figure 1. SMS-based OTP Operation

As shown in Figure 1, SMS-based OTP starts with a

generated verification code sent via SMS to a registered

mobile phone of a user if the supplied username and

password are authentic. The sent verification code is

normally presented as plain text to be readable for users to

encode on online service provider’s web application [6][9].

The vulnerabilities of SMS lies in the messaging service and

the available functionalities of mobile networks that become

an attractive area for attackers [23][24]. Phishing has been

identified and recorded to be on the rise in many real-world

instances [8]. SMS Phishing or SMiShing, is a technique

comparable to Internet phishing where users are fooled by a

non-genuine message that looks interesting to steal OTP

issued by online service providers. This technique is

normally accomplished with the help of social engineering

practices and a possible malware installed on user’s mobile

phone [8][24]. Instances of phishing attacks have been

recorded. Citizen Lab recorded events where users were

deceived to use their credentials and verification codes on a

fake login page [8]. Symantec also revealed cases where

users were lured to forward verification codes to an attacker.

A new form of phishing, called Verification Code

Forwarding Attack (VCFA), was also discovered with

success rate of 25% [8].

Another common threat is to eavesdrop a verification code

[8]. Eavesdropping or to secretly acquire relevant

information can be accomplished using Key Logger, Screen

Capturing, and Shoulder surfing. Keylogger attack captures

all user keystrokes and sends the logs periodically to the

attacker. Often, a combination with Keylogger, Screen

capturing captures both the keystrokes and visual items.

Screen capturing attack can also take the screenshots of the

whole screen to retrieve confidential information. Shoulder

surfing, on the other hand, is a technique to disclose sensitive

information by merely looking at the keyboard or the screen

while users perform online transactions [24]. The foregoing

threats necessitate the need to hide sensitive information such

as OTP verification codes through cryptographic methods.

Crypto-algorithms such as AES, T-DES, DES, RC2, RC6,

RSA, CAST-128, and Blowfish have been used depending on

its suitability for specific applications and based on their

strengths and weaknesses. Comparative analysis based on

the level of security, average encryption time, throughput,

memory usage and battery consumption revealed that

Blowfish provided more security at great encryption speed

[21]. Blowfish algorithm was also said to be the best-suited

algorithm for applications were time and memory usage is the

primary consideration as compared to DES, T-DES, AES or

RSA algorithms [15]. When compared with DES and AES,

Blowfish was observed to perform twice as fast as DES and

four times faster than AES, in addition to consuming a

smaller amount of memory and while providing great security

through a strong key size [16]. Blowfish also exhibited

stronger security against CAST-128 [19]. It showed good

non-linear relation between the plain text and the ciphertext

[25]. In general, the Blowfish algorithm can be considered

superior among the crypto-algorithms [21].

Blowfish is referred to as a robust general-purpose keyed

symmetric block cipher algorithm that can be used as an

informal replacement for DES or IDEA. Blowfish supports

64-bit block size and a variable key length from 32 bits up to

448 bits. It is a 16-round Feistel cipher that uses large key-

dependent S-boxes and requires 521 iterations to generate all

essential subkeys. A single initial key in this algorithm

derives 18 sub-keys [15][16][19]. Aside from not being

patented, Blowfish has a free license that allows free use

[15]. The Blowfish algorithm flowchart is shown in Figure 2.

Figure 2. Blowfish Algorithm Flowchart

As shown in Figure 2, Blowfish algorithm starts by splitting

the 64-bits plain text into two equal blocks. The first 32-bits

block (L) and the first 32-bits P array are subjected to the

bitwise XOR operator and the result is considered as input

for the computation of the cipher function or function f. The

said function is used to permute the data into a 32-bits block

segment which is then XOR’ed with the second 32-bits block

(R). After having the result of the XOR operation, the two

32-bits segments (L and R) are exchanged and the process

repeats for 15 iterations. After the 15th iteration, XOR

operation with the remaining P array and cipher function

computation is performed to produce the ciphertext. The

computation of cipher function is considered as the most

complex part of this algorithm where S-boxes is utilized [25].

Besides the strengths of Blowfish algorithm in terms of

performance, not being patented and licensed has made it

freely available for use and modification [15]. To date,

various enhancements to Blowfish algorithm have been

244
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

carried out to further improve performance and make it

suitable for different intended applications.

Elliptic Curve Cryptography and Blowfish algorithm were

integrated to provide authentication and confidentiality

mechanism for mobile data in the cloud. A bitwise XOR

operation with the generated random number and the

plaintext served as the starting point in this structure in order

to increase computational complexities and strengthen

security. To improve Blowfish performance, the number of

rounds was randomized. The design was executed and

verified on different platforms such as personal computer,

smartphone, emulator, and tablet [26].

Embedding Sensitive Information Transferring Technique

and Blowfish Algorithm for Key Generation was used to

improve image-based passwords. The objective was to

provide a solution to combat different attacks on internet

applications such as online guessing, shoulder surfing,

phishing, and brute force. In this configuration, the

watermarked image spawned from the embedded algorithm

process was divided into image blocks to be encrypted using

the Blowfish algorithm. Results showed a better entropy and

correlation rate [27].

A modified Feistel network and a cipher function for the

Blowfish algorithm was developed using the concepts of

genetic algorithm and mutation. The new cipher function was

called G-function derived from the main contributor of the

design, the concept of genetic algorithm. The design

presented new methods for the algorithm’s key generation

and transmission of data. Results showed improvements in

the ciphertext obtained in terms of complexity and security

[28].

A new method for reducing time complexity in S-boxes and

P-arrays generation for the Blowfish algorithm was

introduced. It was realized by replacing the 521 encryptions

required in the Blowfish algorithm to generate the key-

dependent P-arrays and S-boxes with the linear feedback

shift registers (LFSR). The modification was designed for

speech encryption process and the result showed the same

level of security with the original Blowfish algorithm but

with less computational overhead for key generation [29].

3. Proposed Modified Blowfish Algorithm

Framework

The framework for the proposed algorithm, shown in Figure

3, will be the first version of the Blowfish algorithm designed

to support 128-bits block size that implements dynamic

selection encryption method and reduction of the execution

of cipher function in a randomly determined round to

improve complexity and the algorithm’s execution time.

As shown in Figure 3, the framework of the proposed

modified blowfish algorithm has five components: Block

Selector, Random Number Generator, Crypto-algorithm

Processor, Inverted Crypto-algorithm Processor, and Blocks

Merger. The Block Selector divides the 128-bits verification

code into two equal parts of 64-bits block size. A random

selection as to which block goes to the Crypto-algorithm or

the Inverted Crypto-algorithm Processors will be determined

by the Random Number Generator that generates 8 numbers

from 1 to 16 and its sum will define which among the

processors the blocks has to go through. If the sum is odd,

the 64-bits left side block undergoes encryption with the

Crypto-algorithm Processor while the other 64-bits block will

be encrypted using the Inverted Crypto-algorithm Processor,

thus making the encryption selective to improve complexity

and increase security. Both the Crypto-algorithm and the

Inverted Crypto-algorithm processors will behave the same

as the traditional Blowfish algorithm except for the execution

of the cipher function. Shown in Figure 4 is the detailed

flowchart of the proposed modified Blowfish algorithm and

how the two crypto-algorithm processors operate.

Figure 3. Framework for the Proposed Modified Blowfish

Algorithm

Figure 4. Proposed Modified Blowfish Algorithm Flowchart

Both processors will execute the cipher function only on

selected rounds demarcated by the random number generator

(Figure 4). The 8 numbers generated by the random number

generator specify the rounds on which the cipher function

should and should not be executed, thus, delimits the

execution of the said function to only 8 rounds. For the

Crypto-algorithm Processor, cipher function executes on

rounds included in the randomly generated numbers,

whereas, in the Inverted Crypto-algorithm, cipher function

executes on rounds not present in the array of randomly

generated numbers. This method will improve the execution

time and the security of the algorithm through reduction of

the execution of cipher function into half and through

complexity and confusion respectively. To produce the

ciphertext, the two outputs of both processors will be

combined by Blocks Merger. The output of the Blocks

Merger is the encrypted 128-bits verification code.

4. Results and Discussions

Both the original Blowfish algorithm and the proposed

modified Blowfish algorithm were implemented and tested in

a Pentium, Dual Core-powered CPU with 4GB of memory

245
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

and running on Windows 10 64-bit operating system.

XAMPP v3.2.1 was utilized to provide a web server solution

stack for experimentation purposes. The original Blowfish

algorithm written by Matt Harris in PHP [30] anchored

directly from Schneier’s C code example on his website was

used as the starting point to implement the original Blowfish

algorithm [31]. An additional class, however, was created to

process actual inputs and provides evaluation results for

analysis. To verify the validity of the implementation, it was

tested using the test vectors provided by Eric Young also

posted on Schneier’s website [31].

For consistency of results in running the tests and achieve a

fair basis for comparison, the same sets of input data were

used all throughout the experimentation. Ten (10) sets of

128-bit text and a 64-bit key were used as inputs for

encryption. For the modified implementation, two sets of

random numbers were tested with first set including 0, 1, 3,

4, 6, 7, 12, 15 as random numbers and the other set having 1,

2, 3, 5, 6, 9, 12, 15 whose sum are even and odd numbers

respectively. Both implementations were tested using the

same key, the same input text and under ECB mode. The

avalanche effect, integrity check, and execution time were

taken and recorded in every input sets for performance

evaluation and analysis.

4.1 Avalanche Effect Experimentation Results

Avalanche effect is an important property of a cryptographic

algorithm that depicts its strength in terms of a property

called diffusion [15]. It is also called as the diffusion test [32]

that refers to the substantial change in output (ciphertext)

when a slight change in input key is applied

[15][19][25][32]. The avalanche effect is computed

according to Equation 1 [15].

Avalanche Effect = (Hamming Distance Total Bits Length) (1)

where Hamming distance is determined by taking the

dissimilarity between the ciphertext produced before and

after the slight change in the key was applied [15]. In this

study, the key’s 9th bit was flipped and the difference

between the two ciphertexts was recorded using PHP’s

array_diff_assoc instruction [33]. Shown in Table 1 is the

summary of the experimentation results on the avalanche

effect using ECB mode.

Table 1. Experimentation Results for Avalanche Effect
 Average Changed in Ciphertext

Number of

Bits Changed

(Hamming

Distance)

Changed in

Percentage

(Avalanche Effect)

Original Blowfish 60.90 47.58 %

Modified

Blowfish

Even Random

Number
64.49 50.39 %

Odd Random

Number
61.33 47.92 %

The modified version caused an increase in the number of

bits changed as the 9th bit of the key was flipped (Table 1)

leading to increased avalanche effect (Figure 5). The least

improvement observed was when an odd random number was

used while a higher improvement for the even random

number.

As shown in Figure 5, a 0.34 % difference as compared to the

original Blowfish algorithm for the odd random number

while 2.81 % difference was recorded for the even random

number. Results show that the security of the original

Blowfish algorithm in terms of avalanche effect was not

compromised, but instead, were improved to 0.71% for the

odd random number and 5.91% for an even random number

when the proposed modifications were implemented. This

signifies that the proposed modification offers stronger

diffusion property compared to the original Blowfish

algorithm making it more difficult to perform analysis on

ciphertext when mounting an attack.

Figure 5. Experimentation Result in Avalanche Effect

4.2 Integrity Check Experimentation Results

Integrity check is the magnitude of changes in the plain text

whenever there is a single bit change in the ciphertext [19].

In this study, integrity was determined in the same manner as

avalanche effect, except that instead of computing for

dissimilarity in the ciphertext, dissimilarity in the plain text

was determined whenever the 9th bit of the ciphertext was

flipped. The summary of the experimentations results for

integrity check is shown in Table 2 and Figure 6.

Table 2. Experimentation Result in Integrity Check

Average Changed in

Plain text

Number of Bits

Changed

(Hamming

Distance)

Changed in

Percentage

(Integrity

Check)

Original Blowfish 32.56 25.43 %

Modified

Blowfish

Even Random

Number
35.64 27.84 %

Odd Random

Number
45.23 35.34 %

The number of bits changed in the plain text increased in

both cases, either when the random number used was odd or

even number as compared to the original Blowfish algorithm

(Table 2). As presented in Figure 6, improvements were

observed in the odd random number at 9.90 % performance

difference and 2.41 % in even random number. This also

validates that the security advantage in terms of the integrity

of the original Blowfish algorithm was not compromised but

was even improved to 38.97 % for the odd random number

and 9.48 % for an odd random number when the proposed

modifications were implemented, thus, making the diffusion

stronger.

246
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Figure 6. Experimentation Result in Integrity Check

4.3 Execution Time Experimentation Results

Execution time refers to the total time expended in

converting the plain text to the ciphertext (encryption time)

and the time necessary to recover the plaintext from the

ciphertext (decryption time). This impacts the performance of

the system and determines how fast and responsive it is [15].

In this study, the same sets of inputs were executed

repeatedly to ensure fair results and the execution time was

determined using Equation 2.

Execution Time = Average Encryption Time + Average Decryption Time (2)

Presented in Table 3 are the average encryption and

decryption values in milliseconds.

Table 3. Experimentation Result in Execution Time

Original Blowfish Modified Blowfish

Encrypt Decrypt

Encryption Decryption

Even

Rand

Odd

Rand

Even

Rand

Odd

Rand

Time 0.24 0.15 0.12 0.14 0.11 0.13

Execution

Time

Original Blowfish 0.39

Modified Blowfish
Even Rand 0.23

Odd Rand 0.26

It can be noted from Table 3 that the modified Blowfish

algorithm consistently required less time to encrypt a plain

text and recover it from a ciphertext as compared to

unmodified version regardless whether the random number

was odd or even. The execution time differed by 0.13

milliseconds for the random odd number and 0.16

milliseconds for a random even number as compared to the

original Blowfish algorithm (Figure 7). Thus, significant

improvements in execution time with the modified version

was observed at 33.33 % improvement for the odd random

number and 41.02 % for an even random number as

compared to the original Blowfish algorithm.

Figure 7. Experimentation Result in Execution Time

5. Conclusions

In this study, the Blowfish algorithm was implemented by

extending its supported block size from 64-bits to 128-bits.

Along with this was to use a dynamic selection encryption

method and introduce randomly determined rounds for cipher

function execution. The results and analysis conducted

revealed that the implementation of dynamic selection

encryption and dynamic determination of rounds for the

execution of cipher function introduced additional

complexity and confusion for an adversary. Relevant

information that includes the key used for encryption and the

details on which particular block of the input text needs to be

subjected for a modified Blowfish encryption process, as

well as the specific rounds where the cipher function should

and should not be executed, would be necessary before

gaining access on the information. This had added an extra

layer of security and makes it more complicated and difficult

to acquire the information even if the encryption key is

compromised. Results also revealed that the proposed

modifications had not compromised the security feature of

the original Blowfish algorithm, instead, had increased the

security in terms of avalanche effect and integrity as well as

reduced the execution time. These results lead to a

conclusion that the proposed modification for the Blowfish

algorithm had improved the degree of complexity and

diffusion, thus making it more difficult and complex for an

unauthorized individual to decipher the information, and

caused significant improvement in the execution time making

it more suitable for applications with multiple users

respectively.

References

[1] D. Dasgupta, A. Roy, and A. Nag, “Toward the design of

adaptive selection strategies for multi-factor authentication,”

Elsevier Journal of Computers & Security, vol. 63, pp. 85–

116, Nov. 2016.

[2] Swathi S V, Lahari P M, and Bindu A Thomas, “Encryption

Algorithms: A Survey,” International Journal of Advanced

Research in Computer Science & Technology, vol. 4, no. 2,

2016.

[3] A. Joshi, M. Wazid, and R. H. Goudar, “An Efficient

Cryptographic Scheme for Text Message Protection Against

Brute Force and Cryptanalytic Attacks,” Procedia Computer

Science, International Conference on Computer,

Communication and Convergence (ICCC 2015), vol. 48, no.

Supplement C, pp. 360–366, Jan. 2015.

[4] A. K. Nag, A. Roy, and D. Dasgupta, “An Adaptive Approach

Towards the Selection of Multi-Factor Authentication,” 2015

IEEE Symposium Series on Computational Intelligence, pp.

463–472, 2015.

[5] R. Thandeeswaran and M. A. S. Durai, “DPCA: Dual Phase

Cloud Infrastructure Authentication,” International Journal of

Communication Networks and Information Security

(IJCNIS), vol. 8, no. 3, Dec. 2016.

[6] Mohsen Gerami and Satar Ghiasvand, “One-Time Passwords

via SMS,” Bulletin de la Société Royale des Sciences de

Liège, vol. 85, pp. 106–113, 2016.

[7] Ms. E.Kalaikavitha M.C.A., M.Phil., Mrs. Juliana gnanaselvi

M.Sc., and M.Phil., Ph.D., “Secure Login Using Encrypted

One Time Password (OTP) and Mobile Based Login

Methodology,” International Journal Of Engineering And

Science, vol. 2, no. 10, pp. 14–17, 2013.

[8] H. Siadati, T. Nguyen, P. Gupta, M. Jakobsson, and N.

Memon, “Mind your SMSes: Mitigating social engineering in

247
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

second-factor authentication,” Elsevier Journal of Computers

& Security, vol. 65, pp. 14–28, Mar. 2017.

[9] E. Sediyono, K. I. Santoso, and Suhartono, “Secure login by

using One-time Password authentication based on MD5 Hash

encrypted SMS,” 2013 International Conference on Advances

in Computing, Communications and Informatics (ICACCI),

pp. 1604–1608, 2013.

[10] M. Balduzzi, P. Gupta, L. Gu, D. Gao, and M. Ahamad,

“MobiPot: Understanding Mobile Telephony Threats with

Honey cards,” 11th ACM on Asia Conference on Computer

and Communications Security, New York, NY, USA, pp.

723–734, 2016.

[11] S. K. Pujari, G. Bhattacharjee, and S. Bhoi, “A Hybridized

Model for Image Encryption through Genetic Algorithm and

DNA Sequence,” Procedia Computer Science, The 6th

International Conference on Smart Computing and

Communications, vol. 125, pp. 165–171, Jan. 2018.

[12] S. Deng, D. Yue, A. Zhou, X. Fu, L. Yang, and Y. Xue,

“Distributed content filtering algorithm based on data label

and policy expression in active distribution networks,”

Elsevier Journal of Neurocomputing, vol. 270, pp. 159–169,

Dec. 2017.

[13] K. Dhiman and S. S. Kasana, “Extended visual cryptography

techniques for true color images,” Elsevier Journal of

Computers & Electrical Engineering, Oct. 2017.

[14] M. I. ElSharkawy, “Integrating and Securing Video, Audio

and Text Using Quaternion Fourier Transform,” International

Journal of Communication Networks and Information

Security (IJCNIS), vol. 9, no. 3, Dec. 2017.

[15] P. Patil, P. Narayankar, Narayan D.G., and Meena S.M., “A

Comprehensive Evaluation of Cryptographic Algorithms:

DES, 3DES, AES, RSA and Blowfish,” Procedia Computer

Science, 1st International Conference on Information

Security & Privacy, Nagpur, India, vol. 78, pp. 617–624, Jan.

2016.

[16] A. Ramesh and A. Suruliandi, “Performance analysis of

encryption algorithms for Information Security,”

International Conference on Circuits, Power and Computing

Technologies (ICCPCT), pp. 840–844, 2013.

[17] Ü. Çavuşoğlu, A. Akgül, A. Zengin, and I. Pehlivan, “The

design and implementation of hybrid RSA algorithm using a

novel chaos-based RNG,” Elsevier Journal of Chaos, Solitons

& Fractals, vol. 104, pp. 655–667, Nov. 2017.

[18] M. Kumar, S. Kumar, R. Budhiraja, M. K. Das, and S. Singh,

“A cryptographic model based on the logistic map and a 3-D

matrix,” Journal of Information Security and Applications,

vol. 32, pp. 47–58, Feb. 2017.

[19] Youssouf Mahamat koukou, Siti Hajar Othman, Maheyzah

MD Siraj, and Herve Nkiama, “Comparative Study Of AES,

Blowfish, CAST-128 And DES Encryption Algorithm,”

IOSR Journal of Engineering (IOSRJEN), vol. 6, no. 6, pp.

1–7, 2016.

[20] A. Bhardwaj, G. V. B. Subrahmanyam, V. Avasthi, and H.

Sastry, “Security Algorithms for Cloud Computing,”

Procedia Computer Science, International Conference on

Computational Modelling and Security (CMS 2016), vol. 85,

pp. 535–542, Jan. 2016.

[21] M. Suresh and M. Neema, “Hardware Implementation of

Blowfish Algorithm for the Secure Data Transmission in

Internet of Things,” Procedia Technology, 1st Global

Colloquium on Recent Advancements and Effectual

Researches in Engineering, Science and Technology -

RAEREST, vol. 25, no. Supplement C, pp. 248–255, Jan.

2016.

[22] S. Chandra, B. Mandal, S. S. Alam, and S. Bhattacharyya,

“Content-Based Double Encryption Algorithm Using

Symmetric Key Cryptography,” Procedia Computer Science,

3rd International Conference on Recent Trends in Computing

(ICRTC-2015), vol. 57, no. Supplement C, pp. 1228–1234,

Jan. 2015.

[23] M. Thomas and V. Panchami, “An encryption protocol for

end-to-end secure transmission of SMS,” International

Conference on Circuits, Power and Computing Technologies

[ICCPCT-2015], pp. 1–6, 2015.

[24] A.S. Chaudhari, “Security Analysis of SMS and Related

Technologies,” Research Master Thesis, Dept. of

Mathematics and Computer Science, Eindhoven University

of Technology, 2015.

[25] A. Alabaichi, F. Ahmad, and R. Mahmod, “Security analysis

of blowfish algorithm,” Second International Conference on

Informatics Applications (ICIA), pp. 12–18, 2013.

[26] P. Patel, R. Patel, and N. Patel, “Integrated ECC and Blowfish

for Smartphone Security,” Procedia Computer Science, 1st

International Conference on Information Security & Privacy,

vol. 78, pp. 210–216, Jan. 2016.

[27] K. L. Prasad, P. Anusha, G. Jyothi, and K. Dileepkumar,

“Design and Analysis of Secure and Efficient Image with

Embedded Sensitive Information Transferring Technique

using Blowfish Algorithm,” i-Manager’s Journal on

Information Technology; Nagercoil, vol. 5, no. 3, pp. 1–8,

Aug. 2016.

[28] S. G. Saravana Kumar and Dr.A.Shanmugam, “Modified F –

Function for Feistel Network in Blowfish Algorithm,”

International Journal of Engineering and Innovative

Technology (IJEIT), vol. 4, no. 4, pp. 229–232, 2014.

[29] A. A. A. El-Sadek, T. A. El-Garf, and M. M. Fouad, “Speech

encryption applying a modified Blowfish algorithm,”

International Conference on Engineering and Technology

(ICET), pp. 1–6, 2014.

[30] Harris, M. (2018). themattharris (Matt Harris). [online]

GitHub. Available at: https://github.com/themattharris

[Accessed 2 Feb. 2018].

[31] Schneier.com. (2018). Schneier on Security: The Blowfish

Encryption Algorithm. [online] Available at:

https://www.schneier.com/academic/blowfish/ [Accessed 2

Feb. 2018].

[32] A. Amiruddin, A. A. P. Ratna, and R. F. Sari, “New Key

Generation and Encryption Algorithms for Privacy

Preservation in Mobile Ad Hoc Networks,” International

Journal of Communication Networks and Information

Security (IJCNIS), vol. 9, no. 3, Dec. 2017.

[33] Php.net. (2018). PHP: array_diff_assoc - Manual. [online]

Available at: http://php.net/manual/en/function.array-diff-

assoc.php [Accessed 2 Feb. 2018].

