
348
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

OpenDaylight vs. Floodlight: Comparative Analysis

of a Load Balancing Algorithm for Software

Defined Networking

Jonier Porras Duque, Daniel Ducuara Beltrán and Gustavo Puerto Leguizamón

Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Colombia

Abstract: This paper presents the proposal of a load balancing

algorithm implemented in two of the most popular controllers for

Software Defined Networks (SDN): OpenDaylight and Floodlight.

A comparative study in terms of the available bandwidth and delay

time of the packet forwarding was performed by means of

simulation modeling in a base network in which a shortest path

algorithm was implemented as well. The results show that the

proposed load balancing algorithm improves significantly the

performance of a SDN in terms of the offered QoS of an

OpenDaylight based controller. The effect of the proposed load

balancing algorithm in the Floodlight controller shows a smaller

impact mainly on the bandwidth allocation due to its in-build

modules that by default perform specific routing and forwarding

operations efficiently according to the traffic demand.

Keywords: Software Defined Networking, Load Balancing,

Floodlight, OpenDaylight, MININET.

1. Introduction

Software defined Networking (SDN) is described as a

dynamic, manageable, adaptable and cost-effective network

architecture suitable to cope with the transport of high

bandwidth demands. SDN aims at the creation of networks in

which the control is detached from the hardware and is given

to a software application called controller. This fact allows

achieving simpler, programmable, flexible, more scalable

and automatable networks as well as greater security and

reliability are acquired due to the centralized control [1, 2,

3]. In the context of the Quality of Service (QoS), load

balancing is emerging as an important feature for future

communication networks due to its versatility and constant

improvements in communication and information systems.

From the network's viewpoint, it provides scalability and

easy management to TCP/IP, web, proxy, Virtual Private

Networks (VPN) and multimedia services. Load balancing

allows the use of the existing parallel paths between input

and output nodes to distribute the information flows that are

transmitted in a network where its underlying contribution is

to reduce the congestion through routing and traffic control

according to the existing resources in the backbone. The fact

of combining all these characteristics can generate new

models and structures that support the appropriate and

balanced distribution of traffic with assurances of QoS, thus

obtaining the most optimal paths to destinations [4].

Load balancing distributes IP traffic to multiple copies or

instances of TCP/IP services, each one running on a host

within the farm (or cluster, if it is a server farm running a

web application) of servers. Transparent partitions of client

requests are made through the hosts and clients are allowed

to access the farm using one or more virtual IP addresses.

From the client's point of view, the farm seems to be a single

server which responds to their requests. If traffic increases,

the network administrator simply connects another server to

the farm [5].

Most of the problems presented in current networks that

prevent achieving proper load balancing are related to the

routing algorithm itself. Nowadays, the routing is based on

the shortest path algorithm in which each packet that enters

the network looks for the path with the least number of hops

that allows it to reach the destination and it is usually the

same for all packets, even if there are other paths with a

higher number of hops but much faster. This fact degrades

operational aspects of the network such as: the congestion

that occurs over the shortest route link, the overuse of some

links while others are not often used and the reduction of the

effective throughput of the network [4].

This paper evaluates the performance of the SDN controllers

Floodlight [6] and Opendaylight [7] through the

implementation of a load balancing algorithm that allows

obtaining the shortest and/or lowest load paths for the

transmission and forwarding of packets among the end

devices of the network. In section II, the methodology and

elements necessary to carry out the performance evaluation

of SDN with the load balancing algorithm are presented. In

section III, the obtained results are exposed as well as the

analysis and observations found in this study. Finally, section

IV summarizes the conclusions of this work.

2. Related work

Most recent research works regarding software defined

networking are focused on important aspects of network

performance such as load balancing, security, QoS, energy

efficiency and traffic optimization. Real-time

programmability through the centralized controller has

become a great chance of enhancing and optimizing services

offered in data center networking and cloud environments,

campus and high speed networks, wireless communications

and residential environments aiming at making better end

user experience [8].

2.1 Data centers and environments

Some requirements necessary when operating at large scales

in data centers environments are optimal traffic engineering,

network control, and policy implementation. High levels of

latency, faults, and prolonged troubleshooting may cause not

only a negative end user experience but also significant cost

349
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

penalties for operators. Through SDN is possible to monitor

and manage a great deal of network devices and services

ensuring an effective usage of resources provided for

operators. Google, for instance, has implemented SDN

technology to connect its geographically dispersed data

centers around the globe allowing increased resilience and

manageability [8], [9]. Likewise, Cloud computing has also

integrated SDN based traffic-engineering solutions to

increase service scalability and provide an automated

network. Microsoft implemented in their public cloud a load

balancing solution based in SDN Ananta, a layer 4 load

balancer employing commodity hardware to provide

multitenant cloud management. This deployment has been

quite important for Microsoft Azure public cloud, since it

has allowed obtaining high throughput for several tenants

allocated a single public IP address [8], [10]. Reducing

energy consumption in data centers has also had a significant

enhancement and has allowed cutting down operational costs

for operators. SDN technologies such as ElasticTree allow

network-wide power management by putting out redundant

switches from the controller side during low traffic demand

[8], [11].

2.2 Campus and high speed networks

Enterprise networks may show a great deal of variability in

traffic patterns requiring proactive management to adjust

network policies and fine tuning performance using a

programmable SDN framework. A centralized control plane

may also aid in effective monitoring and utilization of

network resources for readjustment. An additional benefit

may be to eliminate middle boxes providing services such as

NAT, firewalls, access control, service differentiation

solutions, and load balancers [8], [12]. The integration of

heterogeneous networking technologies using OpenFlow

enabled network elements and a centralized controller has

seen a great deal of applicability in optical networking.

Using centralized real-time programmability, SDN enabled

hardware from multiple vendors and optical packet based as

well as circuit-switched networks can be placed under the

SDN controller. For instance, in [13] a Wavelength Selective

Switching (WSS) facilitated by OpenFlow protocol was

demonstrated, and virtual Ethernet interfaces to demonstrate

OpenFlow based wavelength path controlling in optical

networking is described in [14]. A commodity SDN

controller, such as NOX and POX, can operate the optical

light paths using OpenFlow by mapping virtual Ethernet

interfaces to physical ports of an optical cross-connect node.

The evaluation of network performance metrics included

latency of path setup and verification of routing and

wavelength assignment allocation using dynamic node

control provided promising results for future software

defined optical networking (SODN) [8], [15]. In contrast

with typical distributed GMPLS protocol, SDON uses a

unified control protocol for QoS metrics offers greater

capacity and performance optimization in optical burst

switching. The application of SDN and in particular

OpenFlow based controls in high-speed and campus

networking, therefore, continues to grow resulting in new as

well as hybrid solutions to achieve greater network

programmability [8], [16].

2.3 Wireless communications

Due to the real-time programmability and potential to

seamlessly introduce new services and applications to

consumers, the SDN paradigm has been ported to mobile

communication networks. A programmable wireless data

plane offering flexible physical and MAC address based

routing, in contrast layer 3 logical address based traffic

forwarding, has allowed developers to fine tune mobile

communications performance [17], [18]. Using the control

plane, user traffic can be segregated and routed over

different protocols such as WiMAX, 3GPP, and LTE

advanced [8].

Current cellular technologies are relatively inflexible by

limitations in link capacities, making real-time service

provisioning difficult and prone to errors. The redesigning of

cellular networks using SDN principles adds modularity to

the existing infrastructure, with each layer encapsulating

horizontally chained protocol stacks orchestrated by a

network operating system residing at the top [19]. For

example, with cellular SDN (CSDN) is possible to take

advantage of network function virtualization (NFV) to

optimize the control through contextual analyses of user data

to create intelligent traffic forwarding policies [8], [20].

2.4 Residential environments

Software defined networking has also been considered as an

efficient way to manage residential and small office

networks. To relieve the burden of network management on

residential gateways, the creation of virtual residential

gateway (data plane) using software defined networking

controller at the service provider side to remotely allow

management flexibility innovative service delivery in homes

was presented in [21].

The residential router or gateway may be controlled and

managed remotely via an SDN controller at the service

provider premises, with the latter mainly responsible for fine

tuning and troubleshooting the residential network [21, 22,

23]. Incorporation of the SDN in residential networks offers

improved scalability and privacy for network management.

From a security perspective it has been argued that an

anomaly detection system in a programmable residential

SDN provides more accuracy and higher scalability than

intrusion detection systems deployed at Internet service

provider side [8], [24].

3. Materials and Methods

The principle of load balancing to the packet transmission

management in software defined networking is similar to that

implemented in traditional networks. In the case of SDN

networks, the controller is responsible for carrying out the

process of selecting the most appropriate route through the

routing protocols considering the load of the network links.

For a network topology as shown in Figure I, in order to

obtain the shortest path through Dijkstra's algorithm, each

node v of the graph G(V,E) has an associated label L(v), this

label indicates the smallest known distance to go from a

fixed node u to this node. Initially, if the edge exists, then the

value of L(v) corresponds to the weight w(u,v) of the edge

350
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

joining the nodes u and v where L(v)=∞. Otherwise, if the

distance is unknown, the algorithm works by creating a set of

nodes T⸦V, for which the shortest path from the node u to

each one of them has been obtained up to that point. At the

end of the algorithm, L(v) contains the cost of the shortest

path to go from u to v [25], [26].

Figure 1. Network scenario [25].

In this work the shortest path based on the Dijkstra's

algorithm for the load balancing implementation was

programmed in Python where a new node in the list T is

added for each iteration of the algorithm. This is achieved by

choosing a node v' that does not yet belong to T and that has

a minimum tag L(v'). In other words, the node v' closest to u

and external to the T list is chosen. Once this is done, the

labels of the nodes over which v' influences are updated, so

that a new calculation of the distances from u to these nodes

is made and this node v' is added to T. The process is

repeated until all the nodes of the graph are in the list. The

pseudo code is shown as follows [25]:

In this context, u and v are the nodes that require

communication. u is the initial node and v is the destination

node. The labels L(u) and L(v) symbolize the weights of

each link that represent the distance between a pair of nodes.

The set T stores the nodes that will form the shortest route

from an origin node u to a destination node v. w(u,v)

represents the weight or cost between the nodes u and v.

Initially, when the algorithm evaluates the first node of the

network, the distance must be equal to 0 (L(u)=0) and

therefore the first node evaluated must be assigned to T

(T=u). Then, the algorithm evaluates that while T does not

have all the nodes of the network (while not all the nodes

have been evaluated to find the shortest path from u to each

node v of the network), it must analyses a neighbour node v’

which does not belong to the set T and its distance or weight

must be less than the neighbour node v previously evaluated.

v and v’ are adjacent nodes that connect directly to the

previous node. The algorithm analyses which one of these

two paths have a lower cost to form the link, so if L(v’) ≤

L(v) the set T adds the new node v’. The next step is to

analyse that for every node v that does not belong to T and

that is adjacent to v’, it must be added to the cost of the total

link L(v), the sum of the distance L(v’) and the weight

w(v’,v) which corresponds to the connection between v and

v’. This should be done whenever L(v) > L(v’) + w(v’,v),

that is, if the new analysed link has a cost lower than L(v)

(the lower distance obtained previously), in this way L(v) is

updated with the new node that forms one route with a lower

cost. This algorithm must be repeated until all possible

routes between the nodes of the network have been evaluated

[25].

In order to evaluate the performance of the Dijkstra's

algorithm, a customized network comprised of many

possible routes that allow the packets to take different paths

was created in the environment of the Mininet software,

where its multiple tools for bandwidth, delay times, and

traffic measurements, among others were used. Thus, it is

intended to observe how the algorithm finds the shortest path

taking into account that the network was previously loaded

by the controller.

For the sake of the comparative study, the SDN controllers

Floodlight and OpenDaylight operate over the same network

topology and under the same conditions were implemented.

The proposed load balancing algorithm improves the

performance of a former proposal in terms of compatibility

and suitability to work with the new versions of the SDN

controllers. In this context, measurements of the available

bandwidth and response times of ICMP requests were

performed for a scenario in which the load balancing

algorithm was used and also when it was not used, in such a

way that the improvements can be appreciated. In addition,

the selection of the shortest and/or least loaded paths will be

shown. The flowgraph of the load balancing algorithm is

shown in Figure 2.

First of all, a pair of hosts must be defined for the load

balancing algorithm, these hosts will communicate to each

other. Then, a neighbor device near Host 2 will serve as a

reference in the network for knowing where is located Host

2. Subsequently, the algorithm will carry out a mapping of

the network to find out and extract information regarding IP

address, MAC address and ports of all hosts and switches

into the network. Then, it will evaluate what routes are

shorter and with the lower load between Host 1 and Host 2

and it will select one of them for the communication. This

last process is performed through Dijkstra's algorithm

mentioned and explained before. Finally, the controller will

save the new rule with information about the shortest path

and with the lower load in a routing table, meanwhile the

algorithm keeps on seeking the best routes for the

communication taking into account the current network

performance. Because of its transversal operation, the

proposed load balancing algorithm could also be used in

environments as those presented in [27] and [28] in order to

improve the QoS features.

351
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Figure 2. Flow diagram of the proposed load balancing

algorithm.

4. Results and Analysis

This section describes the outcomes obtained by the

OpenDaylight and Floodlight controllers in the context of the

shortest path and load balancing algorithms described in the

previous section. It is worth to point out that both controllers

are operating over the same network topology.

4.1 Results for OpenDaylight controller

Figure 3 shows the network topology in which the tests with

the OpenDaylight controller were performed. Bandwidth

measurements between end devices h1 and h12 (gray circles)

were initially chosen. Results show that the average values

are 0.377 Gbit/s for the network without the load balancing

module and 32.6 Gbit/s when applying the load balancing

algorithm, this results in roughly an improvement of 86 times

the initial bandwidth. Table 1 summarizes the results of three

different tests performed.

Figure 3. Network from Opendaylight Web API

Table 1. Bandwidth between h1 and h12
Without load balancing With load balancing

0,376 Gbit/s 33,6 Gbit/s

0,369 Gbit/s 31,9 Gbit/s

0,386 Gbit/s 32,3 Gbit/s

Likewise, the bandwidth between the hosts h3 and h8 (black

circles in Figure 3) was evaluated. The obtained average

values obtained from three different measurements are

shown in Table 2. The results indicate that without using the

module of load balancing the bandwidth is 0.227 Gbit/s

whereas 32.766 Gbit/s for the network using the load

balancing algorithm is feasible. That is, the bandwidth had

an improvement of 144.34 times.

Table 2. Bandwidth between h3 and h8

Without load balancing With load balancing

0,226 Gbit/s 33,5 Gbit/s

0,237 Gbit/s 32,6 Gbit/s

0,219 Gbit/s 32,2 Gbit/s

Subsequently, the packet delivery delay time was evaluated

by sending 100 ping requests between each pair of the

previously defined selected hosts. As seen in Figure 4, the

minimum delay time obtained between the hosts h1 and h12

without load balancing was 0.253 ms (black trace) and

whereas with load balancing (grey trace) the obtained value

was 0.031 ms. As far as the maximum obtained values is

concerned, the absence of load balancing imposes a delay

time of 0.649 ms (black trace) whereas 0.369 ms was found

when using the load balancing algorithm (grey trace).

Overall, the average delay time of the ping requests was

0.361 ms without load balancing and roughly 0.065 ms with

load balancing. The measured average delay times indicate

that the load balancing algorithm reduces the time needed to

select the most optimal path in approximately 5.55 times.

352
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Figure 4. Delay time for 100 ping requests between h1 and

h12.

As far as the delay time between the hosts h3 and h8 is

concerned, the Figure 5 shows that the minimum delay time

obtained without load balancing was 0.176 ms (black trace),

with load balancing (grey trace) the obtained value was

0.041 ms. Figure 5 also shows that the maximum values in

the absence of load balancing imposes a delay time of 1.199

ms (black trace) whereas 0.538 ms was obtained when using

the load balancing algorithm (grey trace). As a result, the

average delay time of the ping requests was 0.330 ms

without load balancing and 0.067 ms with load balancing.

Thus, the average time of the ping requests was reduced 4.93

times when the load balance module was used for the most

optimal path selection.

Figure 5. Delay time for 100 ping requests between h3 and

h8.

The considerable differences in the time statistics between

the test with and without the load balancing algorithm, are

mainly due to the fact that the OpenDaylight controller does

not have default modules that allow selecting the most

suitable path between two points, instead, the controller

floods the network with packets and then selects the right

path. In the same way, the bandwidth is assigned to each one

of the possible paths used for communication such that each

path have only a fraction of the maximum bandwidth and not

the maximum.

In general, the results obtained with the implementation of

the algorithm for load balancing in a network controlled with

OpenDaylight, show a great improvement in the management

of bandwidth when selecting the shortest path and/or with the

lowest load for the pair of hosts. The increase in bandwidth

was between 80 and 150 times greater.

In the same way, the results obtained with the

implementation of the load balancing algorithm in a network

controlled with OpenDaylight, show a significant

improvement by reducing the time of ping requests between

two ends of the network when selecting the shortest path

and/or with less load. The reduction of the times was 5.55

and 4.93 times in each of the hots pairs respectively.

4.1.1 Shortest path analysis and load balancing

Figure 6 shows the shortest and least loaded path that was

obtained between devices h1 and 12 (grey color) and devices

h3 and h8 (black color). As can be seen, the algorithm

selected the shortest and/or with the least load between each

pair of hosts. For the pair of hosts h1 and h12 there is no

shorter path alternative than the one chosen by the algorithm.

In the case of hosts h3 and h8, one of the shorter paths was

chosen, since there were three paths that had the same

number of hops. In this case the algorithm selected the path

with the lowest load out of the three.

Figure 6. Shortest path.

Subsequently, in order to demonstrate the load balancing in

the network, hosts h4 and h8 are selected and applied the

load balancing algorithm. The path defined for this pair of

hosts is in black color in Figure 7 Then, between these two

devices, ping requests are made permanently while load

balancing is running between a different pair of hosts, h3 and

h7. The algorithm determines the most appropriate path for

these two hosts, which may be the shortest and/or least

loaded. The resulting path must share the least number of

switches belonging to the previously path selected for h4 and

h8 (the path obtained is marked with grey color in the Figure

7). Finally, devices h1 and h8 are selected while pairs h4-h8

and h3-h7 communicate permanently. The algorithm is

applied and the most appropriate path is obtained (shortest

and/or least loaded path), which shares the least number of

switches belonging to the paths selected for the previous

pairs of hosts.

By making ping requests between each pair of hosts,

improvements in the delay time can be reached because the

353
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

network load is balanced. The average time was reduced

approximately 5 times in all pairs of hosts, considerably

improving the behavior of the network. Thanks to the load

balancing algorithm, the packet transmission rate between

different points of the network was improved, especially in

large networks where there were many paths through which

packets can be routed.

It should be noted that normally the load balancing modules

in a network do not always work in the most appropriate

way. This is due to the fact that the most optimal links are

not always chosen, since these algorithms are only based on

obtaining the shortest path. Thus, they can choose the path

with the least number of hops but with an excessive load.

Figure 7. Network load balancing.

4.2 Results for Floodlight controller

The evaluation of the shortest path with the Floodlight

controller was performed in the network topology shown in

figure 8 with hosts h1 and h12 (black circle) and hosts h5

and h10 (grey color). It should be pointed out that the

network topology is exactly the same as that used for the

evaluation of the OpenDaylight controller in the previous

section.

Figure 8. Network from Floodlight API Web.

Bandwidth measurements were performed between the two

hosts in which the effect of having load balancing is

contrasted with the operation without the load balancing

algorithm. The results are summarized in Table 3:

Table 3. Bandwidth between h1 and h12

Without load balancing With load balancing

35,6 Gbit/s 34,9 Gbit/s

36,2 Gbit/s 37,1 Gbit/s

32,3 Gbit/s 35,0 Gbit/s

35,8 Gbit/s 33,8 Gbit/s

36,3 Gbit/s 37,4 Gbit/s

The average values of the results presented in Table 3 are:

35.24 Gbit/s for the network without the load balancing

module and 35.64 Gbit/s when applying the load balancing

module.

Similarly, Table 4 shows the bandwidth measurements

between hosts h5 and h10. The average values found for this

pair of hosts are: 33.72 Gbit/s for the network without the

load balancing module and 36.54 Gbit/s for the network with

the load balancing module.

Table 4. Bandwidth between h5 and h10

Without load balancing With load balancing

38,5 Gbit/s 35,2 Gbit/s

33,8 Gbit/s 37,0 Gbit/s

32,3 Gbit/s 34,9 Gbit/s

32,2 Gbit/s 39,1 Gbit/s

31,8 Gbit/s 36,5 Gbit/s

Subsequently, 100 ping requests were sent out and the time

statistics of the transmitted packets were obtained. In Table 5

is observed that the average time was 2.19 times lower when

the load balancing algorithm was implemented for the pair of

hosts h1-h12.

Table 5. Time statistics between h1 and h12

 Without load

balancing

With load

balancing

Minimum time 0,039 ms 0,042 ms

Maximum time 14,532 ms 0,515 ms

Average time 0,221 ms 0,101 ms

In the Figure 9 the black color trace corresponds to the ping

requests without using the load balancing module, and the

grey color trace when it was implemented in hosts h1-h11.

The figure shows that the general behavior in the two tests is

very similar and the only difference is in the first ping

request. The delay time of the first ping request with the load

balancing module was 0.515 ms, while for the other case the

value was 14.532 ms (see maximum time at Table 5).

354
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Figure 9. Delay time for 100 ping requests between h1 and

h12.

As far as the hosts h5 and h10 is concerned, Table 6 shows

the minimum and maximum values of the delay time in

which the average delay time was 2.88 times lower when the

load balancing module was used.

Table 6. Time statistics between h5 and h10

 Without load

balancing

With load

balancing

Minimum time 0,045 ms 0,040 ms

Maximum time 9,536 ms 0,520 ms

Average time 0,150 ms 0,052 ms

Figure 10 shows in more detail the general behavior of all

ping requests. The black trace is related to ping requests

without using the load balancing module, and the grey trace

when implementing load balancing. The general behavior of

the two configurations is very similar, however, the first ping

request without the load balancing module presented a very

high time response of 9.536 ms, while the other has a

response of 0.520 ms (see maximum value Table 6).

Figure 10. Delay time for 100 ping request between h5 and

h10.
The load balancing algorithm implementation in a SDN

network controlled by Floodlight shows a significant

improvement by drastically reducing the time of the first

ping request, where the pairs of hosts communicate for the

first time. This causes the average time of ping requests to

decrease considerably. On the other hand, the general

behavior of the network in the two evaluations was quite

similar, showing that the Floodlight controller has a pretty

good performance on its own.

Although the average value of the bandwidth increases

from one case to another, the improvements are very small

unlike the results obtained with the OpenDaylight controller.

The reason why this occurs is because the Floodlight

controller has a large number of default modules that are

automatically loaded each time the controller is executed and

derives in an improvement of the network performance,

among these modules is the load balancing. This default

module for load balancing is developed in Java, so the one

proposed and implemented in this paper is an important

alternative since it was developed in Python.

4.2.1 Shortest path analysis and load balancing

Unlike the OpenDaylight controller, Floodlight does not

send ping requests throughout the network when attempting

to communicate two hosts. On the contrary, this controller

determines the most appropriate way to establish the

connection and generate a flow within its tables. In most

cases, the selected path is usually the shortest and usually

only one. The following test is similar to the one performed

in OpenDaylight where it is observed which paths the

controller defines for communication between two hosts

when the load balancing algorithm is used and when it is not.

For demonstrating purposes of the load balancing in the

network, initially the communication is carried out between

hosts h3 and h8. The paths selected when establishing the

connection between these two hosts with and without our

load balancing algorithm are the following: paths between h3

and h8 without algorithm 0d::0c::0b::11::12 -

0d::08::07::11::12 (in Figure 11 the path in grey color) and

path between h3 and h8 with algorithm 0d::0c::0b::11::12

(the path in black color). When the connection is established

without the implementation of the load balancing algorithm,

the default modules with which the controller works assign

two paths for communication, one forward path and one

return path. On the contrary, the load balancing algorithm

only allocates one way for communication. The assignment

of two paths is advantageous if we consider it as a way to

avoid the saturation of the links while avoiding the load

increment in one path. On the other hand, it is inefficient if

we consider that several hosts try to communicate among

them. In this way, more than the necessary resources are

used.

Figure 11. Load balancing between h3 and h8.

355
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

 Then, host h3 remains sending ping requests to host h8 in

order to occupy this link, while trying to establish the

connection between hosts h4 and h7. In both cases, a single

path is assigned and different from those previously

assigned: path between h4 and h7 without the load balancing

algorithm 0d::04::03::11::12 (in Figure 12 the path in grey

color) and Path between h4 and h7 with the load balancing

algorithm 0d::08::07::11::12 (the path in black color).

Figure 12. Load balancing between h4 and h7.

 In the same way, host h3 remains sending ping requests to

host h8 and host h4 sending ping requests to host h7 in order

to occupy these links. With the new pair of hosts h12 and h6,

the following paths are obtained: without the algorithm

0f::0e::07::09 (in Figure 13 the path in grey color) and with

the algorithm 0f::0e::07::09 (the path in black color). In this

case, the assigned paths are the same.

Figure 13. Load balancing between h12 and h6.

Figure 14. Load balancing between h1 and h5.

Finally, for the communication between h1 and h5, the

controller assigns two paths by default, while the load

balancing algorithm assigns only one: paths

0f::0e::0b::0c::05 - 0f::0e::03::04::05 (in Figure 14 the path

in grey color) and the path 0f::0e::03::04::05 (path in black

color). The general behavior in both tests shows a very good

allocation and distribution of the resources of the network,

which depending on the situation, will provide better results

our proposal or the default module implemented by the

controller. In this test, we demonstrate a better performance

with our approach since the communication was made

among 8 hosts.

5. Conclusions

Software defined networking or programmable networks

have a wide range of controllers for traffic management in

the network, where each one of them differs from each other

due to its complexity and support given by their developers.

The OpenDaylight controller has low performance when

handling response times and bandwidth allocation, and it

presents an excessive consumption of RAM. However, it has

good information support from its developers and it has a

Web API. On the other hand, the Floodlight controller has a

very good throughput in managing response times and

bandwidth by having a large number of modules that

together perform specific actions that improve its efficiency.

In addition, it has good documentation and easy handling

through simple instructions in the terminal or through its

Web API.

The implementation of the load balancing algorithm allowed

improving the behavior of a software defined networking in

terms of quality of service, improving bandwidth, decreasing

response times and optimally distributing the load of the

links. For the case in which the OpenDaylight controller was

used, there were improvements of the available bandwidth of

around 100 times when finding a more optimal path for the

packets. On the other hand, the packets delay time was

improved by reducing it roughly 5 times on average.

356
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

In general, the results in this item were quite satisfactory. In

the same way, the results obtained with the Floodlight

controller were not very far from the results obtained with

the load balancing algorithm in terms of bandwidth and

response times. Thus, in terms of these network parameters

there is no need to make drastic changes to the controller.

6. Acknowledgement

The authors wish to acknowledge and thank the Universidad

Distrital Francisco José de Caldas for supporting the

development of this paper.

References

[1] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E.

Rothenberg, S. Azodolmolky and S. Uhlig, “Software-Defined

Networking: A Comprehensive Survey,” in Proceedings of the

IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[2] R. Adrian, A. Dahlan and K. Anam, “OSPF cost impact

analysis on SDN network,” 2017 2nd International

conferences on Information Technology, Information Systems

and Electrical Engineering (ICITISEE), Yogyakarta,

Indonesia, 2017, pp. 198-201.

[3] M. I. Hamed, B. M. ElHalawany, M. M. Fouda and A. S. T.

Eldien, “A novel approach for resource utilization and

management in SDN,” 2017 13th International Computer

Engineering Conference (ICENCO), Cairo, Egypt, 2017, pp.

337-342.

[4] M. F. Ramdhani, S. N. Hertiana and B. Dirgantara, “Multipath

routing with load balancing and admission control in

Software-Defined Networking (SDN),” 2016 4th International

Conference on Information and Communication Technology

(ICoICT), Bandung, 2016, pp. 1-6.

[5] H. Sufiev and Y. Haddad, “A dynamic load balancing

architecture for SDN,” 2016 IEEE International Conference

on the Science of Electrical Engineering (ICSEE), Eilat, 2016,

pp. 1-3.

[6] S. Asadollahi and B. Goswami, “Experimenting with

scalability of floodlight controller in software defined

networks,” 2017 International Conference on Electrical,

Electronics, Communication, Computer, and Optimization

Techniques (ICEECCOT), Mysuru, 2017, pp. 288-292.

[7] Z. K. Khattak, M. Awais and A. Iqbal, “Performance

evaluation of OpenDaylight SDN controller,” 2014 20th IEEE

International Conference on Parallel and Distributed Systems

(ICPADS), Hsinchu, 2014, pp. 671-676.

[8] Taimur Bakhshi, “State of the Art and Recent Research

Advances in Software Defined Networking,” Wireless

Communications and Mobile Computing, vol. 2017, Article

ID 7191647, 35 pages, 2017.

[9] A. Kumar, S. Jain, U. Naik et al., “BwE: flexible, hierarchical

bandwidth allocation for WAN distributed computing,”

in Proceedings of the ACM Conference on Special Interest

Group on Data Communication (SIGCOMM '15), pp. 1–14,

London, UK, August 2015.

[10] P. Patel, D. Bansal, L. Yuan et al., “Ananta: cloud scale load

balancing,” in Proceedings of the ACM SIGCOMM

Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication (SIGCOMM '13), pp.

207–218, August 2013.

[11] B. Heller, S. Seetharaman, P. Mahadevan et al., “Elastictree:

saving energy in data center networks,” in Proceedings of the

7th USENIX Conference on Networked Systems Design and

Implementation, p. 17, USENIX Associatio, 2010.

[12] N. Beheshti and Y. Zhang, “Fast failover for control traffic in

software-defined networks,” in Proceedings of the IEEE

Global Communications Conference (Globecom '12), pp.

2689–2694, Ericsson Research, Anaheim, Calif, USA, 2012.

[13] V. Gudla, S. Das, A. Shastri et al., “Experimental

demonstration of openflow control of packet and circuit

switches,” in Proceedings of the Optical Fiber Communication

Conference (OFC '11), Collocated National Fiber Optic

Engineers Conference, 2010 Conference on (OFC/NFOEC

'10), vol. 45, pp. 1–3, IEEE, Los Angeles, Calif, USA, 2011.

[14] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu,

“OpenFlow-based wavelength path control in transparent

optical networks: a proof-of-concept demonstration,”

in Proceedings of the 37th European Conference on Optical

Communication and Exhibition (ECOC '11), pp. 1–3,

September 2011.

[15] D. Simeonidou, R. Nejabati, and M. P. Channegowda,

“Software defined optical networks technology and

infrastructure: enabling software-defined optical network

operations,” in Proceedings of the Optical Fiber

Communication Conference (OFC '13), Optical Society of

America, March 2013.

[16] A. N. Patel, P. N. Ji, and T. Wang, “Qos-aware optical burst

switching in openflow based software-defined optical

networks,” in Proceedings of the 17th International

Conference on Optical Network Design and Modeling

(ONDM '13), pp. 275–280, Brest, France, April 2013.

[17] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: a

programmable wireless dataplane,” in Proceedings of the 1st

ACM International Workshop on Hot Topics in Software

Defined Networks (HotSDN '12), pp. 109–114, Helsinki,

Finland, August 2012.

[18] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-

defined cellular networks,” in Proceedings of the 1st European

Workshop on Software Defined Networks (EWSDN '12), pp.

7–12, Darmstadt, Germany, October 2012.

[19] X. Mi, Z. Tian, X. Xu, M. Zhao, and J. Wang, “NO stack: a

SDN-based framework for future cellular networks,”

in Proceedings of the International Symposium on Wireless

Personal Multimedia Communications (WPMC '14), pp. 497–

502, Sydney, Australia, September 2014.

[20] A. Bradai, K. Singh, T. Ahmed, and T. Rasheed, “Cellular

software defined networking: a framework,” IEEE

Communications Magazine, vol. 53, no. 6, pp. 36–43, 2015.

[21] M. Dillon and T. Winters, “Virtualization of home network

gateways,” Computer, vol. 47, no. 11, Article ID 6965269, pp.

62–65, 2014.

[22] N. Feamster, “Outsourcing home network security,”

in Proceedings of the ACM SIGCOMM Workshop on Home

Networks (HomeNets '10), pp. 37–42, New Delhi, India,

September 2010.

[23] J. Jo, S. Lee, and J. W. Kim, “Software-defined home

networking devices for multi-home visual sharing,” IEEE

Transactions on Consumer Electronics, vol. 60, no. 3, pp.

534–539, 2014.

[24] S. Mehdi, J. Khalid, and S. Khayam, “Revisiting traffic

anomaly detection using software defined networking,”

in Recent Advances in Intrusion Detection, pp. 161–180,

Springer, Berlin, Germany, 2011.

[25] E. W. Zegura, K. L. Calvert and S. Bhattacharjee, “How to

model an internetwork,” INFOCOM '96. Fifteenth Annual

Joint Conference of the IEEE Computer Societies. Networking

the Next Generation. Proceedings IEEE, San Francisco, CA,

1996, pp. 594-602 vol.2.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. “Introduction to Algorithms: Dijkstra's

algorithm”, Second Edition. MIT Press and McGraw-Hill.

Section 24.3. 2001. Pags.595–601.

[27] Annop Monsakul “SRAD: Smart Routing Algorithm Design

for Supporting IoT Network Architecture,” International

357
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Journal of Communication Networks and Information Security

(IJCNIS) Vol. 10, No. 1, pp. 91–98, 2018.

[28] I. D. Irawati, A. B. Suksmono, I. Joseph, and M. Edward

“Missing Internet Traffic Reconstruction using Compressive

Sampling” International Journal of Communication Networks

and Information Security (IJCNIS) Vol. 9, No. 1, pp. 57–66,

2017.

